Skip to main content

Lymphangiogenesis in Health and Disease – An Overview

  • Chapter
Lymphangiogenesis in Cancer Metastasis

Part of the book series: Cancer Metastasis – Biology and Treatment ((CMBT,volume 13))

  • 597 Accesses

Abstract

The blood and lymphatic vascular networks combine to facilitate immune function and maintain tissue fluid homeostasis in the body. Although these two systems share many common structural and molecular features, recent advances in our understanding of the molecular control of the lymphatics have identified distinct molecular pathways responsible for the formation and function of the lymphatic network. These advances have led to the characterisation of lymphatic-specific markers and growth factors which control lymphatic development and function. Insights gained from in vitro and in vivo studies over the past decade have highlighted the importance of the lymphatic system in human diseases such as lymphedema, inflammatory disorders and cancer. The lymphatic vasculature is an important route for the metastatic spread of tumor cells, and recent studies based on animal models of cancer indicated that lymphangiogenic growth factors, secreted by tumor cells or components of the tumor stroma, can induce formation of new lymphatic vessels in the vicinity of a primary tumor. These studies, as well as clinicopathological data, suggest that this process of tumor lymphangiogenesis can be associated with enhanced metastastic spread – hence tumor lymphangiogenesis is being explored as a therapeutic target for restricting the metastatic spread of cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baldwin ME, Stacker SA, Achen MG. Molecular control of lymphangiogenesis. Bioessays 2002, 24: 1030–40.

    Article  PubMed  CAS  Google Scholar 

  2. Karpanen T, Alitalo K. Molecular biology and pathology of lymphangiogenesis. Annu Rev Pathol Mech Dis 2007, 3: 367–97.

    Article  Google Scholar 

  3. Oliver G. Lymphatic vasculature development. Nat Rev Immunol 2004, 4: 35–45.

    Article  PubMed  CAS  Google Scholar 

  4. Wigle JT, Oliver G. Prox1 function is required for the development of the murine lymphatic system. Cell 1999, 98: 769–78.

    Article  PubMed  CAS  Google Scholar 

  5. Breiteneder-Geleff S, et al. Podoplanin, novel 43-kd membrane protein of glomerular epithelial cells, is down-regulated in puromycin nephrosis. Am J Pathol 1997, 151: 1141–52.

    PubMed  CAS  Google Scholar 

  6. Karpanen T, Alitalo K. Molecular biology and pathology of lymphangiogenesis. Annu Rev Pathol 2008, 3: 367–97.

    Article  PubMed  CAS  Google Scholar 

  7. Aprelikova O, et al. FLT4, a novel class III receptor tyrosine kinase in chromosome 5q33-qter. Cancer Res 1992, 52: 746–8.

    PubMed  CAS  Google Scholar 

  8. Alitalo K, Carmeliet P. Molecular mechanisms of lymphangiogenesis in health and disease. Cancer Cell 2002, 1: 219–27.

    Article  PubMed  CAS  Google Scholar 

  9. Joukov V, et al. A novel vascular endothelial growth factor, VEGF-C, is a ligand for the Flt-4 (VEGFR-3) and KDR (VEGFR-2) receptor tyrosine kinases. EMBO J 1996, 15: 290–8.

    PubMed  CAS  Google Scholar 

  10. Achen MG, et al. Vascular endothelial growth factor D (VEGF-D) is a ligand for the tyrosine kinases VEGF receptor 2 (Flk-1) and VEGF receptor 3 (Flt-4). Proc Natl Acad Sci USA 1998, 95: 548–53.

    Article  PubMed  CAS  Google Scholar 

  11. Veikkola T, et al. Signalling via vascular endothelial growth factor receptor-3 is sufficient for lymphangiogenesis in transgenic mice. EMBO J 2001, 20: 1223–31.

    Article  PubMed  CAS  Google Scholar 

  12. Rissanen TT, et al. VEGF-D is the strongest angiogenic and lymphangiogenic effector among VEGFs delivered into skeletal muscle via adenoviruses. Circ Res 2003, 92: 1098–106.

    Article  PubMed  CAS  Google Scholar 

  13. Jeltsch M, et al. Hyperplasia of lymphatic vessels in VEGF-C transgenic mice. Science 1997, 276: 1423–5.

    Article  PubMed  CAS  Google Scholar 

  14. Karkkainen MJ, et al. Vascular endothelial growth factor C is required for sprouting of the first lymphatic vessels from embryonic veins. Nat Immunol 2004, 5: 74–80.

    Article  PubMed  CAS  Google Scholar 

  15. Achen MG, McColl BK, Stacker SA. Focus on lymphangiogenesis in tumor metastasis. Cancer Cell 2005, 7: 121–7.

    Article  PubMed  CAS  Google Scholar 

  16. Mandriota SJ, et al. Vascular endothelial growth factor-C-mediated lymphangiogenesis promotes tumour metastasis. EMBO J 2001, 20: 672–82.

    Article  PubMed  CAS  Google Scholar 

  17. Skobe M, et al. Induction of tumor lymphangiogenesis by VEGF-C promotes breast cancer metastasis. Nat Med 2001, 7: 192–8.

    Article  PubMed  CAS  Google Scholar 

  18. Stacker SA, et al. VEGF-D promotes the metastatic spread of tumor cells via the lymphatics. Nat Med 2001, 7: 186–91.

    Article  PubMed  CAS  Google Scholar 

  19. Laakkonen P, et al. Vascular endothelial growth factor receptor 3 is involved in tumor angiogenesis and growth. Cancer Res 2007, 67: 593–9.

    Article  PubMed  CAS  Google Scholar 

  20. Roberts N, et al. Inhibition of VEGFR-3 activation with the antagonistic antibody more potently suppresses lymph node and distant metastases than inactivation of VEGFR-2. Cancer Res 2006, 66: 2650–7.

    Article  PubMed  CAS  Google Scholar 

  21. Lin J, et al. Inhibition of lymphogenous metastasis using adeno-associated virus-mediated gene transfer of a soluble VEGFR-3 decoy receptor. Cancer Res 2005, 65: 6901–9.

    Article  PubMed  CAS  Google Scholar 

  22. He Y, et al. Vascular endothelial cell growth factor receptor 3-mediated activation of lymphatic endothelium is crucial for tumor cell entry and spread via lymphatic vessels. Cancer Res 2005, 65: 4739–46.

    Article  PubMed  CAS  Google Scholar 

  23. Heckman CA, et al. The tyrosine kinase inhibitor cediranib blocks ligand-induced vascular endothelial growth factor receptor-3 activity and lymphangiogenesis. Cancer Res 2008, 68: 4754–62.

    Article  PubMed  CAS  Google Scholar 

  24. Stacker SA, Williams RA, Achen MG. Lymphangiogenic growth factors as markers of tumor metastasis. APMIS 2004, 112: 539–49.

    Article  PubMed  CAS  Google Scholar 

  25. Alitalo K, Tammela T, Petrova TV. Lymphangiogenesis in development and human disease. Nature (London) 2005, 438: 946–53.

    Article  CAS  Google Scholar 

  26. Brice G, et al. Milroy disease and the VEGFR-3 mutation phenotype. J Med Genet 2005, 42: 98–102.

    Article  PubMed  CAS  Google Scholar 

  27. Karkkainen MJ, et al. Missense mutations interfere with VEGFR-3 signalling in primary lymphoedema. Nat Genet 2000, 25: 153–9.

    Article  PubMed  CAS  Google Scholar 

  28. Mäkinen T, et al. Inhibition of lymphangiogenesis with resulting lymphedema in transgenic mice expressing soluble VEGF receptor-3. Nat Med 2001, 7: 199–205.

    Article  PubMed  Google Scholar 

  29. Karkkainen MJ, et al. A model for gene therapy of human hereditary lymphedema. Proc Natl Acad Sci USA 2001, 98: 12677–82.

    Article  PubMed  CAS  Google Scholar 

  30. Kumasaka T, et al. Lymphangiogenesis in lymphangioleiomyomatosis: its implication in the progression of lymphangioleiomyomatosis. Am J Surg Pathol 2004, 28: 1007–16.

    Article  PubMed  Google Scholar 

  31. Seyama K, et al. Vascular endothelial growth factor-D is increased in serum of patients with lymphangioleiomyomatosis. Lymphat Res Biol 2006, 4: 143–52.

    Article  PubMed  CAS  Google Scholar 

  32. Hayashida M, Seyama K, Inoue Y, Fujimoto K, Kubo K. The epidemiology of lymphangioleiomyomatosis in Japan: a nationwide cross-sectional study of presenting features and prognostic factors. Respirology 2007, 12: 523–30.

    Article  PubMed  Google Scholar 

  33. Wang HW, et al. Kaposi sarcoma herpesvirus-induced cellular reprogramming contributes to the lymphatic endothelial gene expression in Kaposi sarcoma. Nat Genet 2004, 36: 687–93.

    Article  PubMed  CAS  Google Scholar 

  34. Tammela T, et al. Therapeutic differentiation and maturation of lymphatic vessels after lymph node dissection and transplantation. Nat Med 2007, 13: 1458–66.

    Article  PubMed  CAS  Google Scholar 

  35. Enholm B, et al. Adenoviral expression of vascular endothelial growth factor-c induces lymphangiogenesis in the skin. Circ Res 2001, 88: 623–9.

    PubMed  CAS  Google Scholar 

  36. Rissanen TT, et al. VEGF-D is the strongest angiogenic and lymphangiogenic effector among VEGFs delivered into skeletal muscle via adenoviruses. Circ Res 2003, 92: 1098–106.

    Article  PubMed  CAS  Google Scholar 

  37. Saaristo A, et al. Lymphangiogenic gene therapy with minimal blood vascular side effects. J Exp Med 2002, 196: 719–30.

