Skip to main content

Diencefalo: talamo dorsale

  • Chapter
Il sistema nervoso centrale

Riassunto

Il talamo è un grande complesso nucleare di forma ovoidale situato nella parete del diencefalo caudalmente al forame interventricolare (Figg. 3.19, 3.20). Lateralmente, un sottile strato di fibre mieliniche, la lamina midollare esterna, divide il corpo principale del talamo dal nucleo reticolare talamico. La principale massa del talamo costituisce il talamo dorsale. Il nucleo reticolare talamico e alcune strutture adiacenti fanno parte del talamo ventrale(vedi in seguito). I termini talamo dorsale e ventrale derivano dalla loro disposizione topografica nella parete laterale del diencefalo durante lo sviluppo (vedi Cap. 2)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliografia

  1. Aggleton JP, Mishkin M (1984) Projections of the amygdala to the thalamus in the cynomolgus monkey. J Comp Neurol 222:56–68

    Article  CAS  PubMed  Google Scholar 

  2. Akert K (1964) Comparative anatomy of frontal cortex and thalamo-frontal connections. In: Warren JM, Akert K (eds) The frontal granular cortex and behavior. McGraw Hill, New York, pp 372–396

    Google Scholar 

  3. Amaral DG, Cowan WM (1980) Subcortical afferents to the hippocampal formation in the monkey. J Comp Neurol 189:573–591

    Article  CAS  PubMed  Google Scholar 

  4. Apkarian AV, Shi T (1994) Squirrel monkey lateral thalamus. I. Somatic nociresponsive neurons and their relation to spinothalamic terminals. J Neurosci 14:6779–6795

    CAS  PubMed  Google Scholar 

  5. Asanuma C, Thach WT, Jones EG (1983) Distribution of cerebellar terminations and their relation to other afferent terminations in the ventral lateral thalamic region of the monkey. Brain Res Rev 5:237–266

    Article  Google Scholar 

  6. Asanuma C, Thach WT, Jones EG (1983) Anatomical evidence for segregated focal groupings of efferent cells and their terminal ramifications in the cerebellothalamic pathway of the monkey. Brain Res Rev 5:267–298

    Article  Google Scholar 

  7. Asanuma C, Anderson RA, Cowan WM (1985) The thalamic relations of the caudal inferior parietal lobule and the lateral prefrontal cortex in monkeys. Divergent cortical projections from all clusters in the medial pulvinar nucleus. J Comp Neurol 241:357–381

    Article  CAS  PubMed  Google Scholar 

  8. Baleydier C, Manguiere F (1985) Anatomical evidence for medial pulvinar connections with the posterior cingulate cortex, the retrosplenial area and the posterior parahippocampal gyrus in monkeys. J Comp Neurol 232:219–229

    Article  CAS  PubMed  Google Scholar 

  9. Basle TL, Wilson CL, Crandall PH (1982) Asymmetry and ventral course of the human geniculostriate pathway as determined by hippocampal visual evoked potentials and subsequent visual field defects after temporal lobectomy. Exp Brain Res 47:317–328

    Google Scholar 

  10. Beggs J, Jordan S, Ericson AC, Blomqvist A, Craig AD (2003) Synaptology of trigemino-and spinothalamic lamina I terminations in the posterior ventral medial nucleus of the macaque. J Comp Neurol 459:334–354

    Article  CAS  PubMed  Google Scholar 

  11. Bender DB (1981) Retinotopic organization of macaque pulvinar. J Neurophysiol 46:672–693

    CAS  PubMed  Google Scholar 

  12. Benevento LA, Standage GP (1983) The organization of projections of the retinorecipient and nonretinorecipient nuclei of the pretectal complex and layers of superior colliculus to the lateral pulvinar and medial pulvinar in the macaque monkeys. J Comp Neurol 217:307–336

    Article  CAS  PubMed  Google Scholar 

  13. Bentivoglio M, Balercia G, Kruger L (1991) The specificity of the non-specific thalamus: the midline nuclei. In: Holstege G (ed) Progress in brain research, vol 87. Elsevier, Amsterdam, pp 53–80

    Google Scholar 

  14. Berendse HW, Groenewegen HJ (1990) Organization of the thalamostriatal projection in the rat, with special emphasis on the ventral striatum. J Comp Neurol 299:187–228

    Article  CAS  PubMed  Google Scholar 

  15. Berendse HW, Groenewegen HJ (1991) Restricted cortical termination fields of the midline and intralaminar thalamic nuclei in the rat. Neuroscience 42:73–102

    Article  CAS  PubMed  Google Scholar 

  16. Berkley KJ (1980) Spatial relationships between the terminations of somatic sensory and motor pathways in the rostral brain stem of cats and monkeys I. Ascending somatic sensory inputs to the lateral diencephalon. J Comp Neurol 193:283–317

    Article  CAS  PubMed  Google Scholar 

  17. Berkley KJ (1983) Spatial relationships between the terminations of sensory motor pathways in the rostral brain stem of cats and monkeys II. Cerebellar projections compared with those of the ascending somatic sensory pathways in lateral diencephalon. J Comp Neurol 220:229–251

    Article  CAS  PubMed  Google Scholar 

  18. Berntson GG, Shafi R, Sarter M (2002) Specific contributions of the basal forebrain corticopetal cholinergic system to electroencephalographic activity and sleep/waking behaviour. Eur J Neurosci 16:2453–2461

    Article  CAS  PubMed  Google Scholar 

  19. Blomqvist A, Zhang ET, Craig AD (2000) Cytoarchitectonic and immunohistochemical characterization of a specific pain and temperature relay, the posterior portion of the ventral medial nucleus, in the human thalamus. Brain 123:601–619

    Article  PubMed  Google Scholar 

  20. Bobillier R, Seguin S, Petitjean F et al (1976) The raphe nuclei of the cat brain stem: a topographical atlas of their efferent projections as revealed by autoradiography. Brain Res 113:449–486

    Article  CAS  PubMed  Google Scholar 

  21. Boivie J (1978) Anatomical observations on the dorsal column nuclei, their thalamic projection and the cytoarchitecture of some somatosensory thalamic nuclei in the monkey. J Comp Neurol 178:17–48

    Article  CAS  PubMed  Google Scholar 

  22. Boivie J (1979) An anatomical reinvestigation of the termination of the spinothalamic tract in the monkey. J Comp Neurol 186:343–370

    Article  CAS  PubMed  Google Scholar 

  23. Bourassa J, Pinault D, Deschnes M (1995) Corticothalamic projections from the cortical barrel field to the somatosensory thalamus in rats: a singlefibre study using biocytin as an anterograde tracer. Eur J Neurosci 7:19–30

    Article  CAS  PubMed  Google Scholar 

  24. Bowsher D (1957) Termination of the central pain pathway: the conscious appreciation of pain. Brain 80:606–622

    Article  CAS  PubMed  Google Scholar 

  25. Bowsher D (1975) Diencephalic projections from the midbrain reticular formation. Brain Res 95: 211–220

    Article  CAS  PubMed  Google Scholar 

  26. Burton H, Craig AD Jr (1979) Distribution of trigeminothalamic projection cells in cat and monkey. Brain Res 161:515–521

    Article  CAS  PubMed  Google Scholar 

  27. Burton H, Jones EG (1976) The posterior thalamic region and its cortical projection in New World and Old World monkeys. J Comp Neurol 168:249–302

    Article  CAS  PubMed  Google Scholar 

  28. Burton H, Loewy AD (1977) Projections to the spinal cord from medullary somatosensory relay nuclei. J Comp Neurol 173:773–792

