Skip to main content

Wavelet Analysis of Flowering and Climatic Niche Identification

  • Chapter
  • First Online:
Phenological Research

Abstract

This chapter discusses wavelet analysis which is a robust statistical method capable of handling noisy and non-stationary data which phenological time series often are.

We used a maximal overlap discrete wavelet transform (MODWT) analysis to examine the flowering records (1940–1970) of E. leucoxylon and Eucalyptus tricarpa, E. microcarpa and E. polyanthemos. We identified four subcomponents in each flowering series: characterised as a non-flowering phase, duration, annual and intensity cycles. A decreasing overall trend in flowering was identified by the MODWT smoothed series.

Wavelet correlation found the same contemporaneous effects of climate on flow-ering for E. leucoxylon and Eucalyptus tricarpa, and for E. microcarpa and E. polyanthemos.

Wavelet cross-correlation analysis identified the cyclical influence of temperature and rainfall on peak flowering intensity. For each species there are 6 months of the annual cycle in which any given climate variable positively influences flowering intensity and 6 months of negative influence. For all species, rainfall exerts a negative influence when temperature is positive.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abu-Asab MS, Peterson PM, Shetler SG et al. (2001) Earlier plant flowering in spring as a response to global warming in the Washington, DC area. Biodivers Conserv 10:597–612

    Article  Google Scholar 

  • Ahas R (1999) Long-term phyto-, ornitho- and ichthyophenological time-series analysis in Estonia. Int J Biometeorol 42:119–123

    Article  Google Scholar 

  • Ahas R, Aasa A, Menzel A et al. (2002) Changes in European spring phenology. Int J Climatol 22:1727–1738

    Article  Google Scholar 

  • Aitken Y (1974) Flowering time, climate and genotype. Melbourne University Press, Melbourne

    Google Scholar 

  • Aono Y, Kazui K (2008) Phenological data series of cherry tree flowering in Kyoto, Japan, and its application to reconstruction of springtime temperatures since the 9th century. Int J Climatol 28:905–914

    Article  Google Scholar 

  • Arakawa H (1955) Twelve centuries of blooming dates of the cherry blossoms at the city of Kyoto and its own vicinity. Geofis Pura e Appl 30:147–150

    Article  Google Scholar 

  • Ashton DH (1956) Studies on the autecology of Eucalyptus regnans. Dissertation, The University of Melbourne

    Google Scholar 

  • Ashton DH (1975) Studies of flowering behaviour in Eucalyptus regnans F. Muell. Aust J Bot 23:399–411

    Article  Google Scholar 

  • Bassett OD (1995) Development of seed crop in Eucalyptus sieberi L. Johnson and E. globoidea Blakely in a lowland sclerophyll forest of East Gippsland. Department of Conservation and Natural Resources, Victoria

    Google Scholar 

  • Bassett IJ, Holmes RM, MacKay, KH (1961) Phenology of several plant species at Ottawa, Ontario and the examination of the influence of air temperatures. Can J Plant Sci 41:643–652

    Article  Google Scholar 

  • Baumgärtner J, Hartmann J (2000) The use of phenology model in plant conservation programmes: the establishment of the earliest cutting date for the wild daffodil Narcissus radiiflorus. Biol Conserv 93:155–161

    Article  Google Scholar 

  • Bawa KS, Kang H, Grayum MH (2003) Relationship among time, frequency and duration of flowering in tropical rainforest trees. Am J Bot 90:877–887

    Article  Google Scholar 

  • Beaubien EG, Freeland HJ (2000) Spring phenology trends in Alberta, Canada: links to ocean temperature. Int J Biometeorol 44:53–59

    Article  CAS  PubMed  Google Scholar 

  • Bradley NL, Leopold AC, Ross J et al. (1999) Phenological changes reflect climate change in Wisconsin. Proc Natl Acad Sci USA 96:9701–9704

    Article  CAS  PubMed  Google Scholar 

  • Bradshaw GA, Spies TA (1992) Characterizing canopy gap structure in forests using wavelet analysis. J Ecol 80:205–215

    Article  Google Scholar 

  • Bratteli O, Jorgensen P (2002) Wavelets through a looking glass. The world of the spectrum. Birkhäuser, Boston

    Google Scholar 

  • Bullmore E, Fadili J, Breakspear M et al. (2003) Wavelets and statistical analysis of functional magnetic resonance images of the human brain. Stat Methods Med Res 12:375–399

    Article  PubMed  Google Scholar 

  • Burrus CS, Gopinath RH, Guo H (1998) Introduction to wavelets and wavelet transforms, a primer. Prentice-Hall, New Jersey

    Google Scholar 

  • Chambers LT (1893) The Colonial Beekeeper. JC Stephens, Melbourne

    Google Scholar 

  • Chambers LE, Hughes L, Weston MA. (2005) Climate change and its impact on Australia’s avifauna. Emu 105:1–20

    Article  Google Scholar 

  • Chmielewski F-M, Rötzer T (2001) Response of tree phenology to climate change across Europe. Agric For Meteorol 108:101–112

    Article  Google Scholar 

  • Chuine I (2000) A unified model for budburst of trees. J Theor Biol 207:337–347

    Article  CAS  PubMed  Google Scholar 

  • Cornish CR, Bretherton CS, Percival DB (2006) Maximal overlap wavelet statistical analysis with application to atomspheric turbulence. Bound Layer Meteorol 119:339–374

    Article  Google Scholar 

  • Csillag F, Kabos S (2002) Wavelets, boundaries, and the spatial analysis of landscape pattern. Ecoscience 9:177–190

    Google Scholar 

  • Dale MRT (1999) Spatial pattern analysis in plant ecology. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Dale MRT, Dixon P, Fortin M-J et al. (2002) Conceptual and mathematical relationships among methods for spatial analysis. Ecography 25:558–577

    Article  Google Scholar 

  • Daubechies I (1992) Ten lectures on wavelets. Society for Industrial and Applied Mathematics, Philadelphia

    Google Scholar 

  • de Vries J (1980) Measuring the impact of climate on history: searching for appropriate methodologies. J Interdiscip Hist 10:599–630

    Article  Google Scholar 

  • Dose V, Menzel A (2004) Bayesian analysis of climate change impacts in phenology. Glob Change Biol 10:259–272

    Article  Google Scholar 

  • Dépué M (2003) Continuous variables. In: Jolliffe IT, Stephenson DB (eds) Forecast verification: a practitioner‘s guide in atmospheric science. John Wiley and Sons, Chichester, pp 97–120

    Google Scholar 

  • Elsner JB, Tsonis AA (1996) Singular spectrum analysis. A new tool in time series analysis. Plenum Press, New York

    Google Scholar 

  • Fitter AH, Fitter RSR, Harris ITB et al. (1995) Relationships between first flowering date and temperature in the flora of a locality of central England. Funct Ecol 9:55–60

    Article  Google Scholar 

  • Foufoula-Georgiou E, Kumar P (eds) (1994) Wavelets in geophysics. Academic Press, San Diego

    Google Scholar 

  • Gencay R, Selcuk F, Whitcher B (2001) An introduction to wavelets and other filtering methods in finance and economics. Academic press, San Diego

    Google Scholar 

  • Ghil M, Allen RM, Dettinger MD et al. (2002) Advanced spectral methods for climatic time series. Rev Geophys 40:3.1–3.41

    Article  Google Scholar 

  • Goodman RD (1973) Honey flora of Victoria. Department of Agriculture, Melbourne

    Google Scholar 

  • Goupillaud P, Grossman A, Morlet J (1984) Cycle-octave and related transforms in seismic signal analysis. Geoexploration 23:85–102

    Article  Google Scholar 

  • Häkkinen R, Linkosalo T, Hari P (1995) Methods for combining phenological time series: application to bud burst in birch (Betula pendula) in central Finland for the period 1896–1955. Tree Physiol 15:721–726

    PubMed  Google Scholar 

  • Hänninen H (1995) Effects of climatic change on trees from cool and temperate regions: an ecophysiological approach to modeling of bud burst phenology. Can J Bot 73:183–199

    Article  Google Scholar 

  • Hernández E, Weiss G (1996) A first course on wavelets. CRC Press, Boca Raton

    Book  Google Scholar 

  • Hodges T (1991) Predicting crop phenology. CRC Press, Boca Raton

    Google Scholar 

  • Hudson IL, Barnett A, Keatley MR et al. (2003) Investigation into drivers for flowering in eucalypts: effects of climate on flowering. In: Verbeke G, Moelenberghs G, Aaerts M et al. (eds) 18th International Workshop on Statistical Modelling, Belgium

    Google Scholar 

  • Hudson IL, Fukuda K, Keatley MR (2004) Detecting underlying time series structures and change points within a phenological dataset using SSA. In: XXIInd International Biometric Conference, Cairns, Australia

    Google Scholar 

  • Hudson IL, Keatley MR, Roberts AMI (2005) Statistical methods in phenological research. In: Francis AR, Matawie KM, Oshlack A et al. (eds) Statistical solutions to modern problems. Proceedings of the 20th International Workshop on Statistical Modelling, Sydney, Australia

    Google Scholar 

  • Hudson IL, Kim SW, Keatley MR (2009) Climatic influences on the flowering phenology of four eucalypts: a GAMLSS approach. In: Anderssen RS, Braddock RD, Newham LTH et al. (eds) 18th IMACS World Congress – MODSIM09 International Congress on Modelling and Simulation, Cairns, Australia

    Google Scholar 

  • Idso SB, Jackson RD, Reginato RJ (1978) Extending the “degree day” concept of plant phenological development to include water stress effects. Ecology 59:431–433

    Article  Google Scholar 

  • IPCC (2001) Summary for Policymakers. A Report of Working Group 1 of the Intergovernmental Panel on Climate Change. IPCC, Shanghai

    Google Scholar 

  • Jaffard S, Meyer Y, Ryan R (2001) Wavelets: tools for science and technology. Society for Industrial and Applied Mathematics, Philadelphia

    Google Scholar 

  • Kang I, Hudson IL, Keatley MR (2004) Wavelets analysis in phenological research. In: XXIInd International Biometric Conference, Cairns, Australia

    Google Scholar 

  • Kang I, Hudson IL, Rudge A et al. (2005) Wavelet similarity of agitation and sedation profiles. In: Francis AR, Matawie KM, Oshlack A et al. (eds) Statistical Solutions to Modern Problems. Proceedings of the 20th International Workshop on Statistical Modelling Sydney, Australia

    Google Scholar 

  • Katul GG, Lai CT, Schafer K et al. (2001) Multiscale analysis of vegetation surface fluxes: from seconds to years. Adv Water Resour 24:1119–1132

    Article  Google Scholar 

  • Keatley MR, Fletcher TD (2003) Phenological data, networks, and research: Australia. In: Schwartz MD (ed) Phenology: an integrative environmental science. Tasks for vegetation science, vol 39. Kluwer Academic Publishers, The Netherlands, pp 27–44

    Google Scholar 

  • Keatley MR, Fletcher TD, Hudson IL et al. (2002) Phenological studies in Australia: potential application in historical and future climate analysis. Int J Climatol 22:1769–1780

    Article  Google Scholar 

  • Keatley MR, Hudson IL (2000) Influences on the flowering phenology of three eucalypts. In: de Dear RJ, Kalma JD, Oke TR et al. (eds) Biometeorology and urban climatology at the turn of the century. Selected papers from the conference ICB-ICUC’99, World Meteorological Organisation, Geneva, Switzerland

    Google Scholar 

  • Keatley MR, Hudson IL (2007) A comparison of the long-term flowering patterns of box-ironbark species in Havelock and Rushworth forests. Environ Model Assess 12:279–292

    Article  Google Scholar 

  • Keatley MR, Hudson IL (2008) Shifts and changes in a 24 year Australian flowering record. In: Harmony within Nature. The 18th International Congress of Biometeorology, Tokyo, Japan

