Skip to main content

Singular Spectrum Analysis: Climatic Niche Identification

  • Chapter
  • First Online:
Phenological Research

Abstract

This chapter discusses singular spectrum analysis (SSA) and uses a 32 year record (1940–1971) of flowering of four eucalypt species (Eucalyptus leucoxylon, E. microcarpa, E. tricarpa and E. polyanthemos) to illustrate its use.

SSA delineated the trend, annual and biennial cycle in all four species. Additionally a 4 year cycle was detected in E. tricarpa. The trend and annual cycle were identified by SSA decomposition of the underlying climate profile (rainfall and mean, minimum, maximum temperatures).

An examination of the correlation between the reconstructed flowering series and lagged climatic components found that for E. leucoxylon and E. tricarpa there was a similar relationship to climate. These two species exhibit a significant negative relationship with the temperature variables and a positive relationship with rainfall. The strongest relationship for E. leucoxylon was with minimum temperature (ρ = –0.742). In E. tricarpa maximum temperature was the marginally stronger driver (ρ = –0.895). Both E. microcarpa and E. polyanthemos also share a similar relationship to climate but this differs to that of E. leucoxylon and E. tricarpa; in that these species were positively influenced at flowering by temperature and negatively by rainfall. For E. microcarpa minimum temperature is the main but weak influence (ρ = 0.383) and E. polyanthemos maximum temperature is the stronger influence (ρ = 0.674).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aban JLE, Tateishi R (2004) Application of Singular Spectrum Analysis (SSA) for the reconstruction of annual phenological profiles of NDVI time series data. Proceedings of Asian Association of Remote Sensing 2004 Section 11. Data Processing: data fusion. http://www.aars-acrs.org/acrs/proceedings2004.php (accessed 15th March 2008)

  • Allen MR, Mutlow CT, Blumberg GMC et al. (1994) Global change detection. Nature 370:24-25

    Article  Google Scholar 

  • Ahas R, Aasa A, Menzel A et al. (2002) Changes in European spring phenology. Int J Climate 22:1727–1738

    Article  Google Scholar 

  • Allen MR, Smith LA (1996) Monte Carlo SSA: detecting irregular oscillations in the presence of color noise. J Climate 9:3373–3404

    Article  Google Scholar 

  • Allen MR, Smith LA (1997) Optimal filtering in singular spectrum analysis. Phys Lett 234:419–428

    Article  CAS  Google Scholar 

  • Ashton DH (1975) Studies of flowering behaviour in Eucalyptus regnans F. Muell Aust J Bot 23:399–411

    Article  Google Scholar 

  • Bassett OD (2002) Flowering and seed crop development in Eucalyptus sieberi l. Johnson and E. globoidea Blakely in a lowland sclerophyll forest in East Gippsland, Victoria. Aust For 65:237–254

    Google Scholar 

  • Beuhne FR (1914) The honey flora of Victoria. J Dept Agr Vic XII:610–618

    Google Scholar 

  • Blackman RB, Tukey JW (1958) The measurement of power spectra from the point of view of communication engineering. Dover, New York

    Google Scholar 

  • Broomhead DS, King GP (1986) Extracting qualitative dynamics from experimental data. Physica D 20:217–236

    Article  Google Scholar 

  • Colebrook JM (1978) Continuous plankton records – zooplankton and environment, northeast Atlantic and North sea, 1948–1975. Oceanol Acta 1:9–23

    Google Scholar 

  • Copland BJ, Whelan RJ (1989) Seasonal variation in flowering intensity and pollination limitation of fruit set in four co-occurring Banksia species. J Ecol 77:509–523

    Article  Google Scholar 

  • Danilov DL, Zhiglyavsky AA (1997) Principal components of time series: the caterpillar method. Saint Petersburg University Press, St Petersburg (in Russian)

    Google Scholar 

  • Davis GL (1969) Floral morphology and the development of the gametophytes in Eucalyptus stellulata Sieb. Aust J Bot 17:177–190

    Article  Google Scholar 

  • Dettinger MD, Ghil M, Strong CM et al. (1995) Software expedites singular-spectrum analysis of noisy time series. Eos Trans Amer Geophys Union 76:12

    Google Scholar 

  • D’Odorico PD, Yoo J, Jaeger S (2002) Changing seasons: an effect of the North Atlantic oscillation. J Climate 15:435–445

    Article  Google Scholar 

  • Doi H (2007) Winter flowering phenology of Japanese apricot Prunus mume reflects climate change across Japan. Climate Res 34:99–104

    Article  Google Scholar 

  • Dose V, Menzel A (2004) Bayesian analysis of climate change impacts in phenology. Global Change Biol 10:259-272

    Article  Google Scholar 

  • Dose V, Menzel A (2006) Bayesian correlation between temperature and blossom onset data. Global Change Biol 12:1451-1459

    Article  Google Scholar 

  • Elsner JB, Tsonis AA (1991) Do bidecadal oscillations exist in the global temperature record? Nature 353:551–553

    Article  Google Scholar 

  • Elsner JB, Tsonis AA (1996) Singular spectrum analysis: a new tool in time series analysis. Plenum Press, New York

