Skip to main content

Quantum Confinement in Nanometric Structures

  • Chapter
  • First Online:
New Trends in Nanotechnology and Fractional Calculus Applications

Abstract

This paper discusses the quantum confinement effects in nanometric structures that form low dimensional systems. In such systems, each surface/ interface acts like a potential barrier, i.e. the wall of a quantum well, generating new energy levels. These levels are computed in a model that uses the approximation of the infinite rectangular quantum wells. The model is adapted for 2D, 1D and 0D systems, respectively. Different applications are discussed. The differences between the model results and the experimental data are proved to be of the same order of magnitude as the differences between the levels computed within the frame of infinite and finite quantum well approximations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brewer M, Utzinger U, Li Y, Atkinson EN, Satterfield W, Auersperg N, Follen M, Bast R (2002) Fluorescence spectroscopy as a biomarker in a cell culture and in a nonhuman primate model for ovarian cancer chemopreventive agents. J Biomed Optics 7:20–26

    Article  Google Scholar 

  2. LaVan DA, McGuire T, Langer R (2003) Small-scale systems for in vivo drug delivery. Nat Biotechnol 21:1184–1191

    Article  Google Scholar 

  3. Gaburro Z, Oton CJ, Pavesi L (2004) Opposite effects of NO2 on electrical injection in porous silicon gas sensors. Appl Phys Lett 84:4388–4390

    Article  Google Scholar 

  4. Li XJ, Zhang YH (2000) Quantum confinement in porous silicon. Phys Rev B 61:12605–12607

    Article  Google Scholar 

  5. McDonald SA, Cyr PW, Levina L, Sargent EH (2004) Photoconductivity from PbS-nanocrystal/semiconducting polymer composites for solution-processible, quantum-size tunable infrared photodetectors. Appl Phys Lett 85:2089–2091

    Article  Google Scholar 

  6. Arango AC (2005) A quantum dot heterojunction photodetector. M.Sc. thesis. MIT, Cambridge, MA, USA

    Google Scholar 

  7. Walters RJ, Bourianoff GI, Atwater HA (2005) Field-effect electroluminescence in silicon nanocrystals. Nat Mater 4:143–146

    Article  Google Scholar 

  8. Fert A (2008) Spintronics: fundamentals and recent developments. 22nd General Conference Cond. Matter Division Eur. Phys Soc, Rome, 25–29 August 2008

    Google Scholar 

  9. Ihn T, Gustavsson S, Müller T, Schnez S, Güttinger J, Molitor F, Stampfer C, Ensslin K (2008) Electronic transport in quantum dots: from GaAs to grapheme. 22nd Gen. Conf. Cond. Matter Division Eur. Phys. Soc., Rome, 25–29 August 2008

    Google Scholar 

  10. Shields, A.: Nano-photonic devices for quantum information technology. 22nd Gen. Conf. Cond. Matter Division Eur. Phys. Soc., Rome, August 25–29 2008

    Google Scholar 

  11. Iancu V, Ciurea ML (1998) Quantum confinement model for electrical transport phenomena in fresh and stored photoluminescent porous silicon films. Solid-State Electron 42:1893–1896

    Article  Google Scholar 

  12. Ciurea ML, Teodorescu VS, Iancu V, Balberg I (2006) Electrical transport in Si–SiO2 nanocomposite films. Chem Phys Lett 423:225–228

    Article  Google Scholar 

  13. Harrison P (2005) Quantum wells, wires and dots. Wiley, Chichester

    Book  Google Scholar 

  14. Iancu V, Fara L (2007) Modelling of multi-layered quantum well photovoltaic cells. The 17th International Photovoltaic Science and Engineering Conference PVSEC 17. Fukuoka, 3–7 December 2007

    Google Scholar 

  15. Ciurea ML, Iancu V, Teodorescu VS, Nistor LC, Blanchin M-G (1999) Microstructural aspects related to carriers transport properties of nanocrystalline porous silicon films. J Electrochem Soc 146:2517–2521

    Article  Google Scholar 

  16. Ciurea ML, Baltog I, Lazar M, Iancu V, Lazanu S, Pentia E (1998) Electrical behaviour of fresh and stored porous silicon films. Thin Solid Films 325:271–277

    Article  Google Scholar 

  17. Delerue C, Allan G, Lannoo M (1993) Theoretical aspects of the luminescence of porous silicon. Phys Rev B 48:11024–11036

    Article  Google Scholar 

  18. Iancu V, Ciurea ML, Stavarache I, Teodorescu VS (2007) Phototransport and photoluminescence in nanocrystalline porous silicon. J Optoelectron Adv Mater 9:2638–2643

    Google Scholar 

  19. Heitmann J, Müller F, Yi LX, Zacharias M, Kovalev D, Eichhorn F (2004) Excitons in Si nanocrystals: confinement and migration effects. Phys Rev B 69:195309–1–7

    Google Scholar 

  20. Teodorescu VS, Ciurea ML, Iancu V, Blanchin M-G (2008) Morphology of Si nanocrystallites embedded in SiO2 matrix. J Mater Res 23:2990–2995

    Article  Google Scholar 

  21. Iancu V, Mitroi MR, Lepadatu A-M, Ciurea ML Evaluation of the internal quantum efficiency for quantum dot photovoltaic cells. Nanotechnol. (submitted, December 2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magdalena L. Ciurea .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Ciurea, M.L., Iancu, V. (2010). Quantum Confinement in Nanometric Structures. In: Baleanu, D., Guvenc, Z., Machado, J. (eds) New Trends in Nanotechnology and Fractional Calculus Applications. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3293-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-90-481-3293-5_5

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-3292-8

  • Online ISBN: 978-90-481-3293-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics