Skip to main content

Lost Sex in the Reptiles: Constraints and Correlations

  • Chapter
  • First Online:
Lost Sex

Abstract

Reptiles are the only truly parthenogenetic vertebrates, making it especially fascinating to understand how and why some reptilian taxa have broken free of sexual reproduction. In this review we consider the evolutionary and genomic constraints, consequences, and ecological correlations of reptile parthenogenesis, and how this informs us more generally about the loss of sex in organisms. In reviewing the taxonomic distribution of parthenogenesis we find that some lineages are particularly likely to evolve parthenogenesis (e.g., teiid lizards) and others biased strongly against parthenogenesis (e.g., colubrid snakes). Moreover, all but one of the natural cases also involves hybridization. The geographical and ecological tendencies of parthenogenetic reptiles suggest a bias toward “open” environments, yet there are often surprisingly high levels of coexistence and niche overlap between parthenogenetic lineages and their related sexual forms. To the extent that these fascinating patterns can be deciphered we will learn much about the constraints and selective forces acting on the evolution of parthenogenesis in nature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams KL, Cronn R, Percifield R, Wendel J (2003a) Genes duplicated by polyploidy show unequal contributions to the transcriptome and organ-specific reciprocal silencing. Proc Natl Acad Sci 100: 4649–4654

    Article  PubMed  CAS  Google Scholar 

  • Adams M, Foster R, Hutchinson MN, Hutchinson RG, Donnellan SC (2003b) The Australian scincid lizard Menetia greyii: a new instance of widespread vertebrate parthenogenesis. Evolution 57: 2619–2627

    PubMed  Google Scholar 

  • Arnold MJ (1997) Natural Hybridization and Evolution. Oxford Univ Press, New York

    Google Scholar 

  • Avila LJ, Martori RA (1991) A unisexual species of Teius Merrem 1820 (Sauria Teiidae) from central Argentina. Trop Zool 4: 193–201

    Google Scholar 

  • Bell G (1982) The Masterpiece of Nature. University of California Press, Berkeley, California

    Google Scholar 

  • Bezy RL (1989) Morphological differentiation in unisexual and bisexual Xantusiid lizards of the genus Lepidophyma in Central America. Herpetol Monogr 3: 61–80

    Article  Google Scholar 

  • Bezy RL, Carmarillo JL (2002) Systematics of xantusiid lizards of the genus Lepidophyma. Contrib Sci 493: 1–41

    Google Scholar 

  • Bezy RL, Sites JWJ (1987) A preliminary study of allozyme evolution in the lizard family Xantusiidae. Herpetologica 43: 280–292

    Google Scholar 

  • Bierzychudek P (1985) Patterns in plant parthenogenesis. Experentia 41: 1255–1264

    Article  Google Scholar 

  • Boissinot S, Ineich I, Thaler L, Guillaume C-P (1997) Hybrid origin and clonal diversity in the parthenogentic gecko, Lepidodactylus lugubris in French Polynesia. J Herpetol 31: 295–298

    Article  Google Scholar 

  • Bolger DT, Case TJ (1994) Divergent ecology of sympatric clones of the asexual gecko, Lepidodactylus lugubris. Oecologia 100: 397–405

    Article  Google Scholar 

  • Bowker RG, Johnson OW (1980) Thermoregulatory precision in three species of whiptail lizards (Lacertilia: Teiidae). Physiol Zool 53: 176–185

    Google Scholar 

  • Cabrera MR, Monguillot JC (2007) Reptilia, Squamata, Teiidae, Teius suquiensis: new evidence of recent expansion of this parthenogenetic lizard? Check List 3: 180–184

    Google Scholar 

  • Case TJ (1990) Patterns of coexistence in sexual and asexual species of Cnemidophorus lizards. Oecologia 83: 220–227

    Article  Google Scholar 

  • Cimino MC (1972) Meiosis in triploid all-female fish (Poeciliopsis, Poecilidae). Science 175: 1484–1486

    Article  PubMed  CAS  Google Scholar 

  • Cole CJ (1975) Evolution of parthenogenetic species of reptile. In: Reinboth R (ed) Intersexuality in the animal kingdom. Springer-Verlag, New York, pp. 340–355

    Google Scholar 

  • Cole CJ, Dessauer HC (1993) Unisexual and bisexual whiptail lizards of the Cnemidophorus lemniscatus complex (Squamata: Teiidae) of the Guiana Region, South America, with descriptions of a new species. Am Mus Novit 3018: 1–30

    Google Scholar 

  • Cole CJ, Dessauer HC, Markezich AL (1993) Missing link found: the second ancestor of Gymnophthalmus underwoodi (Squamata: Teiidae), a South American unisexual lizard of hybrid origin. Am Mus Novit 3055: 1–13

    Google Scholar 

  • Cole CJ, Dessauer HC, Townsend CR, Arnold MG (1990) Unisexual lizards of the genus Gymnophthalmus(Reptilia: Teiidae) in the neotropics: genetics, orgin, and systematics. Am Mus Novit 2994: 2–29

    Google Scholar 

  • Cole CJ, Dessauer HC, Townsend CR, Arnold MG (1995) Kentropyx borckiana (Squamata: Teiidae): A Unisexual lizard of hybrid origin in the Guiana region, South America. Am Mus Novit 2671: 1–5

    Google Scholar 

  • Congdon JD, Vitt LJ, Hadley NF (1978) Parental investment: comparative reproductive energetics in bisexual and unisexual lizards, genus Cnemidophorus. Am Nat 112: 509–521

    Article  Google Scholar 

  • Coyne JA, Orr HA (2004) Speciation. Sinauer Ass, Sunderland

    Google Scholar 

  • Cuellar O (1971) Reproduction and mechanisms of meiotic restitution in the parthenogenetic lizard Cnemidophorus uniparens. J Morphol 133: 139–165

    Article  PubMed  CAS  Google Scholar 

  • Cuellar O (1974) On the origin of parthenogenesis in vertebrates: the cytogenetic factors. Am Nat 108: 625–648

    Article  Google Scholar 

  • Cuellar O (1977) Animal parthenogenesis: A new evolutionary-ecological model is needed. Science 197: 837–843

    Article  PubMed  CAS  Google Scholar 

  • Cuellar O (1978) Parthenogenetic lizards. Science 201:1155

    Article  PubMed  Google Scholar 

  • Cuellar O (1979) On the ecology of coexistence in parthenogenetic and bisexual lizards of the genus Cnemidophorus. Am Zool 19: 773–786

    Google Scholar 

  • Cuellar O (1987) The evolution of parthenogenesis: a historical perspective. In: Moens PB (ed) Meiosis. Acad. Press, Orlando, pp. 43–104

    Google Scholar 

  • Cuellar O (1993) Further observations on competition and natural history of coexisting parthenogenetic and bisexual whiptail lizards. In: Wright JW, Vitt LJ (eds) Biology of Whiptail Lizards (Genus Cnemidophorus). Oklahoma Mus Nat Hist, Norman Oklahoma, pp. 345–370

    Google Scholar 

  • Cuellar O (1994) Biogeography of parthenogenetic animals. Biogeographica 70: 1–13

    Google Scholar 

  • Cuellar O, Kluge AG (1972) Natural parthenogenesis in the gekkonid lizard Lepidodactylus lugubris. J Genet 61: 14–26

    Article  Google Scholar 

  • Cullum A (1997) Comparisons of physiological performance in sexual and asexual whiptail lizards (genus Cnemidophorus): implications for the role of heterozygosity. Am Nat 150: 24–47

    Article  PubMed  CAS  Google Scholar 

  • Cullum A (2000) Phenotypic variability of physiological traits in populations of sexual and asexual whiptail lizards (genus Cnemidophorus). Evol Ecol Res 2: 841–855

    Google Scholar 

  • Darevsky IS (1962) On the origin and biological role of natural parthenogenesis in a polymorphic group of Caucasian rock lizards, Lacerta saxicola Eversmann. Zool Zh USSR 41: 397–408

    Google Scholar 

  • Darevsky IS, Kulikova VN (1961) Natürliche Parthenogenese in der polymorphen Gruppe der Kaukasischen Felseidechse (Lacerta saxicola Eversmann). Zool Jahrb Syst 89: 119–176

    Google Scholar 

  • Darevsky IS, Kupriyanova LA (1993) Two new all-female lizard species of genus Leiolepis CUVIER 1829 from Thailand and Vietnam (Squamata: Sauria: Uromastycinae). Herpetozoa 6: 3–20

    Google Scholar 

  • Darevsky IS, Kupriyanova LA, Uzzell TM (1985) Parthenogenesis in reptiles. In: Gans C, Billett F (eds) Biology of the Reptilia. John Wiley and Sons Inc, New York, pp. 412–526

    Google Scholar 

  • Delmotte F, Sabater-Munoz B, Prunier-Leterme N, Latorre A, Sunnucks P, Rispe C, Simon J-C (2003) Phylogenetic evidence for hybrid origins of asexual lineages in an aphid species. Evolution 57: 1291–1303

    PubMed  CAS  Google Scholar 

  • Densmore LDI, Moritz C, Wright JW, Brown WM (1989a) Mitochondrial DNA analyses and the origin and relative age of parthenogenetic lizards (Genus: Cnemidophorus). IV. Nine sexlineatus-group unisexuals. Evolution 43: 969–983

    Article  Google Scholar 

  • Densmore LDI, Wright JW, Brown WM (1989b) Mitochondrial DNA analyses and the origin and relative age of parthenogenetic lizards (Genus: Cnemidophorus). II. C. neomexicanus and the C. tesselatus complex. Evolution 43: 943–957

    Article  Google Scholar 

  • Dessauer HC, Cole CJ (1989) Diversity between and within nominal forms of unisexual Teiid lizards. In: Dawley RM, Bogart JP (eds) Evolution and Ecology of Unisexual Vertebrates. University of the State of New York, Albany, New York, pp. 49–71

    Google Scholar 

  • Dickinson TA (1999) Species concepts in agamic complexes. In: van Raamsdonk LWD, den Nijs JCM (eds) Plant Evolution in Man-Made Habitats. Hugo de Vries Laboratory, Amsterdam, pp. 319–339

    Google Scholar 

  • Dubach J, Sajewicz A, Pawley R (1997) Parthenogenesis in the Arafuran file snake (Acrochordus arafurae). Herpetol Nat Hist 5: 11–18

    Google Scholar 

  • Ehrendorfer F (1980) Polyploidy and distribution. In: Lewis WH (eds) Polyploidy, biological relevance. Plenum Press, New York and London, pp. 45–60

    Google Scholar 

  • Fu J, MacCulloch RD, Murphy DJ, Darevsky IS (2000) Clonal variation in the Caucasian rock lizard Lacerta armeniaca and its origin. Amphib-reptil 21: 83–89

    Article  Google Scholar 

  • Fujita MK, Boore JL, Moritz C (2007) Multiple origins and rapid evolution of duplicated mitochondrial genes in parthenogenetic geckos (Heteronotia binoei; Squamat, Gekkonidae). Mol Biol Evol 24: 2775–2786

    Article  PubMed  CAS  Google Scholar 

  • Gamble T, Bauer AM, Greenbaum E, Jackman TR (2008) Evidence of Gondwanan vicariance in an ancient clade of the geckos. J Biogeogr 35: 88–104

    Google Scholar 

  • Glesener RR, Tilman D (1978) Sexuality and the components of environmental uncertainty: clues from geographic parthenogenesis in terrestrial animals. Am Nat 112: 659–673

    Article  Google Scholar 

  • Groot TVM, Bruins E, Breeuwer JAJ (2003) Molecular genetic evidence for parthenogenesis in the Burmese python, Python molurus bivittatus. Heredity 90: 130–135

    Article  PubMed  CAS  Google Scholar 

  • Hall WP (1970) Three probable cases of parthenogenesis in lizards (Agamidae, Chamaeleontidae, Gekkonidae). Experientia 26: 1271–1273

    Article  PubMed  CAS  Google Scholar 

  • Hamilton WD, Axelrod R, Tanese R (1990) Sexual reproduction as an adaptation to resist parasites (a review). Proc Natl Acad Sci 87: 3566–3573

    Article  PubMed  CAS  Google Scholar 

  • Hanley KA, Fisher RN, Case TJ (1995) Lower mite infestations in an asexual gecko compared with its sexual ancestors. Evolution 49: 418–426

    Article  Google Scholar 

  • Hernández-Gallegos O, Méndez F, Villagrán-Santa Cruz M, Cuellar O (2003) Genetic homogeneity between populations of Aspidoscelis rodecki, a parthenogenetic lizard from the Yucatan Peninsula. J Herpetol 37: 527–532

    Article  Google Scholar 

  • Hillis DM, Moritz C, Porter CA, Baker RJ (1990) Evidence for biased gene conversion in concerted evolution of ribosomal DNA. Science 251: 308–310

    Article  Google Scholar 

  • Hörandl E (2006) The complex causality of geographical parthenogenesis. New Phytol 171: 525–538

    PubMed  Google Scholar 

  • Hore TA, Rapkins RW, Graves JAM (2007) Construction and evolution of imprinted loci in mammals. Trends Genet 23: 440–448

    Article  PubMed  CAS  Google Scholar 

  • Itono M, Morishima K, Fujimoto T, Bando E, Yamaha E, Arai K (2006) Premeiotic endomitosis produces diploid eggs in the natural clone loach, Misgurnus anguillicaudatus (Teleostei: Cobitidae). J Exp Zool 305A: 513–523

    Article  CAS  Google Scholar 

  • Jaenike J (1978) An hypothesis to account for the maintenance of sex within populations. Evol Theor 3: 191–194

    Google Scholar 

  • Kearney M (2003) Why is sex so unpopular in the Australian desert? Trends Ecol Evol 18: 605–607

    Article  Google Scholar 

  • Kearney M (2005) Hybridization, glaciation and geographical parthenogenesis. Trends Ecol Evol 29: 495–502

    Article  Google Scholar 

  • Kearney M, Moussalli A, Strasburg J, Lindenmayer D, Moritz C (2003) Geographic parthenogenesis in the Australian arid zone: I. A climatic anaysis of Heteronotia binoei complex (Gekkonidae). Evol Ecol Res 5: 953–976

    Google Scholar 

  • Kearney M, Shine R (2004a) Developmental success, stability and plasticity in closely related parthenogenetic and sexual lizards (Heteronotia, Gekkonidae). Evolution 58: 1560–1572

    PubMed  Google Scholar 

  • Kearney M, Shine R (2004b) Morphological and physiological correlates of hybrid parthenogenesis. Am Nat 164: 803–813

    Article  Google Scholar 

  • Kearney M, Shine R (2005) Lower fecundity in parthenogenetic geckos than in sexual relatives in the Australian arid zone. J Evol Biol 18: 609–618

    Article  PubMed  CAS  Google Scholar 

  • Kearney M, Wahl R, Autumn K (2005) Increased capacity for sustained locomotion at low temperature in parthenogenetic geckos of hybrid origin. Physiol Biochem Zool 78: 316–324

    Article  PubMed  Google Scholar 

  • Kizirian DA, Cole CJ (1999) Origin of the unisexual lizard Gymnophthalmus underwoodi (Gymnophthalmidae) inferred from mitochondrial DNA nucleotide sequences. Mol Phyl Evol 11: 394–400

    Article  CAS  Google Scholar 

  • Kobel HL, DuPasquier L (1975) Production of large clones of histocompatible, fully identical clawed toads (Xenopus). Immunogenetics 2: 87–91

    Article  Google Scholar 

  • Lenk P, Eidenmueller B, Staudter H, Wicker R, Wink M (2005) A parthenogenetic Varanus. Amphib-reptil 26: 507–514

    Article  Google Scholar 

  • Leuck BE (1985) Comparative social behavior of bisexual and unisexual whiptail lizars (Cnemidophorus). J Herpetol 19: 492–506

    Article  Google Scholar 

  • Little TJ, Demelo R, Taylor DJ, Herbet PDN (1997) Genetic characterization of an actic zooplankter: insights into geographic polyploidy. Proc R Soc Lond B 264: 1363–1370

    Article  Google Scholar 

  • Lui S, Sun Y, Zhang C, Luo K, Lui Y (2004) Production of gynogenetic progeny from allotetraploid hybrids red crucian carp X common carp. Aquaculture 236: 193–200

    Article  Google Scholar 

  • Lundmark M, Saura A (2006) Asexuality alone does not explain the success of clonal forms in insects with geographical parthenogenesis. Hereditas 113: 23–32

    Article  Google Scholar 

  • Lynch M (1984) Destabilizing hybridization, general-purpose genotypes and geographic parthenogenesis. Quart Rev Biol 59: 257–290

    Article  Google Scholar 

  • Magnusson WE (1979) Production of an embryo by an Acrochordus javanicus isolated for years. Copeia 1878: 744–745

    Article  Google Scholar 

  • Malysheva DN, Darevsky IS, Tokarskaya ON, Petrosyan V, Martirosyan IA, Ryskov AP (2006) Analysis of genetic variation in unisexual and bisexual lizard species of the genus Leiolepis from Southeast Asia. Genetika 42: 581–586

    PubMed  CAS  Google Scholar 

  • Manriquez NL, Villagran-Santa Cruz M, Mendez-De La Cruz F (2000) Origin and evolution of the parthenogenetic lizards, Cnemidophorus maslini and C. cozumela. J Herpetol 34: 634–637

    Article  Google Scholar 

  • Maslin TP (1971) Parthenogenesis in reptiles. Am Zool 11: 361–380

    Google Scholar 

  • McAllister CT, Cordes JE, Walker JM (2003) Helminth parasites of unisexual and bisexual whiptail lizards (teiidae) in North America. X. The western marbled whiptail (Cnemidophorus tigris marmoratus). Texas J Sci 55: 307–314

    Google Scholar 

  • Morison IM, Ramsay JP, Spencer HG (2005) A census of mammalian imprinting. Trends Genet 21: 457–465

    Article  PubMed  CAS  Google Scholar 

  • Moritz C (1983) Parthenogenesis in the endemic Australian lizard Heteronotia binoei (Gekkonidae). Science 220: 735–736

    Article  PubMed  Google Scholar 

  • Moritz C (1987) Parthenogenesis in the tropical gekkonid lizards, Nactus arnouxii (Sauria: Gekkonidae). Evolution 41: 1252–1266

    Article  Google Scholar 

  • Moritz C (1991) Evolutionary dynamics of mitochondrial DNA duplications in parthenogenetic geckos, Heteronotia binoei. Genetics 129: 221–230

    PubMed  CAS  Google Scholar 

  • Moritz C (1993) The origin and evolution of parthenogenesis in the Heteronotia binoei complex: synthesis. Genetica 90: 269–280

    Article  Google Scholar 

  • Moritz C, Brown WM (1987) Tandem duplication in animal mitochondrial DNAs: variation in incidence and gene content among lizards. Proc Natl Acad Sci 84: 7183–7187

    Article  PubMed  CAS  Google Scholar 

  • Moritz C, Brown WM, Densmore LD, Wright JW, Vyas D, Donnellan S, Adams M, Baverstock P (1989a) Genetic diversity and the dynamics of hybrid parthenogenesis in Cnemidophorus (Teiidae) and Heteronotia (Gekkonidae). In: Dawley RM, Bogart JP (eds) Evolution and Ecology of Unisexual Vertebrates. University of the State of New York, Albany, New York, pp. 87–112

    Google Scholar 

  • Moritz C, Case TJ, Bolger DT, Donnellan S (1993) Genetic diversity and the history of pacific island house geckos (Hemidactylus and Lepidodactylus). Biol Linn Soc 48: 113–133

    Article  Google Scholar 

  • Moritz C, Donnellan S, Adams M, Baverstock PR (1989b) The origin and evolution of parthenogenesis in Heteronotia binoei (Gekkonidae): extensive genotypic diversity among parthenogens. Evolution 43: 994–1003

    Article  Google Scholar 

  • Moritz C, McCallum H, Donnellan S, Roberts JD (1991) Parasite loads in parthenogenetic and sexual lizards (Heteronotia binoei): support for the Red Queen hypothesis. Proc R Soc Lond B 244: 145–149

    Article  Google Scholar 

  • Moritz C, Uzzell TM, Spolsky C, Hotz H, Darevsky IS, Kupriyanova L, Danielyan F (1992a) The maternal ancestry and approximate age of parthenogenetic species of Caucasian rock lizards (Lacerta: Lacertidae). Genetica 87: 53–62

    Article  CAS  Google Scholar 

  • Moritz C, Wright JW, Brown WM (1989c) Mitochondrial DNA analyses and the origin and relative age of parthenogenetic Cnemidophorus: C. velox and C. exsanguis. Evolution 43: 958–968

    Article  Google Scholar 

  • Moritz C, Wright JW, Brown WM (1989d) Mitochondrial DNA analyses and the origin and relative age of parthenogenetic lizards (Genus: Cnemidophorus). III. C. velox and C. exsanguis. Evolution 43: 958–968

    Article  Google Scholar 

  • Moritz C, Wright JW, Brown WM (1992b) Mitochondrial DNA analyses and the origin and relative age of parthenogenetic Cnemidophorus: Phylogenetic constraints on hybrid origins. Evolution 46: 184–192

    Article  CAS  Google Scholar 

  • Moritz C, Wright JW, Singh RS, Brown WM (1992c) Mitochondrial DNA analyses and the origin and relative age of parthenogenetic Cnemidophorus. V. The cozumela species group. Herpetologica 48: 417–424

    Google Scholar 

  • Murphy RW, Darevsky IS, MacCulloch RD, Jinzhong F, Kupriyanova LA, Upton DE, Danielyan F (1997) Old age, multiple formations or genetic plasticity? Clonal diversity in the uniparental Caucasian rock lizard, Lacerta dahli. Genetica 101: 125–130

    Article  PubMed  CAS  Google Scholar 

  • Murphy RW, Fu J, MacCulloch RD, Darevsky IS, Kupriyanova LA (2000) A fine line between sex and unisexuality: the phylogenetic constraints on parthenogenesis in lacertid lizards. Zool J Linn Soc 130: 527–549

    Article  Google Scholar 

  • Olsen MW (1966) Segregation and replication of chromosomes in turkey parthenogens. Nature 212: 435–436

    Article  PubMed  CAS  Google Scholar 

  • Ota H, Hikida TM (1989) A new triploidHemidactylus (Gekkonidae: Sauria) from Taiwan, with comments on morphological and karyological variation in the H. garnotii-vietnamensis complex. J Herpetol 23: 50–60

    Article  Google Scholar 

  • Ota H, Hikida TM, Lue K-Y (1989) Polyclony in a triploid gecko, Hemidactylus stejnegeri, from Taiwan, with notes on its bearing on the chromosomal diversity of the H. garnotii-vietnamensis complex (Sauria: Gekkonidae). Genetica 79: 183–189

    Article  Google Scholar 

  • Ota H, Hikida TM, Matsui M, Chan-Ard T, Nabhitabhata J (1996) Discovery of a diploid population of the Hemidactylus garnotii-vietnamensis complex (Reptilia: Gekkonidae). Genetica 97: 81–85

    Article  Google Scholar 

  • Otto SP (2003) In polyploids, one plus one does not equal two. Trends Ecol Evol 18: 431–433

    Article  Google Scholar 

  • Parker ED Jr (1979a) Phenotypic consequences of parthenogenesis in Cnemidophorus lizards. I. Variability in parthenogenetic and sexual populations. Evolution 33: 1150–1166

    Article  Google Scholar 

  • Parker ED Jr (1979b) Phenotypic consequences of parthenogenesis in Cnemidophorus lizards. II. Similarity of C. tessleatus to its sexual parental species. Evolution 33: 1167–1179

    Article  Google Scholar 

  • Parker ED Jr., Selander RK (1976) The organisation of genetic diversity in the parthenogenetic lizard Cnemidophorus tesselatus. Genetics 84: 791–805

    PubMed  Google Scholar 

  • Parker ED Jr, Walker JM, Paulissen MA (1989) Clonal diversity in Cnemidophorus: ecological and morphological consequences. In: Dawley RM, Bogart JP (eds) Evolution and ecology of unisexual vertebrates. Univ. of the State of New York, Albany, New York, pp. 72–86

    Google Scholar 

  • Paulissen MA (1988) Ontogenetic and seasonal shifts in microhabitat use by the lizard Cnemidophorus sexlineatus. Copeia 1988: 1021–1029

    Article  Google Scholar 

  • Paulissen MA (2001) Ecology and behavior of lizards of the parthenogenetic Cnemidophorus laredoensis complex and their gonochoristic relative Cnemidophorus gularis: Implications for coexistence. J Herpetol 35: 282–292

    Article  Google Scholar 

  • Paulissen MA, Walker JM, Cordes JE (1988) Ecology of syntopic clones of the parthenogenetic whiptail lizard, Cnemidophorus 'laredoensis'. J Herpetol 22: 331–342

    Article  Google Scholar 

  • Paulissen MA, Walker JM, Cordes JE (1992) Can parthenogenetic Cnemidophorus laredoensis (Teiidae) coexist with its bisexual congeners? J Herpetol 26: 153–158

    Article  Google Scholar 

  • Pellegrino KCM, Rodrigues MT, Yonenaga-Yassuda Y (2003) Triploid karyotype of Leposoma percarinatum (Squamata, Gymnophthalmidae) J Herpetol 37: 197–199

    Article  Google Scholar 

  • Pianka ER (1973) The structure of lizard communities. Annu Rev Ecol Syst 4: 53–74

    Article  Google Scholar 

  • Platonov ES (2005) Genomic imprinting and the problem of parthenogenesis in mammals. Russ J Dev Biol 36: 247–255

    Article  Google Scholar 

  • Pough FH, Andrews RM, Cadle JE, Savitzky AH, Wells KD (2004) Herpetology, 3rd ed. Pearson Prentice Hall, Upper Saddle River, NJ

    Google Scholar 

  • Price AH, Lapointe JL, Atmar JW (1993) The ecology and evolutionary implications of competition and parthenogenesis in Cnemidophorus. In: Wright JW, Vitt LJ (eds) Biology of whiptail lizards (Genus Cnemidophorus). Oklahoma Mus. Nat. Hist, Norman Oklahoma, pp. 371–410

    Google Scholar 

  • Radtkey RR, Becker B, Miller RD, Riblet R, Case TJ (1996) Variation and evolution of Class I Mhc in sexual and parthenogenetic geckos. Proc R Soc Lond B 263: 1023–1032

    Article  CAS  Google Scholar 

  • Radtkey RR, Donnellan SC, Fisher RN, Moritz C, Hanley KA, Case TJ (1995) When species collide: the origin and spread of an asexual species of gecko. Proc R Soc Lond B 259: 145–152

    Article  Google Scholar 

  • Rauh NR, Schmidt A, Bormann J, Nigg EA, Mayer TU (2005) Calcium triggers exit from meiosis II by targeting the APC/C inhibitor Xerp1 for degradation. Nature 437: 1048–1052

    Article  PubMed  CAS  Google Scholar 

  • Ray N, Adams JM (2001) A GIS-based vegetation map of the world at the last glacial maximum (25,000–15,000 BP). Internet Archaeol 11 (http://intarch.ac.uk/journal/issue11/rayadams_toc.html)

  • Reeder TW, Cole CJ, Dessauer HC (2002) Phylogenetic relationships of whiptail lizards of the Genus Cnemidophorus (Squamata: Teiidae): A test of monophyly, reevaluation of karyotypic evolution, and review of hybrid origins. Am Mus Novit 3365: 1–61

    Article  Google Scholar 

  • Roughgarden J (1972) The evolution of niche width. Am Nat 106: 683–718

    Article  Google Scholar 

  • Roughgarden J (1995) Anolis Lizards of the Caribbean: Ecology, Evolution, and Plate Tectonics. Oxford Univ Press, London

    Google Scholar 

  • Scalka P, Vozenilek P (1986) Case of parthenogenesis in water snakes, Neroidia sipedon. Fauna Bohemiae 11: 81–82

    Google Scholar 

  • Schall JJ (1978) Reproductive strategies in sympatric whiptail lizards (Cnemidophorus): Two parthenogenetic and three bisexual species. Copeia 1978: 108–116

    Article  Google Scholar 

  • Schall JJ (1993) Community ecology of Cnemidophorus lizards in southwestern Texas: a test of the weed hypothesis. In: Wright JW, Vitt LJ (eds) Biology of whiptail lizards (Genus Cnemidophorus). Oklahoma Mus. Nat. Hist, Norman Oklahoma, pp. 319–343

    Google Scholar 

  • Schmidt A, Duncan PI, Rauh NR Sauer G, Fry AM, Nigg EA, Mayer TU (2005) Xenopus polo-like kinase Plx1 regulates Xerp1, a novel inhibitor of APC/C activity. Genes Dev 19: 502–513

    Article  PubMed  CAS  Google Scholar 

  • Schmitz A, Vences M, Weitkus S, Ziegler T, Böhme W (2001) Recent maternal divergence of the parthenogenetic lizard Leiolepis guentherpetersi from L. guttata: molecular evidence (Reptilia: Squamata: Agamidae). Zool Abh Mus Tierkde 51: 355–360

    Google Scholar 

  • Schuett GW, Fernandez PJ, Gergits WF, Casna NJ, Chizar D, Smith HM, Mitton JB, Mackessy SP, Odum RA, Demlong. MJ (1997) Production of offspring in the absence of males: evidence for facultative parthenogenesis in bisexual snakes. Herpetol Nat Hist 5: 1–10

    Google Scholar 

  • Shimizu Y, Shibata N, Sakaizumi M, Yamashita M (2000) Production of diploid eggs through premeiotic endomitosis in the hybrid medaka between Oryzias latipes and O. curvinotus. Zool Sci 17: 951–958

    Article  Google Scholar 

  • Sievert LM, Paulissen MA (1996) Temperature selection and thermoregulatory precision of bisexual and parthenogenetic Cnemidophorus lizards from southern Texas, U.S.A. J Therm Biol 21: 15–20

    Article  Google Scholar 

  • Sinclair EA, Scholl R, Bezy RL, Crandall KA, Sites JW (2006) Isolation and characterization of di- and tetranucleotide microsatellite loci in the yellow-spotted night lizard Lepidophyma flavimaculatum (Squamata: Xantusiidae). Mol Ecol Notes 6: 233–236

    Article  CAS  Google Scholar 

  • Sites JW, Peccinini-Seale DM, Moritz C, Wright JW, Brown GP (1990) The evolutionary history of parthenogenetic Cnemidophorus lemniscatus (Sauria, Teiidae). I. Evidence for a hybrid origin. Evolution 44: 906–921

    Article  Google Scholar 

  • Slowinski JB, Lawson R (2002) Snake phylogeny: evidence from nuclear and mitochondrial genes. Mol Phyl Evol 24: 194–202

    Article  CAS  Google Scholar 

  • Sokal RR, Rohlf FJ (1995) Biometry, 3rd ed. Freeman and Company, San Francisco

    Google Scholar 

  • Stebbins GL (1971) Chromosome Evolution in Higher Plants. Edward Arnold, London

    Google Scholar 

  • Stebbins GL (1984) Polyploidy and the distribution of arctic-alpine flora: new evidence and a new approach. Bot Helv 94: 1–13

    Google Scholar 

  • Stenberg P, Lundmark M, Knutelski S, Saura A (2003) Evolution of clonality and polyploidy in a weevil system. Mol Biol Evol 20: 1626–1632

    Article  PubMed  CAS  Google Scholar 

  • Strasburg J, Kearney M, Moritz C, Templeton AR (2007) Integrating phylogeography with distribution modeling: multiple pleistocene range expansions in a parthenogenetic gecko. PLoS One 2: e760

    Article  PubMed  Google Scholar 

  • Suomalainen E, Saura A, Lokki J (1987) Cytology and Evolution in Parthenogenesis. CRC Press, Florida

    Google Scholar 

  • Takenouchi Y (1976) A study of polyploidy in races of Japanese weevils (Coleoptera: Curculionidae). Genetica 46: 327–334

    Article  Google Scholar 

  • Taylor AC, Cole CJ, Dessauer HC, Parker ED, Jr. (2003) Congurent patterns of genetic and morphological variation in the parthenogenetic lizard Aspidoscelis tesselata (Squamata: Teiidae) and the origins of colour pattern classes and genotypic clones in eastern New Mexico. Am Mus Novit 3424: 1–40

    Article  Google Scholar 

  • Townsend TM, Larson A, Louis E, Macey JR (2004) Molecular phylogenetics of squamata: the position of snakes, amphisbaenians, and dibamids, and the root of the squamate tree. Syst Biol 53: 735–757

    Article  PubMed  Google Scholar 

  • Tunquist BJ, Maller JL (2003) Under arrest: cytostatic factor (CSF)-mediated metaphase arrest in vertebrate eggs. Genes Dev 17: 683–710

    Article  PubMed  CAS  Google Scholar 

  • Uzzell TM (1970) Meiotic mechanisms of naturally occurring unisexual vertebrates. Am Nat 104: 433–445

    Article  Google Scholar 

  • Vandel A (1928) La parthénogénèse geographique. Contribution à l'étude biologique et cytologique de la parthénogénèse naturelle. Bull Biol France Belg 62: 164–281

    Google Scholar 

  • Vanzolini DE (1978) Parthenogenetic lizards. Science 201: 1152

    Article  PubMed  Google Scholar 

  • Vanzolini PE (1970) Unisexual Cnemidophorus lemniscatus in the Amazonas valley: a preliminary note (Sauria: Teiidae). Papéis Avulsos Mus Zool São Paulo 23: 63–49

    Google Scholar 

  • Volobouev V, Pasteur G, Ineich I, B. D (1993) Chromosomal evidence for a hybrid origin of diploid parthenogenetic females from the unisexual-bisexual Lepidodactylus lugubris complex (Reptilia, Gekkonidae). Cytogenet Cell Genet 63: 194–199

    Article  PubMed  CAS  Google Scholar 

  • Vrijenhoek RC (1979) Factors affecting clonal diversity and coexistence. Am Zool 19: 787–797

    Google Scholar 

  • Vrijenhoek RC (1984) Ecological differentiation among clones: the frozen niche variation model. In: Wöhrmann K, Loeschcke V (eds) Population Biology and Evolution. Springer-Verlag, Heidelberg, pp. 217–231

    Google Scholar 

  • Vrijenhoek RC (1989) Genetic and ecological constraints on the origins and establishment of unisexual vertebrates. In: Dawley RM, Bogart JP (eds) Evolution and Ecology of Unisexual Vertebrates. University of the State of New York, Albany, New York, pp. 24–31

    Google Scholar 

  • Vrijenhoek RC, Dawley RM, Cole CJ, Bogart JP (1989) A list of the known unisexual vertebrates. In: Dawley RM, Bogart JP (eds) Evolution and Ecology of Unisexual Vertebrates. University of the State of New York, Albany, New York, pp. 19–23

    Google Scholar 

  • Watts PC, Buley KR, Sanderson S, Boardman W, Ciofi C, Gibson R (2006) Parthenogenesis in Komodo dragons. Nature 444: 1021–1022

    Article  PubMed  CAS  Google Scholar 

  • West SA, Lively CM, Read AF (1999) A pluralist approach to sex and recombination. J Evol Biol 12: 1003–1012

    Article  Google Scholar 

  • White MJD, Contreras N (1979) Cytogenetics of the parthenogenetic grasshopper Warramaba (formerly Moraba) virgo and its bisexual relatives. V. Interaction of W. virgo and a bisexual species in geographic contact. Evolution 33: 85–94

    Article  Google Scholar 

  • Wright JW (1978) Parthenogenetic lizards. Science 201: 1152–1154

    Article  PubMed  Google Scholar 

  • Wright JW, Lowe CH (1968) Weeds, polyploids, parthenogenesis, and the geographical and ecological distribution of all-female species of Cnemidophorus. Copeia 1968: 128–138

    Article  Google Scholar 

  • Wynn AH, Cole CJ, Gardner AL (1987) Apparent triploidy in the unisexual Brahminy blind snake, Ramphotyphlops braminus. Am Mus Novit 2868: 1–7

    Google Scholar 

  • Yamashita M, Jiang J, Onozato H, Nakanishi T, Nagahama Y (1993) A tripolar spindle formed at meiosis I assures the retention of the original ploidy in the gynogenetic triploid crucia carp, Ginbuna Carassius auratus langsdorfii. Dev Growth Diff 35: 631–636

    Article  Google Scholar 

  • Zevering CE, Moritz C, Heideman A, Sturm RA (1991) Parallel origins of duplications and the formation of pseudogenes in mitochondrial DNA from parthenogenetic lizards (Heteronotia binoei; Gekkonidae). J Mol Evol 33: 431–441

    Article  PubMed  CAS  Google Scholar 

  • Zhang Q, Arai K, Yamashita M (1998) Cytogenetic mechanisms for triploid and haploid egg formation in the triploid loach Misgurnus anguillicaudatus. J Exp Zool 281: 608–619

    Article  Google Scholar 

Download references

Acknowledgments

We thank Craig Moritz for lively discussions regarding many of the topics addressed in this review. J.W. Sites provided insights that improved the quality and content of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Kearney .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Kearney, M., Fujita, M.K., Ridenour, J. (2009). Lost Sex in the Reptiles: Constraints and Correlations. In: Schön, I., Martens, K., Dijk, P. (eds) Lost Sex. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2770-2_21

Download citation

Publish with us

Policies and ethics