    Article  PubMed  CAS  Google Scholar 

  38. Szuba A, et al. Therapeutic lymphangiogenesis with human recombinant VEGF-C. FASEB J 2002, 16: 1985–7.

    PubMed  CAS  Google Scholar 

  39. Cao Y, et al. Vascular endothelial growth factor C induces angiogenesis in vivo. Proc Natl Acad Sci USA 1998, 95: 14389–94.

    Article  PubMed  CAS  Google Scholar 

  40. Tammela T, et al. Blocking VEGFR-3 suppresses angiogenic sprouting and vascular network formation. Nature 2008, 454: 656–60.

    Article  PubMed  CAS  Google Scholar 

  41. Hiltunen MO, et al. Intravascular adenovirus-mediated VEGF-C gene transfer reduces neointima formation in balloon-denuded rabbit aorta. Circulation 2000, 102: 2262–8.

    PubMed  CAS  Google Scholar 

  42. Rutanen J, et al. Gene transfer using the mature form of VEGF-D reduces neointimal thickening through nitric oxide-dependent mechanism. Gene Ther 2005, 12: 980–7.

    Article  PubMed  CAS  Google Scholar 

  43. Pytowski B, et al. Complete and specific inhibition of adult lymphatic regeneration by a novel VEGFR-3 neutralizing antibody. J Natl Cancer Inst 2005, 97: 14–21.

    Article  PubMed  CAS  Google Scholar 

  44. Achen MG, et al. Monoclonal antibodies to vascular endothelial growth factor-D block its interactions with both VEGF receptor-2 and VEGF receptor-3. Eur J Biochem 2000, 267: 2505–15.

    Article  PubMed  CAS  Google Scholar 

  45. Karpanen T, et al. Vascular endothelial growth factor C promotes tumor lymphangiogenesis and intralymphatic tumor growth. Cancer Res 2001, 61: 1786–90.

    PubMed  CAS  Google Scholar 

  46. Yaniv K, et al. Live imaging of lymphatic development in the zebrafish. Nat Med 2006, 12: 711–16.

    Article  PubMed  CAS  Google Scholar 

  47. Kuchler AM, et al. Development of the zebrafish lymphatic system requires vegfc signaling. Curr Biol 2006, 16: 1244–8.

    Article  PubMed  CAS  Google Scholar 

  48. Karkkainen MJ, Jussila L, Ferrell RE, Finegold DN, Alitalo K. Molecular regulation of lymphangiogenesis and targets for tissue oedema. Trends Mol Med 2001, 7: 18–22.

    Article  PubMed  CAS  Google Scholar 

  49. Petrova TV, et al. Defective valves and abnormal mural cell recruitment underlie lymphatic vascular failure in lymphedema distichiasis. Nat Med 2004, 10: 974–81.

    Article  PubMed  CAS  Google Scholar 

  50. Enholm B, et al. Comparison of VEGF, VEGF-B, VEGF-C and Ang-1 mRNA regulation by serum, growth factors, oncoproteins and hypoxia. Oncogene 1997, 14: 2475–83.

    Article  PubMed  CAS  Google Scholar 

  51. Ristimaki A, Narko K, Enholm B, Joukov V, Alitalo K. Proinflammatory cytokines regulate expression of the lymphatic endothelial mitogen vascular endothelial growth factor-C. J Biol Chem 1998, 273: 8413–18.

    Article  PubMed  CAS  Google Scholar 

  52. Irjala H, et al. Mannose receptor is a novel ligand for L-selectin and mediates lymphocyte binding to lymphatic endothelium. J Exp Med 2001, 194: 1033–42.

    Article  PubMed  CAS  Google Scholar 

  53. Enholm B, Paavonen K, Ristimäki A, Kumar V, Gunji Y, Klefstrom J, Kivinen L, Laiho M, Olofsson B, Joukov V, Eriksson U, Alitalo K. Comparison of VEGF, VEGF-B, VEGF-C and Ang-1 mRNA regulation by serum, growth factors, oncoproteins and hypoxia. Oncogene 1997 May 22, 14(20): 2475–83.

    Article  PubMed  CAS  Google Scholar 

  54. Ristimäki A, Narko K, Enholm B, Joukov V, Alitalo K. Proinflammatory cytokines regulate expression of the lymphatic endothelial mitogen vascular endothelial growth factor-C. J Biol Chem 1998 Apr 3, 273(14): 8413–18.

    Article  PubMed  Google Scholar 

  55. Irjala H, Johansson EL, Grenman R, Alanen K, Salmi M, Jalkanen S. Mannose receptor is a novel ligand for L-selectin and mediates lymphocyte binding to lymphatic endothelium. J Exp Med 2001 Oct 15, 194(8): 1033–42.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven A. Stacker .

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Stacker, S.A., Achen, M.G., Haiko, P., Alitalo, K. (2009). Lymphangiogenesis in Health and Disease – An Overview. In: Lymphangiogenesis in Cancer Metastasis. Cancer Metastasis – Biology and Treatment, vol 13. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2247-9_1

Download citation

Publish with us

Policies and ethics