    Article  CAS  PubMed  Google Scholar 

  29. Calford MB, Aitken LM (1983) Ascending projections to the medial geniculate body of the cat: evidence for multiple, parallel auditory pathways through thalamus. J Neurosci 3:2365–2380

    CAS  PubMed  Google Scholar 

  30. Carcio CA, Harting KJ (1978) Organization of pulvinar afferents to area 18 in the squirrel monkey: evidence for stripes. Brain Res 143:155–161

    Article  Google Scholar 

  31. Carman JB, Cowan WM, Powell TPS (1964) Cortical connections of the thalamic reticular nucleus. J Anat 98:587–598

    CAS  PubMed  Google Scholar 

  32. Carpenter MB, Nakano K, Kim R (1976) Nigrothalamic projections in the monkey demonstrated by autoradiographic technics. J Comp Neurol 165: 401–416

    Article  CAS  PubMed  Google Scholar 

  33. Chalupa LM (1977) A review of cat and monkey studies implicating the pulvinar in visual function. Behav Biol 20:146–167

    Article  Google Scholar 

  34. Christensen BN, Perl ER (1970) Spinal neurons specifically excited by noxious or thermal stimuli: marginal zone of the dorsal horn. J Neurophysiol 33:293–307

    CAS  PubMed  Google Scholar 

  35. Condé F, Condé H (1978) Thalamic projections of the vestibular nuclei in the cat as revealed by retrograde transport of horseradish peroxidase. Neurosci Lett 9:141–146

    Article  PubMed  Google Scholar 

  36. Connolly M, Van Essen D(1984) The representation of the visual field in parvicellular and magnocellular layers of the lateral geniculate nucleus in the macaque monkey. J Comp Neurol 226:544–565

    Article  CAS  PubMed  Google Scholar 

  37. Craig AD Jr, Burton H (1981) Spinal and medullary lamina I projection to nucleus submedius in medial thalamus: a possible pain center. J Neurophysiol 45:443–466

    PubMed  Google Scholar 

  38. Craig AD, Blomqvist A (2002) Is there a specific lamina I spinothalamocortical pathway for pain and temperature sensations in primates? J Pain 3:95–101

    Article  CAS  PubMed  Google Scholar 

  39. Craig AD, Kniffki K-D (1985) Spinothalamic lumbosacral lamina I cells responsive to skin and muscle stimulation in the cat. J Physiol (Lond) 365: 197–221

    CAS  Google Scholar 

  40. Craig AD, Bushnell MC, Zhang E-T, Blomqvist A (1994) A thalamic nucleus specific for pain and temperature sensation. Nature 372:770–773

    Article  CAS  PubMed  Google Scholar 

  41. Curcio CA, Harting JK (1978) Organization of pulvinar afferents to area 18 in the squirrel monkey: Evidence for stripes. Brain Res 143:155–161

    Article  CAS  PubMed  Google Scholar 

  42. Cusick CG, Scripter JL, Darensbourg JG, Weber JT (1993) Chemoarchitectonic subdivisions of the visual pulvinar in monkeys and their connectional relations with the middle temporal and rostral dorsolateral visual areas, MT and DLr. J Comp Neurol 336:1–30

    Article  CAS  PubMed  Google Scholar 

  43. Dekaban A (1954) Human thalamus. An anatomical, developmental and pathological study: development of the human thalamic nuclei. J Comp Neurol 100:63–97

    Article  CAS  PubMed  Google Scholar 

  44. DeVito JL, Anderson ME (1982) An autoradiographic study of efferent connections of the globus pallidus in macaca mulatta. Exp Brain Res 46:107–117

    Google Scholar 

  45. Domesick VB (1969) Projections from the cingulated cortex in the rat. Brain Res 12:296–320

    Article  CAS  PubMed  Google Scholar 

  46. Dringenberg HC, Olmstead MC (2003) Integrated contributions of basal forebrain and thalamus to neocortical activation elicited by pedunculopontine tegmental stimulation in urethane-anesthetized rats. Neuroscience 119:839–853

    Article  CAS  PubMed  Google Scholar 

  47. Droogleever-Fortuyn J (1953) Anatomical basis of cortico-subcortical relationships. Electroencephalogr Clin Neurophysiol 4:149–162

    Google Scholar 

  48. Droogleever-Fortuyn J, Stefens R (1951) On the anatomical relations of the intralaminar and midline cells of the thalamus. Electroencephalogr Clin Neurophysiol 3:393–400

    Article  CAS  PubMed  Google Scholar 

  49. Edwards SB, De Olmos JS (1976) Autoradiographic studies of the projections of the midbrain reticular formation: ascending projections of nucleus cuneiformis. J Comp Neurol 165:417–431

    Article  CAS  PubMed  Google Scholar 

  50. Flaherty AW, Graybiel AM (1993) Two input systems for body representations in the primate striatal matrix: evidence in the squirrel monkey. J Neurosci 13:1120–1137

    CAS  PubMed  Google Scholar 

  51. Flaherty AW, Graybiel AM (1994) Input-output organization of the sensorimotor striatum in the squirrel monkey. J Neurosci 14:599–610

    CAS  PubMed  Google Scholar 

  52. Foote SL (1987) Extrathalamic modulation of cortical function. Annu Rev Neurosci 10:67–95

    Article  CAS  PubMed  Google Scholar 

  53. Foster GA, Schultzberg M, Goldstein M, Hökfelt T (1985) Ontogeny of phenylethanolamine Nmethyltransferase-and tyrosine hydroxylase-like immunoreactivity in presumptive adrenaline neurones of the foetal rat central nervous system. J Comp Neurol 236:348–381

    Article  CAS  PubMed  Google Scholar 

  54. François C, Percheron G, Parent A et al (1991) Topography of the projection from the complex of the thalamus to the sensorimotor striatal territory in monkeys. J Comp Neurol 354:127–149

    Google Scholar 

  55. Friedman DP, Jones EG (1981) Thalamic input to areas 3 a and 2 in monkeys. J Neurophysiol 45:59–85

    CAS  PubMed  Google Scholar 

  56. Gimenez-Amaya JM, McFarland NR, De las Heras S, Haber SN (1995) Organization of thalamic projections to the ventral striatum in the primate. J Comp Neurol 354:127–149

    Article  CAS  PubMed  Google Scholar 

  57. Goldman PS (1979) Contralateral projections to the dorsal thalamus from frontal association cortex in the rhesus monkey. Brain Res 166:166–171

    Article  CAS  PubMed  Google Scholar 

  58. Goldman-Rakic PS, Porrino LJ (1985) The primate mediodorsal (MD) nucleus and its projection to the frontal lobe. J Comp Neurol 242:535–560

    Article  CAS  PubMed  Google Scholar 

  59. Gray D, Gutierrez C, Cusick CG (1999) Neurochemical organization of inferior pulvinar complex in squirrel monkeys and macaques revealed by acetylcholinesterase histochemistry, calbindin and cat-301 immunostaining, and Wisteria floribunda agglutinin binding. J Comp Neurol 409:452–468

    Article  CAS  PubMed  Google Scholar 

  60. Graziano A, Jones EG (2004) Widespread thalamic terminations of fibers arising in the superficial medullary dorsal horn of monkeys and their relation to calbindin immunoreactivity. J Neurosci 24:248–256

    Article  CAS  PubMed  Google Scholar 

  61. Groenewegen HJ (1988) Organization of the afferent connections of the mediodorsal thalamic nucleus in the rat, related to the mediodorsal-prefrontal topography. Neuroscience 24:379–431

    Article  CAS  PubMed  Google Scholar 

  62. Groenewegen HJ, Berendse HW (1994) The specificity of the ‘non-specific’ midline and intralaminar thalamic nuclei. Trends Neurosci 17:52–57

    Article  CAS  PubMed  Google Scholar 

  63. Groenewegen HJ, Becker NEK, Lohman AHM (1980) Subcortical afferents of the nucleus accumbens septi in the cat, studied with retrograde axonal transport of horseradish peroxidase and bisbenzimide. Neuroscience 5:1903–1916

    Article  CAS  PubMed  Google Scholar 

  64. Guido W, Weyand T (1995) Burst responses in thalamic relay cells of the awake behaving cat. J Neurophysiol 74:1782–1786

    CAS  PubMed  Google Scholar 

  65. Guido W, Lu SM, Vaughan GM, Godwin DW, Sherman SM (1995) Receiver operating characteristic (ROC) analysis of neurons in the cat’s lateral geniculate nucleus during tonic and burst response mode. Vis Neurosci 12:723–741

    Article  CAS  PubMed  Google Scholar 

  66. Guillery RW (1995) Anatomical evidence concerning the role of the thalamus in corticocortical communication: a brief review. J Anat 187:583–592

    PubMed  Google Scholar 

  67. Guillery RW, Harting JK (2003) Structure and connections of the thalamic reticular nucleus: advancing views over half a century. J Comp Neurol 463: 360–371

    Article  CAS  PubMed  Google Scholar 

  68. Guillery RW, Sherman SM (2002) The thalamus as a monitor of motor outputs. Phil Trans R Soc Lond B 357:1809–1821

    Article  CAS  Google Scholar 

  69. Guillery RW, Feig SL, Lozsádi DA (1998) Paying attention to the thalamic reticular nucleus. Trends Neurosci 21:28–32

    Article  CAS  PubMed  Google Scholar 

  70. Gutierrez C, Cola MG, Seltzer B, Cusick C (2000) Neurochemical and connectional organization of the dorsal pulvinar complex in monkeys. J Comp Neurol 419:61–86

    Article  CAS  PubMed  Google Scholar 

  71. Haber SN, Groenewegen HJ, Grove EA, Nauta WJH (1985) Efferent connections of the ventral pallidum: evidence of a dual striato-pallidofugal pathway. J Comp Neurol 235:322–335

    Article  CAS  PubMed  Google Scholar 

  72. Haber SN, Lynd-Balta E, Mitchell SJ (1993) The organization of the descending ventral pallidal projections in the monkey. J Comp Neurol 329:111–128

    Article  CAS  PubMed  Google Scholar 

  73. Harting JK, Huerta MF, Frankfurter AJ, Strominger NL, Royce GJ (1980) Ascending pathways from the monkey superior colliculus: an autoradiographic analysis. J Comp Neurol 192:853–882

    Article  CAS  PubMed  Google Scholar 

  74. Hashikawa T, Molinari M, Rausell E, Jones EG (1995) Patchy and laminar terminations of medial geniculate axons in monkey auditory cortex. J Comp Neurol 362:195–208

    Article  CAS  PubMed  Google Scholar 

  75. Hassler R (1959) Anatomy of the thalamus. In: Schaltenbrand G, Bailey P (eds) Introduction to stereotaxis with an atlas of the human brain. Thieme, Stuttgart, pp 230–290

    Google Scholar 

  76. Heimer L, Switzer RD, Van Hoesen GW (1982) Ventral striatum and ventral pallidum. Components of the motor system? Trends Neurosci 5:83–87

    Article  Google Scholar 

  77. Hendrickson AE, Wilson ME, Toyne MJ (1970) The distribution of optic nerve fibers in Macaca mulatta. Brain Res 23:425–427

    Article  CAS  PubMed  Google Scholar 

  78. Hendrickson AE, Wilson JR, Ogren MP (1978) The neuroanatomical organization of pathways between the dorsal lateral geniculate nucleus and visual cortex in Old World and New World primates. J Comp Neurol 182:123–135

    Article  CAS  PubMed  Google Scholar 

  79. Hendry SHC, Jones EG, Graham J (1979) Thalamic relay nuclei for cerebellar and certain related fiber systems in the cat. J Comp Neurol 185:679–714

    Article  CAS  PubMed  Google Scholar 

  80. Herkenham M (1980) Laminar organization of thalamic projections to rat neocortex. Science 207: 532–534

    Article  CAS  PubMed  Google Scholar 

  81. Hickey TL, Guillery RW (1979) Variability of laminar patterns in the human lateral geniculate nucleus. J Comp Neurol 183:221–246

    Article  CAS  PubMed  Google Scholar 

  82. Hirai T, Jones EG (1989) A new parcellation of the human thalamus on the basis of histochemical staining. Brain Res Rev 14:1–34

    Article  CAS  PubMed  Google Scholar 

  83. Hoogland PV, Wouterlood FG, Welker E, Van der Loos H (1991) Ultrastructure of giant and small thalamic terminals of cortical origin, a study of the projections from the barrel cortex in mice using Phaseolus vulgaris leuco-agglutinin (PHA-L). Exp Brain Res 87:159–172

    Article  CAS  PubMed  Google Scholar 

  84. Houser CR, Vaughn JE, Barber RP, Roberts E (1980) GABA neurons are the major cell type of the nucleus reticularis thalami. Brain Res 200:341–354

    Article  CAS  PubMed  Google Scholar 

  85. Hubel DH, Wiesel TN (1962) Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J Physiol (Lond) 160:106–154

    CAS  Google Scholar 

  86. Hubel DH, Wiesel TN (1969) Anatomical demonstration of columns in the monkey striate cortex. Nature (London) 221:747–750

    Article  CAS  Google Scholar 

  87. Hubel DH, Wiesel TN (1972) Laminar and columnar distribution of geniculo-cortical fibers in the macaque monkey. J Comp Neurol 146:421–443

    Article  CAS  PubMed  Google Scholar 

  88. Hubel DH, Wiesel TN (1974) Uniformity of monkey striate cortex: a parallel relationship between field size, scatter and magnification factor. J Comp Neurol 15:295–306

    Article  Google Scholar 

  89. Hubel DH, Wiesel TN (1977) Ferrier lecture. Functional Functional architecture of macaque monkey visual cortex. Proc R Soc Lond Biol 198:1–59

    Article  CAS  PubMed  Google Scholar 

  90. Hubel DH, Wiesel TN, LeVay S (1977) Plasticity of ocular dominance columns in monkey striate cortex. Philos Trans R Soc Lond Biol 278:377–409

    Article  CAS  PubMed  Google Scholar 

  91. Huerta MF, Harting JK (1983) Sublamination within the superficial gray layer of the squirrel monkey: an analysis of the tectopulvinar projection using anterograde and retrograde transport methods. Brain Res 261:119–126

    Article  CAS  PubMed  Google Scholar 

  92. Huerta MF, Krubitzer LA, Kaas JH (1986) Frontal eye field as defined by intracortical microstimulation in squirrel monkeys, owl monkeys and macaque monkeys: I. Subcortical connections. J Comp Neurol 253:415–439

    Article  CAS  PubMed  Google Scholar 

  93. Hunt CA, Pang DZ, Jones EG (1991) Distribution and density of GABA cells in intralaminar and adjacent nuclei of monkey thalamus. Neuroscience 43:185–196

    Article  CAS  PubMed  Google Scholar 

  94. Ilinsky IA, Jouandet ML, Goldman-Rakic PS (1985) Organization of the nigrothalamocortical system in the rhesus-monkey. J Comp Neurol 236:315–330

    Article  CAS  PubMed  Google Scholar 

  95. Ilinsky IA, Tourtellotte WG, Kultas-Ilinsky K (1993) Anatomical distinctions between the two basal ganglia afferent territories in the primate motor thalamus. Stereotact Funct Neurosurg 60:62–69

    Article  CAS  PubMed  Google Scholar 

  96. Insausti R, Amaral DG, Cowan WM (1987) The entorhinal cortex of the monkey: II. Cortical afferents. J Comp Neurol 264:356–395

    Article  CAS  PubMed  Google Scholar 

  97. Jasper HH (1958) Reticular-cortical systems and theories of the integrative action of the brain. In: Harlow HF, Woolsey CN (eds) Biological and biochemical bases of behavior. University of Wisconsin Press, Madison, pp 37–61

    Google Scholar 

  98. Jones EG (1975) Some aspects of the organization of the thalamic reticular complex. J Comp Neurol 162:285–308

    Article  CAS  PubMed  Google Scholar 

  99. Jones EG (1985) The thalamus. Plenum, New York

    Google Scholar 

  100. Jones EG (1997) A description of the human thalamus. In: Steriade M, Jones EG (eds) Thalamus, vol II. Elsevier, Amsterdam, pp 425–499

    Google Scholar 

  101. Jones EG (1998) Viewpoint: the core and matrix of thalamic organization. Neuroscience 85:331–345

    Article  CAS  PubMed  Google Scholar 

  102. Jones EG (2001) The thalamic matrix and thalamocortical synchrony. Trends Neurosci 24:595–601

    Article  CAS  PubMed  Google Scholar 

  103. Jones EG (2002) Thalamic circuitry and thalamocortical synchrony. Phil Trans R Soc Lond B 357: 1659–1673

    Article  Google Scholar 

  104. Jones EG, Burton H (1976) Areal differences in the laminar distribution of thalamic afferents in cortical fields of the insular, parietal and temporal regions of primates. J Comp Neurol 168:197–248

    Article  CAS  PubMed  Google Scholar 

  105. Jones EG, Friedman DP (1982) Projection patterns of functional components of thalamic ventrobasal complex in monkey somatosensory cortex. J Neurophysiol 48:521–544

    CAS  PubMed  Google Scholar 

  106. Jones EG, Leavitt RY (1974) Retrograde axonal transport and the demonstration of non-specific projections to the cerebral cortex and striatum from thalamic intralaminar nuclei in the rat, cat and monkey. J Comp Neurol 154:349–378

    Article  CAS  PubMed  Google Scholar 

  107. Jones EG, Powell TPS (1971) An analysis of the posterior group of the thalamic nuclei on the basis of its afferent connections. J Comp Neurol 143:185–216

    Article  CAS  PubMed  Google Scholar 

  108. Jones EG, Wise SP, Coulter JD (1979) Differential thalamic relationships of sensory-motor and parietal cortical fields in monkeys. J Comp Neurol 183:833–882

    Article  CAS  PubMed  Google Scholar 

  109. Kaas JH, Lin CS, Casagrande VA (1976) The relay of ipsilateral and contralateral retinal input from the lateral geniculate nucleus to striate cortex in the owl monkey: a transneuronal transport study. Brain Res 106:371–378

    Article  CAS  PubMed  Google Scholar 

  110. Kaas JH, Huerta MF, Weber JT, Harting JK (1978) Patterns of retinal terminations and laminar organization of the lateral geniculate nucleus of primates. J Comp Neurol 182:517–554

    Article  CAS  PubMed  Google Scholar 

  111. Kaitz SS, Robertson RT (1981) Thalamic connections with limbic cortex. II. Corticothalamic projections. J Comp Neurol 195:527–545

    Article  CAS  PubMed  Google Scholar 

  112. Kasdon DL, Jacobson S (1978) The thalamic afferents to the inferior parietal lobule of the rhesus monkey. J Comp Neurol 177:685–706

    Article  CAS  PubMed  Google Scholar 

  113. Kievit J, Kuypers HGJM (1977) Organization of the thalamo-cortical connexions to the frontal lobe in the rhesus monkey. Exp Brain Res 29: 299–322

    Article  CAS  PubMed  Google Scholar 

  114. Kim R, Nakano K, Jayaraman A, Carpenter B (1976) Projections of the globus pallidus and adjacent structures: an autoradiographic study in the monkey. J Comp Neurol 169:263–290

    Article  CAS  PubMed  Google Scholar 

  115. Krettek JE, Price JL (1977) The cortical projections of the mediodorsal nucleus and adjacent thalamic nuclei in the rat. J Comp Neurol 171: 157–191

    Article  CAS  PubMed  Google Scholar 

  116. Krout KE, Loewy AD (2000) Parabrachial nucleus projections to midline and intralaminar thalamic nuclei of the rat. J Comp Neurol 428: 475–494

    Article  CAS  PubMed  Google Scholar 

  117. Krout KE, Loewy AD (2000) Periaqueductal gray matter projections to midline and intralaminar thalamic nuclei of the rat. J Comp Neurol 424: 111–141

    Article  CAS  PubMed  Google Scholar 

  118. Krout KE, Loewy AD, Westby GW, Redgrave P (2001) Superior colliculus projections to midline and intralaminar thalamic nuclei of the rat. J Comp Neurol 431: 198–216

    Article  CAS  PubMed  Google Scholar 

  119. Krout KE, Belzer RE, Loewy AD (2002) Brainstem projections to midline and intralaminar thalamic nuclei of the rat. J Comp Neurol 448: 53–101

    Article  PubMed  Google Scholar 

  120. Kudo M, Niimi K (1980) Ascending projection of the inferior colliculus in the cat: an autoradiographic study. J Comp Neurol 191: 545–556

    Article  CAS  PubMed  Google Scholar 

  121. Kuhlenbeck H (1954) The human diencephalon: a summary of development, structure, function and pathology. Confin Neurol 14: 1–230

    Article  CAS  PubMed  Google Scholar 

  122. Künzle H (1975) Bilateral projections from precentral motor cortex to the putamen and other parts of the basal ganglia. An autoradiographic study in the Macaca fascicularis. Brain Res 88:195–209

    Article  PubMed  Google Scholar 

  123. Künzle H (1978) An autoradiographic analysis of the efferent connections from premotor and adjacent prefrontal regions (areas 6 and 9) in Macaca fascicularis. Brain Behav Evol 15: 185–234

    Article  PubMed  Google Scholar 

  124. Künzle H, Akert K (1977) Efferent connections of cortical area 8 (frontal eye field) in Macaca fascicularis. A reinvestigation using the autoradiographic technique. J Comp Neurol 173:147–164

    Article  PubMed  Google Scholar 

  125. Kuo JS, Carpenter MB (1973) Organization of pallidothalamic projections in the rhesus monkey. J Comp Neurol 151:201–236

    Article  CAS  PubMed  Google Scholar 

  126. Kuypers HGJM, Bentivoglio M, Catsman-Berrevoets CE, Bharos AT (1980) Double retrograde labeling through divergent axon collaterals, using two fluorescent tracers with the same excitation wavelength which label different features of the cell. Exp Brain Res 40:383–392

    Article  CAS  PubMed  Google Scholar 

  127. Lang W, Büttner-Ennever JA, Büttner U (1979) Vestibular projections to the monkey thalamus: an autoradiographic study. Brain Res 177:3–17

    Article  CAS  PubMed  Google Scholar 

  128. Lavoie B, Parent A (1991) Serotoninergic innervation of the thalamus in the primate: an immunohistochemical study. J Comp Neurol 312:1–18

    Article  CAS  PubMed  Google Scholar 

  129. Lin C-S, Merzenich MM, Sur M, Kaas JH (1979) Connections of areas 3 b and 1 of the parietal somatosensory strip with the ventroposterior nucleus in the owl monkey (Aotus trivirgatus). J Comp Neurol 185:355–372

    Article  CAS  PubMed  Google Scholar 

  130. Llinás R, Paré D (1997) Coherent oscillations in specific and nonspecific thalamocortical networks and their role in cognition. In: Steriade M, Jones EG, McCormick DA (eds) Thalamus, vol II. Elsevier, Amsterdam, pp 501–516

    Google Scholar 

  131. Lysakowski A, Standage GP, Benevento LA (1986) Histochemical and architectonic differentiation of zones of pretectal and collicular inputs to the pulvinar and dorsal lateral geniculate nuclei in the macaque. J Comp Neurol 250:431–448

    Article  CAS  PubMed  Google Scholar 

  132. Macchi G, Bentivoglio M (2003) The thalamic intralaminar nuclei and the cerebral cortex. In: Jones EG, Peters A (eds) Cerebral cortex, vol 5: Sensory-motor areas and aspects of cortical connectivity. Plenum Press, New York, pp 355–401

    Google Scholar 

  133. Macchi G, Bentivoglio M, Molinari M, Miniacchi D (1984) The thalamo-caudate versus thalamocortical projections as studied in the cat with fluorescent retrograde double labeling. Exp Brain Res 54:225–239

    Article  CAS  PubMed  Google Scholar 

  134. Maciewicz R, Phipps BS, Bry J, Highstein SM (1982) The vestibulothalamic pathway: contribution of the ascending tract of Deiters. Brain Res 252:1–11

    Article  CAS  PubMed  Google Scholar 

  135. Mantyh PW (1983) The spinothalamic tract in the primate: a re-examination using WGA-HRP. Neuroscience 9: 847–862

    Article  CAS  PubMed  Google Scholar 

  136. Markowitsch HJ, Emmans D, Irle E, Streicher M, Preilowski B (1985) Cortical and subcortical afferent connections of the primate’s temporal pole: a study of rhesus monkeys, squirrel monkeys and marmosets. J Comp Neurol 242: 425–458

    Article  CAS  PubMed  Google Scholar 

  137. Matelli M, Luppino G (1993) Cortical projections of motor thalamus. In: Miniacchi D, Molinari M, Macchi G, Jones EG (eds) Thalamic networks for relay and modulation. Pergamon, Oxford, pp 165–174

    Google Scholar 

  138. McFarland NR, Haber SN (2002) Thalamic relay nuclei of the basal ganglia form both reciprocal and nonreciprocal cortical connections, linking multiple frontal cortical areas. J Neurosci 22: 8117–8132

    CAS  PubMed  Google Scholar 

  139. McGuinness C, Krauthammer GM (1980) Afferent projections to the centrum-medianum of the cat as demonstrated by retrograde transport of horseradish peroxidase. Brain Res 184:255–269

    Article  CAS  PubMed  Google Scholar 

  140. Mehler WR (1962) The anatomy of the so-called “pain tract” in man: an analysis of the course and distribution of the ascending fibers of the fasciculus anterolateralis. In: French JD, Porter RW (eds) Basic research in paraplegia. Thomas, Springfield, pp 26–55

    Google Scholar 

  141. Mehler WR (1966) The posterior thalamic region in man. Confin Neurol 27:18–29

    Article  CAS  PubMed  Google Scholar 

  142. Mehler WR (1969) Some neurological species differences a posteriori. Ann NY Acad Sci 167: 424–468

    Article  Google Scholar 

  143. Mehler WR (1974) Central pain and the spinothalamic tract. Adv Neurol 4:127–146

    Google Scholar 

  144. Mehler WR (1980) Subcortical afferent connections of the amygdala in the monkey. J Comp Neurol 190:733–762

    Article  CAS  PubMed  Google Scholar 

  145. Mesulam MM, Pandya DN (1973) The projections of the medial geniculate complex within the sylvian fissure of the rhesus monkey. Brain Res 60:315–333

    Article  CAS  PubMed  Google Scholar 

  146. Mesulam MM, Van Hoesen GW, Pandya DN, Geschwind M (1977) Limbic and sensory connections of the inferior parietal lobule (area PG) in the rhesus monkey: a study with a new method for horseradish peroxidase histochemistry. Brain Res 136:393–414

    Article  CAS  PubMed  Google Scholar 

  147. Molinari M, Leggio MG, Dell’Anna ME, Gianetti S, Macchi G (1993) Structural evidence in favour of a relay function for the anterior intralaminar nuclei. In: Miniacchi G, Molinari M, Macchi G, Jones EG (eds) Thalamic networks for relay and modulation. Pergamon, Oxford, pp 197–208

    Google Scholar 

  148. Molinari M, Leggio MG, Dell’Anna ME, Gianetti S, Macchi G (1994) Chemical compartmentation and relationships between calcium-binding protein immunoreactivity and layer-specific cortical and caudate-projecting cells in the anterior intralaminar nuclei of the cat. Eur J Neurosci 6:299–312

    Article  CAS  PubMed  Google Scholar 

  149. Montero VM (1986) Localization of gammaaminobutyric acid (GABA) in type 3 cells and demonstration of their source to F2 terminals in cat lateral geniculate nucleus. A Golgi-electron-microscopic GABA-immunocytochemical study. J Comp Neurol 254: 228–245

    Article  CAS  PubMed  Google Scholar 

  150. Montero VM, Guillery RW, Woolsey CN (1977) Retinotopic organization within the thalamic reticular nucleus demonstrated by a double label autoradiographic technique. Brain Res 138: 407–421

    Article  CAS  PubMed  Google Scholar 

  151. Moore RY, Goldberg JM (1960) Projections of the inferior colliculus in the monkey. Exp Neurol 14: 429–438

    Article  Google Scholar 

  152. Morel A, Magnin M, Jeanmonod D (1997) Multiarchitectonic and stereotactic atlas of the human thalamus. J Comp Neurol 387: 588–630

    Article  CAS  PubMed  Google Scholar 

  153. Morest DK (1965) The laminar structure of the medial geniculate body of the cat. J Anat 99: 143–160

    CAS  PubMed  Google Scholar 

  154. Moruzzi G, Magoun HW (1949) Brain stem reticular formation and activation of the EEG. Electroencephalogr Clin Neurophysiol 1:455–473

    CAS  PubMed  Google Scholar 

  155. Mufson EJ, Mesulam MM (1984) Thalamic connections of the insula in the rhesus monkey and comments on the paralimbic connectivity of the medial pulvinar nucleus. J Comp Neurol 227: 109–120

    Article  CAS  PubMed  Google Scholar 

  156. Nauta HJW (1979) Projections of the pallidal complex: an autoradiographic study in the cat. Neuroscience 4: 1853–1873

    Article  CAS  PubMed  Google Scholar 

  157. Nauta WJH, Kuypers HGJM (1958) Some ascending pathways in the brain stem reticular formation. In: Jasper HH et al (eds) Reticular formation of the brain. Little Brown, Toronto, pp 3–31

    Google Scholar 

  158. Nauta WJH, Mehler WR (1966) Projections of the lentiform nucleus in the monkey. Brain Res 1:3–42

    Article  CAS  PubMed  Google Scholar 

  159. Nauta WJH, Whitlock DG (1954) An anatomical analysis of the non-specific thalamic projection system. In: Delafresnaye JF (ed) Brain mechanisms and consciousness. Thomas, Springfield, pp 81–1160

    Google Scholar 

  160. Ogren MP, Hendrickson AE (1976) Pathways between striate cortex and subcortical regions in Macaca mulatta and Saimiri sciureus: evidence for a reciprocal pulvinar connection. Exp Neurol 53:780–800

    Article  CAS  PubMed  Google Scholar 

  161. Ogren MP, Hendrickson AE (1977) The distribution of pulvinar terminals in visual areas 17 and 18 of the monkey. Brain Res 137:343–350

    Article  CAS  PubMed  Google Scholar 

  162. Olszewski J (1952) The thalamus of the Macaca mulatta. Karger, Basel

    Google Scholar 

  163. Parent A, DeBellefeuille L (1982) Organization of efferent projections from the internal segment of globus pallidus in primate as revealed by fluorescence retrograde labeling method. Brain Res 245:201–213

    Article  CAS  PubMed  Google Scholar 

  164. Parent A, DeBellefeuille L (1983) The pallidointralaminar and pallidonigral projections in primate as studied by retrograde double-labeling method. Brain Res 278:11–28

    Article  CAS  PubMed  Google Scholar 

  165. Parent A, Mackey A, DeBellefeuille L (1983) The subcortical afferents to caudate nucleus and putamen in primate: a fluorescence retrograde double-labeling study. Neuroscience 10:1137–1150

    Article  CAS  PubMed  Google Scholar 

  166. Pearson RCA, Brodal P, Powell TPS (1978) The projection of the thalamus upon the parietal lobe in the monkey. Brain Res 144:143–148

    Article  CAS  PubMed  Google Scholar 

  167. Penny GR, Fitzpatrick D, Schmechel D, Diamond IT (1983) Glutamic acid decarboxylase immunoreactive neurons and horseradish peroxidase-labeled projection neurons in the ventral posterior nucleus of the cat and Galago senegalensis. J Neurosci 3:1868–1887

    CAS  PubMed  Google Scholar 

  168. Percheron G, François C, Talbi B et al (1993) The primate motor thalamus analyzed with reference to subcortical afferent territories. Stereotact Funct Neurosurg 60:32–41

    Article  CAS  PubMed  Google Scholar 

  169. Perkel DJ, Bullier J, Kennedy H (1986) Topography of the afferent connectivity of area-17 in the macaque monkey. A double-labeling study. J Comp Neurol 253:374–402

    Article  CAS  PubMed  Google Scholar 

  170. Petras JM (1969) Some efferent connections of the motor and somatosensory cortex of simian primates and felid, canid and procyonid carnivores. Ann NY Acad Sci 167:469–505

    Article  Google Scholar 

  171. Poggio GF, Mountcastle VB (1960) A study of the functional contributions of the lemniscal and spinothalamic systems to somatic sensibility. Bull Johns Hopkins Hosp 106:266–316

    CAS  PubMed  Google Scholar 

  172. Pons JP, Kaas JH (1985) Connections of area 2 of somatosensory cortex with the anterior pulvinar and subdivisions of the ventroposterior complex in macaque monkeys. J Comp Neurol 240:16–36

    Article  CAS  PubMed  Google Scholar 

  173. Poremba A, Kubota Y, Gabriel M (1994) Afferent connections of the anterior thalamus in rabbits. Brain Res Bull 33:361–365

    Article  CAS  PubMed  Google Scholar 

  174. Powell TPS, Cowan WM (1954) The connexions of the midline and intralaminar nuclei of the thalamus of the rat. J Anat 88:307–319

    CAS  PubMed  Google Scholar 

  175. Powell TPS, Cowan WM (1956) A study of thalamostriate relations in the monkey. Brain 79:364–390

    Article  PubMed  Google Scholar 

  176. Pritchard TC, Hamilton RB, Morse JR, Morgren R (1986) Projections of thalamic gustatory and lingual areas in the monkey, Macaca fascicularis. J Comp Neurol 244:213–228

    Article  CAS  PubMed  Google Scholar 

  177. Ralston HJ III (1971) Evidence for presynaptic dendrites and a proposal for their mechanism of action. Nature 230:585–587

    Article  PubMed  Google Scholar 

  178. Ralston HJ III (2003) Pain, the brain, and the (calbindin) stain. J Comp Neurol 459:329–333

    Article  PubMed  Google Scholar 

  179. Ralston HJ III, Ralston DD (1992) The primate dorsal spinothalamic tract: evidence for a specific termination in the posterior nuclei (Po/SG) of the thalamus. Pain 48:107–118

    Article  PubMed  Google Scholar 

  180. Ray JP, Price JL (1992) The organization of the thalamocortical connections of the mediodorsal thalamic nucleus in the rat, related to the ventral forebrain-prefrontal cortex topography. J Comp Neurol 323:167–197

    Article  CAS  PubMed  Google Scholar 

  181. Raymond J, Sans A, Marty R (1974) Projections thalamiques des noyaux vestibulaires: étude histologique chez le chat. Exp Brain Res 20: 273–283

    Article  CAS  PubMed  Google Scholar 

  182. Rempel-Clower NL, Barbas H (1998) Topographic organization of connections between the hypothalamus and prefrontal cortex in the rhesus monkey. J Comp Neurol 398: 393–419

    Article  CAS  PubMed  Google Scholar 

  183. Rezak M, Benevento LA (1979) A comparison of the organization of the projections of the dorsal lateral geniculate nucleus, the inferior pulvinar and adjacent lateral pulvinar to primary visual cortex (area 17) in the Macaque monkey. Brain Res 167:19–40

    Article  CAS  PubMed  Google Scholar 

  184. Robertson RT (1983) Efferents of the pretectal complex: separate populations of neurons project to lateral thalamus and to inferior olive. Brain Res 258:91–95

    Article  Google Scholar 

  185. Robertson RT, Kaitz SS (1981) Thalamic connections with limbic cortex. I. Thalamocortical projections. J Comp Neurol 195:501–525

    Article  CAS  PubMed  Google Scholar 

  186. Robertson RT, Thompson SM, Kaitz SS (1983) Projections from the pretectal complex to the thalamic lateral dorsal nucleus of the cat. Exp Brain Res 51:157–171

    Article  CAS  PubMed  Google Scholar 

  187. Robinson DL, Petersen SE (1992) The pulvinar and visual salience. Trends Neurosci 15:127–132

    Article  CAS  PubMed  Google Scholar 

  188. Rodieck RW (1979) Visual pathways. Annu Rev Neurosci 2:193–225

    Article  CAS  PubMed  Google Scholar 

  189. Romansky LM, Giguere M, Bates JF, Goldman-Rakic PS (1997) Topographic organization of medial pulvinar connections with the prefrontal cortex in the rhesus monkey. J Comp Neurol 379:313–332

    Article  Google Scholar 

  190. Rose JE, Woolsey C (1948) Structure and relations of limbic cortex and anterior thalamic nuclei in rabbit and cat. J Comp Neurol 89:79–347

    Article  Google Scholar 

  191. Rouiller EM, Welker E (1991) Morphology of corticothalamic terminals arising from the auditory cortex of the rat: a Phaseolus vulgaris-leucoagglutinin (PHAL) tracing study. Hearing Res 56: 179–190

    Article  CAS  Google Scholar 

  192. Royce GJ, Mourey RJ (1985) Efferent connections of the centromedian and parafascicular thalamic nuclei: an autoradiographic investigation in the cat. J Comp Neurol 235:277–300

    Article  CAS  PubMed  Google Scholar 

  193. Royce GJ, Bromley S, Cracco C (1991) Subcortical projections to the centromedial and parafascicular thalamic nuclei in the cat. J Comp Neurol 306: 129–155

    Article  CAS  PubMed  Google Scholar 

  194. Russchen FT, Amaral DG, Price JL (1987) The afferent input to the magnocellular division of the mediodorsal thalamic nucleus in the monkey, Macaca fascicularis. J Comp Neurol 256:175–210

    Article  CAS  PubMed  Google Scholar 

  195. Rustioni A, Schmechel DE, Spreafico R, Cuenod M (1983) Excitatory and inhibitory aminoacid putative neurotransmitters in the ventralis posterior complex: an autoradiographic and immunocytochemical study in rats and cats. In: Macchi O, Rustioni A, Spreafico R (eds) Somatosensory integration in the thalamus. Elsevier, Amsterdam, pp 365–383

    Google Scholar 

  196. Sadikot AF, Parent A, François C (1992) Efferent connections of the centromedian and parafascicular thalamic nuclei in the squirrel monkey: a PHA-L study of subcortical projections. J Comp Neurol 315:137–159

    Article  CAS  PubMed  Google Scholar 

  197. Sadikot AF, Parent A, Smith Y, Bolam JP (1992) Efferent connections of the centromedian and parafascicular thalamic nuclei in the squirrel monkey: a light and electron microscopic study of the thalamostriatal projection in relation to striatal heterogeneity. J Comp Neurol 320:228–242

    Article  CAS  PubMed  Google Scholar 

  198. Sakai ST, Inase M, Tanji J (1999) Pallidal and cerebellar inputs to thalamocortical neurons projecting in the supplementary motor area in Macaca fuscata: a triple-labeling light microscopic study. Anat Embryol 199:9–19

    Article  CAS  PubMed  Google Scholar 

  199. Sakai ST, Stepniewska I, Qi HX, Kaas JH (2000) Pallidal and cerebellar afferents to pre-supplementary motor area thalamocortical neurons in the owl monkey: a multiple labeling study. J Comp Neurol 417: 164–180

    Article  CAS  PubMed  Google Scholar 

  200. Saper CB (1985) Organization of cerebral cortical afferent systems in the rat. II. Hypothalamocortical projections. J Comp Neurol 237: 21–46

    Article  CAS  PubMed  Google Scholar 

  201. Saper CB, Loewy AD (1980) Efferent connections of the parabrachial nucleus in the rat. Brain Res 197: 291–317

    Article  CAS  PubMed  Google Scholar 

  202. Sarter M, Bruno JP (2000) Cortical cholinergic inputs mediating arousal, attentional processing and dreaming: differential afferent regulation of the basal forebrain by telencephalic and brainstem afferents. Neuroscience 95:933–952

    Article  CAS  PubMed  Google Scholar 

  203. Sato M, Itoh K, Mizuno N (1979) Distribution of thalamo-caudate neurons in the cat as demonstrated by horseradish peroxidase. Exp Brain Res 34:143–153

    Article  CAS  PubMed  Google Scholar 

  204. Saunders RC, Rosene DL, Mishkin M (1986) The bed nucleus of the stria terminalis in the rhesus monkey: connections with the amygdala and the medial dorsal nucleus. Soc Neurosci Abstr 12:976

    Google Scholar 

  205. Scheibel ME, Scheibel AB (1966) The organization of the nucleus reticularis thalami: a Golgi study. Brain Res 1:43–62

    Article  CAS  PubMed  Google Scholar 

  206. Schell GR, Strick PL (1984) The origin of thalamic inputs to the arcuate, premotor and supplementary motor areas. J Neurosci 4:539–560

    CAS  PubMed  Google Scholar 

  207. Schmahmann JD, Pandya DN (1990) Anatomical investigation of projections from thalamus to posterior parietal cortex in the rhesus monkey: a WGAHRP and fluorescent tracer study. J Comp Neurol 295:299–326

    Article  CAS  PubMed  Google Scholar 

  208. Schneider GE (1969) Two visual systems. Science 163:795–802

    Google Scholar 

  209. Sewards TV, Sewards MA (2002) The medial pain system. Brain Res Bull 59:163–180

    Article  PubMed  Google Scholar 

  210. Sherman SM, Guillery RW (1996) Functional organization of thalamocortical relays. J Neurophysiol 76:1367–1395

    CAS  PubMed  Google Scholar 

  211. Sherman SM, Guillery RW (1998) On the actions that one nerve cell can have on another: distinguishing “drivers” from “modulators”. Proc Natl Acad Sci USA 95:7121–7126

    Article  CAS  PubMed  Google Scholar 

  212. Sherman SM, Guillery RW (2001) Exploring the thalamus. Academic Press, San Diego

    Google Scholar 

  213. Sherman SM, Guillery RW (2002) The role of the thalamus in the flow of information to the cortex. Phil Trans R Soc Lond B 357:1695–1708

    Article  Google Scholar 

  214. Sherman SM, Koch C (1998) Thalamus. In: Shepherd GM (ed) The synaptic organization of the brain, 4th edn. Oxford University Press, Oxford, pp 289–328

    Google Scholar 

  215. Shigenaga Y, Nakatani Z, Nishimori T et al (1983) The cells of origin of cat trigeminothalamic projections: especially in the caudal medulla. Brain Res 277:201–222

    Article  CAS  PubMed  Google Scholar 

  216. Shiroyama T, Kayahara T, Yasui Y, Nomura J, Nakano K (1995) The vestibular nuclei of the rat project to the lateral part of the thalamic parafascicular nucleus (centromedian nucleus in primates). Brain Res 704:130–134

    Article  CAS  PubMed  Google Scholar 

  217. Sousa-Pinto A (1973) Cortical projections of the medial geniculate body in the cat. Ergeb Anat Entwicklungsgesch 48:1–40

    Google Scholar 

  218. Stanton GB (1980) Topographical organization of ascending cerebellar projections from the dentate and interposed nuclei in Macaca mulatta: an antegrade degeneration study. J Comp Neurol 190:699–731

    Article  CAS  PubMed  Google Scholar 

  219. Stanton GB, Cruce WLR, Goldberg NE, Robinson DL (1977) Some ipsilateral projections to areas PF and PG of inferior parietal lobule in monkeys. Neurosci Lett 6:243–250

    Article  CAS  PubMed  Google Scholar 

  220. Stanton GB, Bruce C, Goldberg ME (1982) Organization of subcortical projections from saccadic eye movement sites in the macaque frontal eye fields. Soc Neurosci Abstr 8:293

    Google Scholar 

  221. Steriade M (1981) Mechanisms underlying cortical activation: neuronal organization and properties of the midbrain reticular core and intralaminar thalamic nuclei. In: Pompeiano O, Ajmone-Marsan C (eds) Brain mechanisms of perceptual awareness. Raven Press, New York, pp 327–377

    Google Scholar 

  222. Steriade M, Jones EG, McCormick DA (1997) Thalamus, vol I: Organisation and function. Elsevier, Amsterdam

    Google Scholar 

  223. Strick PL (1973) Light microscopic analysis of the cortical projection of the thalamic ventrolateral nucleus in the cat. Brain Res 55:1–24

    Article  CAS  PubMed  Google Scholar 

  224. Swanson LW, Cowan WM (1975) A note on the connections and development of the nucleus accumbens. Brain Res 92:324–330

    Article  CAS  PubMed  Google Scholar 

  225. Tanaka D Jr (1976) Thalamic projections of the dorsomedial prefrontal cortex in the rhesus monkey (Macaca mulatta). Brain Res 110:21–38

    Article  PubMed  Google Scholar 

  226. Thach WT, Jones EG (1979) The cerebellar dentatothalamic connection: terminal field, lamellae, rods and somatotopy. Brain Res 169:168–172

    Article  CAS  PubMed  Google Scholar 

  227. Tömböl T (1969) Two types of short axon (Golgi 2nd) interneurons in the specific thalamic nuclei. Acta Morphol Hung 17:285–297

    Google Scholar 

  228. Trojanowski JQ, Jacobson S (1975) A combined horseradish peroxidase-autoradiographic investigation of reciprocal connections between superior temporal gyrus and pulvinar in squirrel monkey. Brain Res 85:347–353

    Article  CAS  PubMed  Google Scholar 

  229. Trojanowski JQ, Jacobson S (1976) Areal and laminar distribution of some pulvinar cortical efferents in rhesus monkey. J Comp Neurol 169: 371–391

    Article  CAS  PubMed  Google Scholar 

  230. Trojanowski JQ, Jacobson S (1977) The morphology and laminar distribution of cortico-pulvinar neurons in the rhesus monkey. Exp Brain Res 28:51–62

    Article  CAS  PubMed  Google Scholar 

  231. Ungerleider LO, Desimone R, Oalkin TW, Mishkin M (1984) Subcortical projections of area MT in the macaque. J Comp Neurol 223:368–387

    Article  CAS  PubMed  Google Scholar 

  232. Updyke BV (1983) A re-evaluation of the functional organization and cytoarchitecture of the feline lateral posterior complex, with observations of adjoining cell groups. J Comp Neurol 219:143–181

    Article  CAS  PubMed  Google Scholar 

  233. Van der Loos H (1976) Barreloids in mouse somatosensory thalamus. Neurosci Lett 2:1–6

    Article  Google Scholar 

  234. Van der Werf YD, Witter MP, Groenewegen HJ (2002) The intralaminar and midline nuclei of the thalamus. Anatomical and functional evidence for participation in processes of arousal and awareness. Brain Res Rev 39:107–140

    Article  PubMed  Google Scholar 

  235. Van Groen T, Wyss JM (1992) Projections from the laterodorsal nucleus of the thalamus to the limbic and visual cortices in the rat. J Comp Neurol 324:427–448

    Article  PubMed  Google Scholar 

  236. Van Noort J (1969) The structure and connections of the inferior colliculus. Thesis, University of Leiden

    Google Scholar 

  237. Veazey RB, Amaral DG, Cowan WM (1982) The morphology and connections of the posterior hypothalamus in the cynomolgus monkey (Macaca fascicularis). II. Efferent connections. J Comp Neurol 207:135–156

    Article  CAS  PubMed  Google Scholar 

  238. Velayos JL, Reinoso Suarez F (1982) Topographic organization of the brainstem afferents to the mediodorsal nucleus. J Comp Neurol 206:17–27

    Article  CAS  PubMed  Google Scholar 

  239. Vogt BA (1985) Cingulate cortex. In: Peters A, Jones EG (eds) Cerebral cortex, vol 4: association and auditory cortices. Plenum, New York, pp 63–88

    Google Scholar 

  240. Vogt BA, Sikes RW (2000) The medial pain system, cingulate cortex, and parallel processing of nociceptive information. Progr Brain Res 122: 223–235

    Article  CAS  Google Scholar 

  241. Vogt C, Vogt O (1941) Thalamusstudien I–III: I. Hrung. II. Homogenität und Grenzgestaltung der Grisea des Thalamus. III. Das Griseum centrale (Centrum medianum Luys). J Psychol Neurol 50: 32–154

    Google Scholar 

  242. Vogt BA, Rosene DL, Pandya DN (1979) Thalamic and cortical afferents differentiate anterior from posterior cingulate cortex in the monkey. Science 204:205–207

    Article  CAS  PubMed  Google Scholar 

  243. Walker AE (1938) The primate thalamus. University of Chicago Press

    Google Scholar 

  244. Weber AJ, Kalil RE (1983) The percentage of interneurons in the dorsal lateral geniculate nucleus of the cat and observations on several variables that affect the sensitivity of horseradish peroxidase as a retrograde marker. J Comp Neurol 220:336–346

    Article  CAS  PubMed  Google Scholar 

  245. Weber JT, Yin TCT (1984) Subcortical projections of the inferior parietal cortex (area 7) in the stumptailed monkey. J Comp Neurol 222:206–230

    Article  Google Scholar 

  246. Weiskrantz L, Warrington EK, Sanders MD, Marshall J (1974) Visual capacity in the hemianopic field following a restricted cortical ablation. Brain 97:709–728

    Article  CAS  PubMed  Google Scholar 

  247. Wiesel TN, Hubel DH, Lam D (1974) Autoradiographic demonstration of ocular-dominance columns in the monkey striate cortex by means of transneuronal transport. Brain Res 79:273–279

    Article  CAS  PubMed  Google Scholar 

  248. Willis WD (1995) Cold, pain and the brain. Nature 373:19–20

    Article  CAS  PubMed  Google Scholar 

  249. Willis WD (1997) Nociceptive functions of thalamic neurons. In: Steriade M, Jones EG, McCormick DA (eds) Thalamus, vol II. Elsevier, Amsterdam, pp 373–424

    Google Scholar 

  250. Willis WD, Westlund KN (1997) Neuroanatomy of the pain system and of the pathways that modulate pain. J Clin Neurophysiol 14:2–31

    Article  CAS  PubMed  Google Scholar 

  251. Ungerleider LO, Desimone R, Oalkin TW, Mishkin M (1984) Subcortical projections of area MT in the macaque. J Comp Neurol 223:368–387

    Article  CAS  PubMed  Google Scholar 

  252. Updyke BV (1983) A re-evaluation of the functional organization and cytoarchitecture of the feline lateral posterior complex, with observations of adjoining cell groups. J Comp Neurol 219:143–181

    Article  CAS  PubMed  Google Scholar 

  253. Willis WD Jr, Zhang X, Honda CN, Giesler GJ Jr (2002) A critical review of the role of the proposed VMpo nucleus in pain. J Pain 3:79–94

    Article  PubMed  Google Scholar 

  254. Woodward WR, Coull BM (1984) Localization and organization of geniculocortical and corticofugal fiber tracts within the subcortical white matter. Neuroscience 12:1089–1099

    Article  CAS  PubMed  Google Scholar 

  255. Woolf NJ, Harrison JB, Buchwald JS (1990) Cholinergic neurons of the feline pontomesencephalon. II. Ascending anatomical projections. Brain Res 520:55–72

    Article  CAS  PubMed  Google Scholar 

  256. Woolsey TA, Van der Loos H (1970) The structural organization of layer IV in the somatosensory region (SI) of mouse cerebral cortex. Brain Res 17:205–242

    Article  CAS  PubMed  Google Scholar 

  257. Yarita L, Iino M, Tanabe T, Kogure S, Takagi SF (1980) A transthalamic olfactory pathway to orbitofrontal cortex in the monkey. J Neurophysiol 43:69–85

    CAS  PubMed  Google Scholar 

  258. Yeterian EH, Pandya DP (1985) Corticothalamic connections of the posterior parietal cortex in the rhesus monkey. J Comp Neurol 237:408–427

    Article  CAS  PubMed  Google Scholar 

  259. Zahm DS, Zaborszky L, Alheid GF, Heimer L (1987) The ventral striatopallidothalamic projection: II. The ventral pallidothalamic link. J Comp Neurol 255:592–605

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Italia

About this chapter

Cite this chapter

Nieuwenhuys, R., Voogd, J., van Huijzen, C., Papa, M. (2010). Diencefalo: talamo dorsale. In: Il sistema nervoso centrale. Springer, Milano. https://doi.org/10.1007/978-88-470-1140-3_8

Download citation

Publish with us

Policies and ethics