    Google Scholar 

  • Keatley MR, Hudson IL, Fletcher TD (1999) The use of long-term records for describing flowering behaviour: a case-study in Victorian Box-Ironbark Forests. In: Dargavel J, Wasser B (eds) Australia’s Ever-changing Forests, vol IV. Australian University Press, Canberra

    Google Scholar 

  • Keatley MR, Hudson IL, Fletcher TD (2004) Long-term flowering synchrony of box-ironbark eucalypts. Aust J Bot 52:47–54

    Article  Google Scholar 

  • Keatley MR, Murray MD (2006) An examination of the reproductive phenology of Eucalyptus tricarpa. Forest Science Centre, Orbost, Victoria

    Google Scholar 

  • Kim SW, Hudson IL, Keatley MR (2009) Modelling flowering of four eucalypts species using MTDg analysis. In: Anderssen RS, Braddock RD, Newham LTH et al. (eds) 18th IMACS World Congress – MODSIM09 International Congress on Modelling and Simulation, Cairns, Australia

    Google Scholar 

  • Koch M, Marković D (2007) Evidences for climate change in Germany over the 20th century from the stochastic analysis of hydro-meteorological time-series. In: Oxley L, Kulasiri D (eds) MODSIM 2007 International Congress on Modelling and Simulation, Christchurch, New Zealand

    Google Scholar 

  • Kumar P (1996) Role of coherent structures in the stochastic-dynamic variability of precipitation. J Geophys Res Atmos 101:26393–26404

    Article  Google Scholar 

  • Lark RM, Webster R (1999) Analysis and elucidation of soil variation using wavelets. Eur J Soil Sci 50:185–206

    Article  Google Scholar 

  • Lavoie C, Lachance D (2006) A new herbarium-based method for reconstructing the phenology of plant species across large areas. Am J Bot 93:512–516

    Article  Google Scholar 

  • Linkosalo T, Häkkinen R, Hari P (1996) Improving the reliability of a combined phenological time series by analyzing observation quality. Tree Physiol 16:661–664

    PubMed  Google Scholar 

  • Lu P-L, Yu Q, Liu J-D et al. (2006) Effects of changes in spring temperature on flowering dates of woody plants across China. Bot Stud 47:153–181

    Google Scholar 

  • Lu X, Liu R, Liu J et al. (2007) Removal of noise by wavelet method to generate high quality temporal data of terrestrial MODIS products. Photogramm Eng Rem Sens 73: 1129–1140

    Google Scholar 

  • Malizia LR (2001) Seasonal fluctuations of birds, fruits, and flowers in a subtropical forest of Argentina. Condor 103:45–61

    Article  Google Scholar 

  • Mallat S (1989) A theory for multiresolution signal decomposion: the wavelet representation. IEEE Trans Pattern Anal Mach Intell 11:674–693

    Article  Google Scholar 

  • Menzel A (2002) Phenology: its importance to the global change community. Clim Change 54:379–385

    Article  Google Scholar 

  • Menzel A, Estrella N, Fabian P (2001) Spatial and temporal variability of the phenological seasons in Germany from 1951 to 1996. Glob Change Biol 7:657–666

    Article  Google Scholar 

  • Menzel A, Sparks TH, Estrella N et al. (2006) European phenological response to climate change matches the warming pattern. Glob Change Biol 12:1969–1976

    Article  Google Scholar 

  • Miller-Rushing AJ, Katsuki T, Primack RB et al. (2007) Impact of global warming on a group of related species and their hybrids: cherry tree (Rosaceae) flowering at Mt. Takao, Japan. Am J Bot 94:1470–1478

    Article  Google Scholar 

  • Miller-Rushing AJ, Primack RB (2008) Global warming and flowering times in Thoreau’s Concord: a community perspective. Ecology 89:332–341

    Article  PubMed  Google Scholar 

  • Morellato LPC (2003) South America. In: Schwartz MD (ed) Phenology: an integrative environmental science. Tasks for vegetation science, vol 39. Kluwer Academic Publishers, The Netherlands, pp 75–92

    Google Scholar 

  • Murray M, Lutze M (2004) Seedcrop development in Eucalyptus obliqua and Eucalyptus cypellocarpa in high elevation mixed species forests of East Gippsland. Forest Science Centre, Orbost

    Google Scholar 

  • Paluš M, Novotná D, Tichavský P (2005) Shifts of seasons at the European mid-latitudes: natural fluctuations correlated with the North Atlantic Oscillation. Geophys Res Lett 32:L12805, DOI:12810.11029/12005GL022838

    Article  Google Scholar 

  • Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Annu Rev Ecol Syst 37:637–669

    Article  Google Scholar 

  • Parmesan C (2007) Influences of species, latitudes and methodologies on estimates of phenological response to global warming. Glob Change Biol 13:1860–1872

    Article  Google Scholar 

  • Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37–42

    Article  CAS  PubMed  Google Scholar 

  • Paton DC, Crossfield EL, Hurrell B et al. (2004) Floral resources used by the South Australian apiary industry. Rural Industries Research and Development Corporation, Barton, ACT

    Google Scholar 

  • Percival DB (1995) On estimation of the wavelet variance. Biometrika 82:619–631

    Article  Google Scholar 

  • Percival DB, Guttorp P (1994) Long-memory processes, the Allan variance and wavelets. In: Foufoula-Georgiou E, Kumar P (eds) Wavelets in geophysics. Academic Press, New York, pp 325–344

    Google Scholar 

  • Percival DB, Mofjeld O (1997) Analysis of subtidal coastal sea level fluctuations using wavelets. J Am Stat Assoc 92:868–880

    Article  Google Scholar 

  • Percival DB, Sardy S, Davison AC (2000) Wavestrapping time series: adaptive wavelet-based bootstrapping. In: Fitzgerald WJ, Smith RL, Walden AT et al. (eds) Nonlinear and nonstationary signal processing. Cambridge University Press, Cambridge, pp 442–471

    Google Scholar 

  • Percival D, Walden A (2000) Wavelet methods for time series analysis. Cambridge University Press, Cambridge

    Google Scholar 

  • Percival DB, Wang M, Overland JE (2004) An introduction to wavelet analysis with applications to vegetation monitoring. Community Ecol 5:19–30

    Article  Google Scholar 

  • Pfister C (1980) The little ice age: thermal and wetness indices for central Europe. J Interdiscip Hist 10:665–696

    Article  Google Scholar 

  • Porter JW (1978) Relationships between flowering and honey production of red ironbark, Eucalyptus sideroxylon (A. Cunn.) Benth, and climate in the Bendigo district of Victoria. Aust J Agric Res 29:815–829

    Article  Google Scholar 

  • Rabinowitz D, Rapp JK, Sork V et al. (1981) Phenological properties of wind – and insect pollinated prairie plants. Ecology 62:49–56

    Article  Google Scholar 

  • Roberts AMI (2008) Exploring relationships between phenological and weather data using smoothing. Int J Biometeorol 52:463–470

    Article  PubMed  Google Scholar 

  • Root TL, Price JT, Hall KR et al. (2003) Fingerprints of global warming on wild animals and plants. Nature 421:57–60

    Article  CAS  PubMed  Google Scholar 

  • Schaber J, Badeck F-W (2002) Evaluation of methods for the combination of phenological time series and outlier detection. Tree Physiol 22:973–982

    PubMed  Google Scholar 

  • Schleip C, Menzel A, Estrella N et al. (2006) The use of Bayesian analysis to detect recent changes in phenological events throughout the year. Agric For Meteorol 141:179–191

    Article  Google Scholar 

  • Schleip C, Rutishauser T, Luterbacher J et al. (2008) Time series modeling and central European temperature impact assessment of phenological records over the last 250 years. J Geophys Res 113:G04026, DOI:10.1029/2007JG000646

    Article  Google Scholar 

  • Schwartz MD (1999) Advancing to full bloom: planning phenological research for the 21st century. Int J Biometeorol 42:113–118

    Article  Google Scholar 

  • Schwartz MD (2003) Preface. In: Schwartz MD (ed) Phenology: an integrative environmental science. Tasks for vegetation science, vol 39. Kluwer Academic Publishers, The Netherlands, pp xviii–xix

    Google Scholar 

  • Schwartz MD, Reiter BE (2000) Changes in North American spring. Int J Climatol 20:929–932

    Article  Google Scholar 

  • Serroukh A, Walden AT (2000) Wavelet scale analysis of bivariate time series I: statistical properties for linear processes. J Nonparametr Stat 13:1–36

    Article  Google Scholar 

  • Somerville D, Campbell S (1997) Beekeeping in the Narrandera State Forests. NSW Agriculture, Goulburn, NSW, Australia

    Google Scholar 

  • Spano D, Cesaraccio C, Duce P et al. (1999) Phenological stages of natural species and their use as climate indicators. Int J Biometeorol 42:124–133

    Article  Google Scholar 

  • Sparks TH, Carey PD (1995) The responses of species to climate over two centuries: an analysis of the Marshman phenological record, 1736–1947. J Ecol 83:321–329

    Article  Google Scholar 

  • Sparks TH, Jeffree EP, Jeffree CE (2000) An examination of the relationship between flowering times and temperature at the national scale using long-term phenological records from the UK. Int J Biometeorol 44:82–87

    Article  CAS  PubMed  Google Scholar 

  • Sparks TH, Menzel A (2002) Observed changes in seasons: an overview. Int J Climatol 22:1715–1725

    Article  Google Scholar 

  • Sparks TH, Tryjanonwski P (2005) The detection of climate change impacts: some methodological considerations. Int J Climatol 25:271–277

    Article  Google Scholar 

  • Suzuki H (1998) Leaf phenology, seasonal changes in leaf quality and herbivory pattern of Sanguisorba tenuifolia at different altitudes. Oecologia 117:169–176

    Article  Google Scholar 

  • Wells K (2000) Long term cyclic and environmentally induced effects on flowering of four box-ironbark eucalypts. Dissertation, University of Melbourne

    Google Scholar 

  • Whitcher, BJ, Guttorp P, Percival DB (2000) Wavelet analysis of covariance with application to atmospheric time series. J Geophys Res 105:941–962

    Article  Google Scholar 

  • White G (1912) The natural history of Selbourne. Ward Lock and Co Ltd, London

    Google Scholar 

  • White MA, Brunsell N, Schwartz MD (2003) Vegetation phenology in global change studies. In: Schwartz MD (ed) Phenology: an integrative environmental science. Tasks for vegetation science, vol 39. Kluwer Academic Publishers, The Netherlands, pp 57–73

    Google Scholar 

  • White MA, Hoffman F, Hargrove WW et al. (2005) A global framework for monitoring phenological responses to climate change. Geophys Res Lett 32:L04705, DOI:10.1029/2004GL021961

    Article  Google Scholar 

  • Wielgolaski F (1999) Starting dates and basic temperatures in phenological observations of plants. Int J Biometeorol 42:158–168

    Article  Google Scholar 

  • Winter G (1972) “For… the Advancement of Science”: the Royal Society of Tasmania, 1843–1885. Dissertation, University of Tasmania

    Google Scholar 

  • Yang S, Logan J, Coffey DL (1995) Mathematical formulae for calculating the base temperature for growing degree days. Agric For Meteorol 74:61–74

    Article  Google Scholar 

  • Yiou P, Sornette D, Ghil M (2000) Data-adaptive wavelets and multi-scale singular spectrum analysis. Physica D 142:254–290

    Article  Google Scholar 

  • Zheng J, Ge Q, Hao Z et al. (2006) Spring phenophases in recent decades over eastern china and its possible link to climate changes. Clim Change 77:449–462

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irene L. Hudson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Hudson, I.L., Kang, I., Keatley, M.R. (2010). Wavelet Analysis of Flowering and Climatic Niche Identification. In: Hudson, I., Keatley, M. (eds) Phenological Research. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3335-2_17

Download citation

Publish with us

Policies and ethics