Skip to main content

Innovations in Microalgal Harvesting Using Biopolymer-Based Approach

  • Chapter
Microbial Factories

Abstract

Green unicellular microalgae increase their biomass content by the capability of entrapping CO2 for photosynthesis and are crucial for important value product. Negative zeta value is imparted the presence of COOH and NH2 groups. This review will give a detailing toward the forces that are responsible for making alga stable in a solution phase. Beside this, it also explains the various possibilities toward the recent advancement of bioharvesting in terms of technological aspects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agbakpe M, Ge S, Zhang W, Zhang X, Kobylarz P (2014) Algae harvesting for biofuel production: influences of UV irradiation and polyethylenimine (PEI) coating on bacterial biocoagulation. Bioresour Technol 166:266–272

    Article  CAS  PubMed  Google Scholar 

  • Ahmad AL, Mat Yasin NH, Derek CJC, Lim JK (2011) Optimization of microalgae coagulation process using Chitosan. Chem Eng J 173:879–882

    Article  CAS  Google Scholar 

  • Ayoub GM, Lee SL, Koopman B (1986) Seawater induced algal flocculation. Water Res 20:1265–1271

    Article  CAS  Google Scholar 

  • Banerjee C, Ghosh S, Sen G, Mishra S, Shukla P et al (2013) Study of algal biomass harvesting using cationic guar gum from the natural plant source as flocculant. Carbohydr Polym 92:675–681

    Article  CAS  PubMed  Google Scholar 

  • Barrut B, Blancheton JP, Muller Feuga A, Rene F, Narvaez C et al (2013) Separation efficiency of a vacuum gas lift for microalgae harvesting. Bioresour Technol 128:235–240

    Article  CAS  PubMed  Google Scholar 

  • Beach ES, Eckelman MJ, Cui Z, Brentner L, Zimmerman JB (2012) Preferential technological and life cycle environmental performance of chitosan flocculation for harvesting of the green algae Neochloris oleoabundans. Bioresour Technol 121:445–449

    Article  CAS  PubMed  Google Scholar 

  • Bilad MR, Vandamme D, Foubert I, Muylaert K, Vankelecom IF (2012) Harvesting microalgal biomass using submerged microfiltration membranes. Bioresour Technol 111:343–352

    Article  CAS  PubMed  Google Scholar 

  • Blanchemain A, Grizeau D (1999) Increased production of eicosapentaenoic acid by Skeletonema costatum cells after decantation at low temperature. Biotechnol Tech 13:497–501

    Article  CAS  Google Scholar 

  • Boisvert JP, To TC, Berrak A, Jolicoeur C (1998) Phosphate adsorption in flocculation processes of aluminium sulphate and poly-aluminium-silicate-sulphate. Water Res 31:1939–1946

    Article  Google Scholar 

  • Brostow W, Pal S, Singh RP (2007) A model of flocculation. Mater Lett 61:4381–4384

    Article  CAS  Google Scholar 

  • Castrillo M, Lucas-Salas LM, Rodríguez-Gil C, Martínez D (2013) High pH-induced flocculation-sedimentation and effect of supernatant reuse on growth rate and lipid productivity of Scenedesmus obliquus and Chlorella vulgaris. Bioresour Technol 128:324–329

    Article  CAS  PubMed  Google Scholar 

  • Cerff M, Morweiser M, Dillschneider R, Michel A, Menzel K et al (2012) Harvesting fresh water and marine algae by magnetic separation: screening of separation parameters and high gradient magnetic filtration. Bioresour Technol 118:289–295

    Article  CAS  PubMed  Google Scholar 

  • Chen YM, Liu JC, Ju YH (1998) Flotation removal of algae from water. Colloids Surf B Biointerfaces 12:49–55

    Article  CAS  Google Scholar 

  • Cheng YL, Juang YC, Liao GY, Tsai PW, Ho SH et al (2011) Harvesting of Scenedesmus obliquus FSP-3 using dispersed ozone flotation. Bioresour Technol 102:82–87

    Article  CAS  PubMed  Google Scholar 

  • Craggs R, Sutherland D, Campbell H (2012) Hectare-scale demonstration of high rate algal ponds for enhanced wastewater treatment and biofuel production. J Appl Phycol 24:329–337

    Article  CAS  Google Scholar 

  • Davis NS, Foust OJ (1969) Flocculation of suspensions. US Patent 3,431,200, 1969

    Google Scholar 

  • De Godos I, Guzman HO, Soto R, García-Encina PA, Becares E et al (2011) Coagulation/flocculation-based removal of algal-bacterial biomass from piggery wastewater treatment. Bioresour Technol 102:923–927

    Article  PubMed  Google Scholar 

  • Deryagin BV, Landau LD (1941) Theory of the stability of strongly charged lyophobic sols and the adhesion of strongly charged particles in solutions of electrolytes. Acta Phys Chim URSS 14:633–662

    CAS  Google Scholar 

  • Divakaran R, Pillai VNS (2002) Flocculation of algae using chitosan. J Appl Phycol 14:419–422

    Article  CAS  Google Scholar 

  • Farid MS, Shariati A, Badakhshan A, Anvaripour B (2013) Using nano-chitosan for harvesting microalga Nannochloropsis sp. Bioresour Technol 131:555–559

    Article  CAS  PubMed  Google Scholar 

  • Farooq W, Lee YC, Han JI, Darpito CH, Choi M et al (2013) Efficient microalgae harvesting by organo-building blocks of nanoclays. Green Chem 15:749–755

    Article  CAS  Google Scholar 

  • Fast SA, Gude VG (2014) Ultrasound-chitosan enhanced flocculation of low algal turbid waters. J Ind Eng Chem. doi:10.1016/j.jiec.2014.09.023

    Google Scholar 

  • Gao S, Yang J, Tian J, Ma F, Tu G, Du M (2010) Electro-coagulation–flotation process for algae removal. J Hazard Mater 177:336–343

    Article  CAS  PubMed  Google Scholar 

  • Garg S, Li Y, Wang L, Schenk PM (2012) Flotation of marine microalgae: effect of algal hydrophobicity. Bioresour Technol 121:471–474

    Article  CAS  PubMed  Google Scholar 

  • Govender P, Domingo JL, Bester MC, Pretorius IS, Bauer FF (2008) Controlled expression of the dominant flocculation genes FLO1, FLO5, and FLO11 in Saccharomyces cerevisiae. Appl Environ Microbiol 74:6041–6052

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Grima ME, Belarbi EH, Fernandez FGA, Medina AR, Chisti Y (2003) Recovery of microalgal biomass and metabolites: process options and economics. Biotechnol Adv 20:491–515

    Article  Google Scholar 

  • Guo SL, Zhao XQ, Wan C, Huang ZY, Yang YL et al (2013) Characterization of flocculating agent from the self-flocculating microalga Scenedesmus obliquus AS-6-1 for efficient biomass harvest. Bioresour Technol 145:285–289

    Article  CAS  PubMed  Google Scholar 

  • Gutzeit G, Lorch D, Weber A, Engels M, Neis U (2005) Bioflocculent algal-bacterial biomass improves low-cost wastewater treatment. Water Sci Technol 52:9–18

    CAS  PubMed  Google Scholar 

  • Henderson RK, Parsons SA, Jefferson B (2008a) Successful removal of algae through control of the zeta potential. Sep Sci Technol 43:1653–1666

    Article  CAS  Google Scholar 

  • Henderson RK, Parsons SA, Jefferson B (2008b) The impact of algal properties and pre-oxidation on solid–liquid separation of algae. Water Res 42:1827–1845

    Article  CAS  PubMed  Google Scholar 

  • Jonathan TC, Lee GM, Caldwell GS (2014) Harvesting microalgae by CTAB-aided foam flotation increases lipid recovery and improves fatty acid methyl ester characteristics. Biomass Bioenergy 67:354–362

    Article  Google Scholar 

  • Kim DG, La HJ, Ahn CY, Park YH, Oh HM (2011) Harvest of Scenedesmus sp. with bioflocculant and reuse of culture medium for subsequent high-density cultures. Bioresour Technol 102:3163–3168

    Article  CAS  PubMed  Google Scholar 

  • Kim J, Ryu BG, Kim BK, Han JI, Yang JW (2012) Continuous microalgae recovery using electrolysis with polarity exchange. Bioresour Technol 111:268–275

    Article  CAS  PubMed  Google Scholar 

  • Knuckey RM, Brown MR, Robert R, Frampton DMF (2006) Production of microalgal concentrates by flocculation and their assessment as aquaculture feeds. Aquac Eng 35:300–313

    Article  Google Scholar 

  • Koopman B, Lincoln EP (1983) Autoflotation harvesting of algae from high-rate pond effluents. Agric Wastes 5:231–246

    Article  Google Scholar 

  • Kurniawati HA, Ismadji S, Liu JC (2014) Microalgae harvesting by flotation using natural saponin and chitosan. Bioresour Technol 166:429–434

    Article  CAS  PubMed  Google Scholar 

  • Larsson A, Wall S (1998) Flocculation of cationic amylopectin starch and colloidal silicic acid. The effect of various kinds of salt. Colloids Surf A Physicochem Eng Asp 139:259–270

    Article  CAS  Google Scholar 

  • Lee SJ, Kim SB, Kim JE, Kwon GS, Yoon BD et al (1998) Effects of harvesting method and growth stage on the flocculation of the green alga Botryococcus braunii. Lett Appl Microbiol 27:14–18

    Article  Google Scholar 

  • Lee AK, Lewis DM, Ashman PJ (2009) Microbial flocculation, a potentially low-cost harvesting technique for marine microalgae for the production of biodiesel. J Appl Phycol 21:559–567

    Article  CAS  Google Scholar 

  • Mabire F, Audebert R, Quivoron C (1984) Flocculation properties of some water-soluble cationic copolymers toward silica suspensions: a semiquantitative interpretation of the role of molecular weight and cationicity through a “patchwork” model. J Colloid Interface Sci 97:120–136

    Article  CAS  Google Scholar 

  • McCausland MA, Braun MR, Barrett SM, Diemar JA, Heasman MP (1999) Evaluation of live microalgae and microbial pastes as supplementary food for Pacific oysters. Aquaculture 174:323–342

    Article  Google Scholar 

  • Millamena OM, Aujero EJ, Borlongan IG (1990) Techniques on algae harvesting and reservation for use in culture and a larval food. Aquac Eng 9:295–304

    Article  Google Scholar 

  • Pal S, Sen G, Karmakar NC, Mal D, Singh RP (2008) High performance flocculating agents based on cationic polysaccharides in relation to coal fine suspension. Carbohydr Polym 74:590–596

    Article  CAS  Google Scholar 

  • Pal S, Ghosh S, Sen G, Jha U, Singh RP (2009) Cationic tamarind kernel polysaccharide (Cat TKP): a novel polymeric flocculant for the treatment of textile industry wastewater. Int J Biol Macromol 45:518–523

    Article  CAS  PubMed  Google Scholar 

  • Petrusevski B, Bolier G, Van Breemen AN, Alaerts GJ (1995) Tangential flow filtration: a method to concentrate freshwater algae. Water Res 29:1419–1424

    Article  CAS  Google Scholar 

  • Poleman E, DePauw N, Jeurissen B (1997) Potential of electrolytic flocculation for recovery of micro-algae. Resour Conserv Recycl 19:1–10

    Article  Google Scholar 

  • Renault F, Sancey B, Badot PM, Crini G (2009) Chitosan for coagulation/flocculation processes – an eco-friendly approach. Eur Polym J 45:1337–1348

    Article  CAS  Google Scholar 

  • Rios SD, Salvado J, Farriol X, Torras C (2012) Antifouling microfiltration strategies to harvest microalgae for biofuel. Bioresour Technol 119:406–418

    Article  CAS  PubMed  Google Scholar 

  • Rubio J, Souza ML, Smith RW (2002) Overview of flotation as a wastewater treatment technique. Miner Eng 15:139–155

    Article  CAS  Google Scholar 

  • Ruehrwein RA, Ward DW (1952) Mechanism of clay aggregation by polyelectrolytes. Soil Sci 73:485–492

    Article  CAS  Google Scholar 

  • Singh RP, Karmakar GP, Rath SK, Karmakar NC, Tripathy T et al (2000) Biodegradable drag reducing agents and flocculants based on polysaccharides: materials and applications. Polym Eng Sci 40:46–60

    Article  CAS  Google Scholar 

  • Singh RP, Pal S, Rana VK, Ghorai S (2013) Amphoteric amylopectin: a novel polymeric flocculant. Carbohydr Polym 91:294–299

    Article  CAS  PubMed  Google Scholar 

  • Smellie RH Jr, La Mer VK (1958) Flocculation, subsidence and filtration of phosphate slimes: VI. A quantitative theory of filtration of flocculated suspensions. J Colloid Sci 13:589–599

    Article  CAS  Google Scholar 

  • Spilling K, Seppälä J, Tamminen T (2010) Inducing autoflocculation in the diatom Phaeodactylum tricornutum through CO2 regulation. J Appl Phycol 23:959–966. doi:10.1007/s10811-010-9616-5

    Article  Google Scholar 

  • Sukenik A, Shelef G (1984) Algal autoflocculation – verification and proposed mechanism. Biotechnol Bioeng 26:142–147

    Article  CAS  PubMed  Google Scholar 

  • Taylor RL, Rand JD, Caldwell GS (2012) Treatment with algae extracts promotes flocculation, and enhances growth and neutral lipid content in Nannochloropsis oculata – a candidate for biofuel production. Marine Biotechnol 14:774–781

    Article  CAS  Google Scholar 

  • Uduman N, Qi Y, Danquah MK, Forde GM, Hoadley A (2010) Dewatering of microalgal cultures: a major bottleneck to algae-based fuels. J Renewable Sustainable Energy 2:012701

    Article  Google Scholar 

  • Vandamme D, Foubert I, Meesschaert B, Muylaert K (2010) Flocculation of microalgae using cationic starch. J Appl Phycol 22:525–530

    Article  Google Scholar 

  • Vandamme D, Pontes SC, Goiris K, Foubert I, Pinoy LJ et al (2011) Evaluation of electro-coagulation-flocculation for harvesting marine and freshwater microalgae. Biotechnol Bioeng 108:2320–2329

    Article  CAS  PubMed  Google Scholar 

  • Vandamme D, Foubert I, Fraeye I, Meesschaert B, Muylaert K (2012) Flocculation of Chlorella vulgaris induced by high pH: role of magnesium and calcium and practical implications. Bioresour Technol 105:114–119

    Article  CAS  PubMed  Google Scholar 

  • Vandamme D, Foubert I, Koenraad M (2013) Flocculation as a low-cost method for harvesting microalgae for bulk biomass production. Trends Biotechnol 31:233–239

    Article  CAS  PubMed  Google Scholar 

  • Veloso V, Reis A, Gouveia L, Fernandes HL, Empis JA et al (1991) Lipid production in Phaeodactylum tricornutum. Bioresour Technol 38:115–119

    Article  CAS  Google Scholar 

  • Wilde EW, Benemann JR, Weissman JC, Tillett DM (1991) Cultivation of algae and nutrient removal in a waste heat utilization process. J Appl Phycol 3:159–167

    Article  Google Scholar 

  • Wu Z, Zhu Y, Huang W, Zhang C, Li T et al (2012) Evaluation of flocculation induced by pH increase for harvesting microalgae and reuse of flocculated medium. Bioresour Technol 110:496–502

    Article  CAS  PubMed  Google Scholar 

  • Xu L, Wang F, Li HZ, Hu ZM, Guo C et al (2010) Development of an efficient electroflocculation technology integrated with dispersed-air flotation for harvesting microalgae. J Chem Technol Biotechnol 85:1504–1507

    CAS  Google Scholar 

  • Xu L, Guo C, Wang F, Zheng S, Liu CZ (2011) A simple and rapid harvesting method for microalgae by in situ magnetic separation. Bioresour Technol 102:10047–10051

    Article  CAS  PubMed  Google Scholar 

  • Xu Y, Purton S, Baganz F (2013) Chitosan flocculation to aid the harvesting of the microalga Chlorella sorokiniana. Bioresour Technol 129:296–301

    Article  CAS  PubMed  Google Scholar 

  • Yahi H, Elmaleh S, Coma J (1994) Algal flocculation–sedimentation by pH increase in a continuous reactor. Water Sci Technol 30:259–267

    CAS  Google Scholar 

  • Yoon RH, Luttrell GH (1989) The effect of bubble size on fine particle flotation. Miner Process Extr Metall Rev 5:101–122

    Article  Google Scholar 

  • Zamalloa C, Boon N, Verstraete W (2013) Decentralized two-stage sewage treatment by chemical-biological flocculation combined with microalgae biofilm for nutrient immobilization in a roof installed parallel plate reactor. Bioresour Technol 130:152–160

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Hu B (2012) A novel method to harvest microalgae via co-culture of filamentous fungi to form cell pellets. Bioresour Technol 114:529–535

    Article  CAS  PubMed  Google Scholar 

  • Zheng H, Gao Z, Yin J, Tang X, Ji X et al (2012) Harvesting of microalgae by flocculation with poly (γ-glutamic acid). Bioresour Technol 112:212–220

    Article  CAS  PubMed  Google Scholar 

  • Zhou WG, Cheng YL, Li Y, Wan YQ, Liu YH et al (2012) Novel fungal pelletization-assisted technology for algae harvesting and wastewater treatment. Appl Biochem Biotechnol 167:214–228

    Google Scholar 

Download references

Acknowledgements

Dr. Chiranjib Banerjee highly acknowledges Department of Science and Technology (DST), Government of India for providing financial support as well as project grant from INSPIRE Faculty award scheme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pratyoosh Shukla .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this chapter

Cite this chapter

Banerjee, C., Bandopadhyay, R., Singh, P.K., Agrawal, H.K., Shukla, P. (2015). Innovations in Microalgal Harvesting Using Biopolymer-Based Approach. In: Kalia, V. (eds) Microbial Factories. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2595-9_9

Download citation

Publish with us

Policies and ethics