    Google Scholar 

  • Fitter AH, Fitter RSR, Harris ITB et al. (1995) Relationships between first flowering date and temperature in the flora of a locality of central England. Func Ecol 9:55–60

    Article  Google Scholar 

  • Flint AW, Fagg PC (2007) Mountain ash in Victoria’s state forests, silviculture reference manual no. 1. Department of Sustainability and Environment, Melbourne

    Google Scholar 

  • Fraedrich K (1986) Estimating the dimension of weather and climate attractors. J Atmos Sci 43:419–432

    Article  Google Scholar 

  • Fukuda K (2004) New improved methods for application and interpretation of SSA: a case study of climate and air pollution in Christchurch, New Zealand, Dissertation, University of Can-terbury, Christchurch

    Google Scholar 

  • Fukuda K, Hudson IL (2005a) Global and local climatic factors on sulfur dioxide levels: comparison of residential and industrial sites. In: Francis AR, Matawie KM, Oshlack A et al. (eds) Statistical Solutions to Modern Problems Proceedings of the 20th International Workshop on Statistical Modelling Sydney, Australia

    Google Scholar 

  • Fukuda K, Hudson IL (2005b) Investigations of short-term (hourly) weather influences on CO, NO, NO2, PM10 and SO2 Levels in Christchurch, New Zealand. In: Proceedings of the International Conference on Research Highlights and Vanguard Technology on Environmental Engineering in Agricultural Systems, Ishikawa, Japan, 12–15 September

    Google Scholar 

  • Fukuda K, Hudson IL, Pearson K (2004) Singular Spectrum Analysis combined with an Enhanced Fourier expansion (EFE) method: a case study of the impact of notable global and local weather events on air pollution in Christchurch, NZ. Paper presented at the American Statistical Association Computational Environmetrics Conference, Chicago, 21–23 October

    Google Scholar 

  • Ghil M, Vautard R (1991) Interdecadal oscillations and the warming trend in global temperature time series. Nature 350:324-327

    Article  Google Scholar 

  • Ghil M., Yiou P (1996) Spectral methods: What they can and cannot do for climatic time series. In Anderson D, Willebrand J (eds.) Decadal climate variability: dynamics and predictability. Elsevier, Amsterdam, pp 445-482

    Google Scholar 

  • Ghil M, Taricco C (1997) Advanced spectral analysis methods. In: Castagnoli GC, Provenzale A (eds) Past and present variability of the solar-terrestrial system: measurement, data analysis and theoretical models. Societa Italiana di Fisica, Bologna and IOS Press, Amsterdam

    Google Scholar 

  • Ghil M, Allen MR, Dettinger MD et al. (2002) Advanced spectral methods for climate time series. Rev Geophys 40:1–41

    Article  Google Scholar 

  • Golyandina N, Nekrutkin V, Zhigljavsky A (2001) Analysis of time series structure: SSA and related techniques. Chapman and Hall/CRC, Boca Raton

    Book  Google Scholar 

  • Golyandina N, Osipov E (2007) The “Caterpillar” – SSA method for analysis of time series with missing values. J Stat Plan Infer 137:2642–2653

    Article  Google Scholar 

  • Goodman RD (1973) Honey flora of Victoria. Department of Agriculture, Melbourne

    Google Scholar 

  • Gordo O, Sanz JJ (2005) Phenology and climate change: a long-term study in a Mediterranean locality. Oecologia 146: 484–495

    Article  PubMed  Google Scholar 

  • Grigorov MG (2006) Global dynamics of biological systems from time-resolved omics experiments. Bioinformatics 22:1424–1430

    Article  CAS  PubMed  Google Scholar 

  • Hassani H (2007) Singular spectrum analysis: methodology and comparison. J Data Sci 5:239–257

    Google Scholar 

  • Hannachi A, Jolliffe IT, Stehenson DB et al. (2005) In search of simple structures in climate: simplifying EOFs. Int J Climatol 26:7–28

    Article  Google Scholar 

  • Hudson IL, Fukuda K, Keatley MR (2004) Detecting underlying time series structures and change points within a phenological dataset using SSA. In: XXIInd International Biometric Conference Cairns, Australia

    Google Scholar 

  • Hudson IL, Keatley MR, Roberts AMI (2005a) Statistical methods in phenological research. In: Francis AR, Matawie KM, Oshlack A et al. (eds) Statistical solutions to modern problems. Proceedings of the 20th International Workshop on Statistical Modelling Sydney, Australia

    Google Scholar 

  • Hudson IL, Fukuda K, Dalrymple M (2005b) Climate-pollution impacts on Sudden Infant Deaths (SIDS): via SSA. In: Zerger A, Argent RM (eds) MODSIM 2005 International Congress on Modelling and Simulation. Modelling and Simulation Society of Australia and New Zealand

    Google Scholar 

  • Hudson IL, Kim SW, Keatley MR (2009) Climatic influences on the flowering phenology of four eucalypts: a GAMLSS approach. In: Anderssen RS, Braddock RD, Newham LTH (eds) 18th IMACS World Congress – MODSIM09 International Congress on Modelling and Simulation, Cairns, Australia

    Google Scholar 

  • Hsieh WW, Tang B (1998) Applying neural network models to prediction and data analysis in meteorology and oceanography. B Am Meterol Soc 79:1855–1870

    Article  Google Scholar 

  • Hsieh WW, Wu A (2001) Nonlinear multichannel singular spectrum analysis of the tropical pacific climate variability using a neural network approach. J Geophys Res-Oceans 107:13.11–13.15

    Google Scholar 

  • Hsieh WW, Wu A (2002) Nonlinear singular spectrum analysis. Neural Networks 3:2819–2824

    Google Scholar 

  • Jollife IT (1986) Principal component analysis. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Keatley MR, Hudson IL (2000) Influences on the flowering phenology of three eucalypts. In: de Dear RJ, Kalma JD, Oke TR et al. (eds) Biometeorology and urban climatology at the turn of the century selected papers from the conference ICB-ICUC’99. World Meteorological Organisation, Geneva, Switzerland

    Google Scholar 

  • Keatley MR, Fletcher TD, Hudson IL et al. (2002) Phenological studies in Australia: potential application in historical and future climate analysis. Int J Climate 22:1769-1780

    Article  Google Scholar 

  • Keatley MR, Hudson IL, Fletcher TD (2004) Long-term flowering synchrony of box-ironbark eucalypts. Aust J Bot 52:47-54

    Article  Google Scholar 

  • Keatley MR, Hudson IL (2007) A comparison of the long-term flowering patterns of Box-ironbark species in Havelock and Rushworth forests. Environ Model Assess 12:279–292

    Article  Google Scholar 

  • Kim SW, Hudson IL, Keatley MR (2005) Mixture transition distribution analysis of flowering and climatic states. In: Francis AR, Matawie KM, Oshlack A et al. (eds) Statistical Solutions to Modern Problems Proceedings of the 20th International Workshop on Statistical Modelling Sydney, Australia

    Google Scholar 

  • Kondrashov D, Ghil M (2006) Spatio-temporal filling of missing points in geophysical data sets. Nonlin Proc Geophys 13:151–159

    Article  Google Scholar 

  • Kondrashov D, Ghil M (2007) Reply to T Schneider’s comment on “spatio-temporal filling of missing points in geophysical data sets”. Nonlin Proc Geophys 14:3–4

    Article  Google Scholar 

  • Kondrashov D, Feliks Y, Ghil M (2005) Oscillatory climate modes in extended Nile river record (AD 622–1922). Geophys Res Lett 32:L10702 doi:10.1029/2004GL022156

    Article  Google Scholar 

  • Kumaresan R, Tufts DW (1980) Data-adaptive principal component signal processing. In: Proc Conf on decision and control IEEE, Albuquerpque, pp 949–954

    Google Scholar 

  • Loeuille N, Ghil M (2004) Intrinsic and climatic factors in North-American animal population dynamics. BMC Ecol 4:6 doi:10.1186/1472–6785–4–6

    Article  PubMed  Google Scholar 

  • Mac Nally R, Bennett AF, Thomson JR et al. (2009) Collapse of an avifauna: climate change appears to exacerbate habitat loss and degradation. Diversity Distrib 15:1–11

    Article  Google Scholar 

  • Mann ME, Lees JM (1996) Robust estimation of background noise and signal detection in climatic time series. Clim Change 33:409–445

    Article  Google Scholar 

  • Menzel A (2003) Plant phenology “Fingerprints”. Tasks for vegetation science, vol 39. Kluwer Academic Publishers, The Netherlands

    Google Scholar 

  • Mineva A, Popivanov D (1966) Method of single trial readiness potential identification, based on singular spectrum analysis. J Methods 68:91–99

    Google Scholar 

  • Muir AM, Edwards SA, Dickins MJ (1995) Description and conservation status of the vegetation of the Box-ironbark ecosystem in Victoria. Department of Conservation and Natural Resources, Melbourne

    Google Scholar 

  • Paton DC, Crossfield EL, Hurrell B et al. (2004) Floral resources used by the South Australian apiary industry. Rural Industries Research and Development Corporation, Barton, ACT

    Google Scholar 

  • Paloma MJ, Sanchis R, Verdu G et al. (2003) Analysis of pressure signals using a singular system analysis (SSA) metholodology. Prog Nucl Energ 43:329–336

    Article  Google Scholar 

  • Paluš M, Novotná D (2004) Enhanced Monte Carlo Singular System Analysis and detection of period 7.8 years oscillatory modes in the monthly NAO index and temperature records. Nonlin Proc Geophy 11:721–729

    Article  Google Scholar 

  • Pike ER, McWhirter JG, Bertero M et al. (1984) Generalized information theory for inverse problems in signal processing. IEEE Proc 131:660–667

    Google Scholar 

  • Porter JW (1978) Relationships between flowering and honey production of Red ironbark, Eucalyptus sideroxylon (A. Cunn.) benth., and climate in the Bendigo district of Victoria. Aust J Agric Res 29:815–829

    Article  Google Scholar 

  • Roberts AMI (2008) