Skip to main content

The Recent Evolution of the Oasis Environment in the Taklimakan Desert, China

  • Chapter
  • First Online:
Water and Sustainability in Arid Regions

Abstract

Numerous natural and anthropogenic factors have caused soil salinization, land surface degradation, and desertification in Keriya County in China’s Xinjiang region. Information from multi-temporal remotely sensed data such as the Soil Salinity Index (SSI) has contributed significantly to an understanding of these environmental changes. The approach to calculating SSI is based on the spectral bands of Landsat Thematic Mapper (TM) or Enhanced Thematic Mapper Plus (ETM+). A soil salinity map of the Keriya County area was produced from Landsat ETM+ images, with an overall accuracy of 72.73% and kappa coefficient of 0.6689. The analysis of the recent evolution of the oasis of Keriya County was carried out by coupling climatic and socioeconomic data with information derived from multi-temporal remotely sensed data such as the SSI, Normalized Difference Vegetation Index (NDVI), and different land use classes. Such analysis appeared to be very useful in identifying and monitoring changes occurring in the oasis ecosystem and for understanding the consequences of human-induced land degradation processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adler-Golden, S.M. 1999. Atmospheric Correction for Short-wave Spectral Imagery Based on MODTRAN4. SPIE Conference Proceedings, Imaging Spectrometry V 3753.

    Google Scholar 

  • Adler-Golden, et al. 2002. An algorithm for de-shadowing spectral imagery. Proc. 11 th JPL Airborne Earth Science Workshop. March 5–8, 2002. Pasadena, USA.

    Google Scholar 

  • Ahmad, M., and G.P. Kutcher. 1992. Environmental Issues. Irrigation Planning with Environmental Considerations. Washington DC: World Bank Publications, 37–39.

    Google Scholar 

  • Asrar, G., et al. 1984. Estimating absorbed photosynthetically active radiation and leaf area index from spectral reflectance in wheat. Agronomy Journal 76:300–306.

    Article  Google Scholar 

  • Attané I., and Y. Courbage. 2000. Transitional stages and identity boundaries: the case of ethnic minorities in China. Population and Environment 21 (3): 257–280.

    Article  Google Scholar 

  • Baret, F., and G. Guyot. 1991. Potentials and limits of vegetation indices for LAI and APAR. Remote Sensing of Environment 35:161–173.

    Article  Google Scholar 

  • Berk, A., et al. 2003. MODTRAN4 Version 3 Revision 1 User’s Manual. Hanscom MA: Air Force Research Laboratory.

    Google Scholar 

  • Biswas, M.R., and A.K. Biswas. 1980. Combating desertification in China. In: Desertification, Environmental Sciences and Applications, Oxford: Pergamon Press 12:109–177.

    Google Scholar 

  • Carlson, T.N., W.J. Capehart, and R.R. Gillies. 1995. A new look at the simplified method for remote sensing of daily evapotranspiration. Remote Sensing of Environment 54 (2): 1329–1337.

    Article  Google Scholar 

  • Cheng, H. 1991. The change of eco-environment and the rational utilization of water resources in the Keriya River Valley. Die Erde, Erg-H6, 133–147.

    Google Scholar 

  • Choudhury, B.J. 1994. Synergism of multispectral satellite observation for estimating regional land surface evaporation. Remote Sensing of Environment 49 (3): 264–274.

    Article  Google Scholar 

  • Coque, R., and P. Gentelle. 1991. Désert et désertification en Chine: l’exemple du Xinjiang. Science et changements planétaires/Secheresse 2 (2): 111–118.

    Google Scholar 

  • Courel, M.F., R.S. Kandel, and S.I. Rasool. 1984. Surface albedo and the Sahel drought. Nature 307: 528–531 [doi: 10.1038/307528a0].

    Google Scholar 

  • Craig, J.C., S.F. Shih, B.J. Boman, and G.A. Carter. 1998. Detection of salinity stress in citrus trees using narrow-band multispectral imaging. ASAE paper no. 983076, presented at the ASAE Annual International Meeting, Orlando, Florida, USA, July 12–16, 1998.

    Google Scholar 

  • Debaine-Francfort, C., and I. Abduressul (eds.) 2001. Keriya, mémoire d’un fleuve. Findakly, 245 pages.

    Google Scholar 

  • Dwivedi, R.S., and B.R.M. Rao. 1992. The selection of the best possible Landsat TM band combination for delineating salt-affected soils. International Journal of Remote Sensing 13 (11): 2051–2058.

    Article  Google Scholar 

  • Eldiery, A., L.A. Garcia, and R.M. Reich. 2005. Estimating soil salinity from Remote Sensing data in corn fields. Hydrology Days, March 7–9, 2005.

    Google Scholar 

  • Gentelle, P. 1992. Une géographie du mouvement: le désert du Taklimakan et ses environ comme modèle. Annales de Géographie.

    Google Scholar 

  • Glantz, M.H. 1998. Creeping environmental problems and sustainable development in the Aral Sea basin. New York: Cambridge University Press.

    Google Scholar 

  • Goetz, S.J., S.D. Prince, et al. 2000. Interannual variability in global terrestrial primary production: results of a model driven with satellite observations. Journal of Geophysical Research 105(D15): 20077–20091.

    Article  Google Scholar 

  • Goudie, A.S. 1990. Soil salinity—causes and controls. In: Goudie, A.S. (ed.), Techniques for Desert Reclamation, England: John Wiley and Sons, Ltd., 110–111.

    Google Scholar 

  • Gupta, S.K., and I.C. Gupta. 1987. Land development and leaching. In: Gupta, S.K., and I.C. Gupta (eds.), Management of Saline Soils and Waters, New Dehli: Mohan Primlani, 136–152.

    Google Scholar 

  • He, B., et al. 2001. 50 Year Climate Variation Analysis in Yutian County. Urumqi: Xinjiang University Press.

    Google Scholar 

  • Huete, A.R. 1998. A soil adjusted vegetation index (SAVI). Remote Sensing of Environment 25: 295–309.

    Article  Google Scholar 

  • Huete, A.R., and C.J. Tucker. 1991. Investigation of soil influences in AVHRR red and near-infrared vegetation index imagery. Internation Journal of Remote Sensing 12 (6): 1223–1242.

    Article  Google Scholar 

  • Kaufman, Y.J., and C. Sendra. 1988. Algorithm for automatic atmospheric corrections to visible and near-IR satellite imagery. International Journal of Remote Sensing 9: 1357–1381.

    Article  Google Scholar 

  • Le Houérou, H.N. 1987. Aperçu écologique des déserts chinois. Société Biogéographie 63 (2): 35–69.

    Google Scholar 

  • Li, C., et al. 1989. The sandy desert and its management in Xinjiang. In: Utilization and Development of Natural Resources in Arid and Semi-arid Lands. Beijing: Science Press.

    Google Scholar 

  • Lillesand, T.M., and R.W. Kiefer. 1994. Remote Sensing and Image Interpretation. New York: John Wiley and Sons, Inc.

    Google Scholar 

  • Mainguet, M. 1991. Some solutions to improve dryland agriculture. In: Mainguet, M. (ed.), Desertification: Natural Background and Human Mismanagement, Berlin: Springer-Verlag, 217–224.

    Google Scholar 

  • Metternicht, G.I., and J.A. Zinck. 1997. Spatial discrimination of salt- and sodium-affected soil surfaces. International Journal of Remote Sensing 18 (2): 2571–2586.

    Article  Google Scholar 

  • Mougenot, B. 1993. Effect of salts on reflectance and remote sensing of salt affected soils. Cah Orstom, sér Pédol, Vol. XXVIII, No. 1: 45–54.

    Google Scholar 

  • Moran, M.S., T.R. Clarke, et al. 1994. Estimating crop water deficit using the relation between surface-air temperature and spectral vegetation index. Remote Sensing of Environment 49: 246–263.

    Article  Google Scholar 

  • Postel, S. 1999. Pillar of Sand: Can the Irrigation Miracle Last? New York: W.W. Norton and Co.

    Google Scholar 

  • Prince, S.D. 1991. Satellite remote sensing of primary production: comparison of results for Sahelian grasslands 1981–1988. International Journal of Remote Sensing 12 (6): 1301–1311.

    Article  Google Scholar 

  • Richter, R. 1996. A spatially adaptive fast atmospheric correction algorithm. International Journal of Remote Sensing 17 (6): 1201–1214.

    Article  Google Scholar 

  • Richter, R. 2005. Atmospheric/topographic correction for satellite imagery (ATCOR-2/3 User Guide, Version 6.1). DLG–German Aerospace Center, Remote Sensing Data Center, DLR IB 565-01/05, Wessling, Germany.

    Google Scholar 

  • Robbins, C.W., and C.L. Wiegand. 1990. Field and laboratory measurements. In: American Society of Civil Engineering, Agricultural Salinity Assessment and Management, New York.

    Google Scholar 

  • Rumer, B. 1999. Soviet Central Asia. Boston: Unwin Hyman.

    Google Scholar 

  • Schilfgaarde, J.V. 1974. Drainage for salinity control. Drainage for Agriculture 17: 433–461.

    Google Scholar 

  • Shi, Y., Z. Wang, et al. 1989. Glacial resources of the arid regions in Northwest China and their utilization. In: Zhao, S. (ed.), Utilization and development of natural resources in arid and semi-arid lands, Beijing: Science Press.

    Google Scholar 

  • Slater, P.N., et al. 1987. Reflectance and radiance-based methods for the in-flight absolute calibration of multispectral sensors. Remote Sensing of Environment 22:11–37.

    Article  Google Scholar 

  • Stein, M.A. 1907. Ancient Khotan: Detailed Report of Archaeological Exploration in Chinese Turkestan, Vol 2, Oxford: Clarendon Press.

    Google Scholar 

  • Srivastava, A., N.K. Tripathi, and K.V.G.K. Gokhale. 1997. Mapping groundwater salinity using IRS-1B LISS II data and GIS techniques. International Journal of Remote Sensing 18 (13): 2853–2862.

    Article  Google Scholar 

  • Statistical Office of Xinjiang. 2006. Xinjiang Statistical Book 2005. Beijing: China Statistical Publishing House.

    Google Scholar 

  • UNESCO. 1997. Répartition mondiale des régions arides. Paris.

    Google Scholar 

  • Wang, T. 1998. Desertification in Western China. In: Akiner, S., Tideman, S. and Hay, J. (eds.), Sustainable development in Central Asia. New York: Palgrave Macmillan, 261.

    Google Scholar 

  • Wiegand, C.L., J.D. Rhoades, et al. 1994. Photographic and videographic observations for determining and mapping the response of cotton to soil salinity. Remote Sensing of Environment 49: 212–223.

    Article  Google Scholar 

  • Wilson, R.O., and P.T. Tueller. 1987. Aerial and ground spectral characteristics of rangeland plant communities in Nevada. Remote Sensing of Environment 23:177–191.

    Article  Google Scholar 

  • Xia, X. 1993. Wondrous Taklimakan. Integrated Scientific Investigation of the Taklimakan Desert. Beijing, New York, Shenzhen: Science Press.

    Google Scholar 

  • Xie, X., and B. Mao. 1989. The development and management of the Tarim River. In: Zhao, S. (ed.), Utilization and development of natural resources in arid and semi-arid lands, Beijing: Science Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Tashi, Y., Chamard, P.C., Courel, MF., Tiyip, T., Tuerxun, Y., Drake, S. (2010). The Recent Evolution of the Oasis Environment in the Taklimakan Desert, China. In: Schneier-Madanes, G., Courel, MF. (eds) Water and Sustainability in Arid Regions. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2776-4_4

Download citation

Publish with us

Policies and ethics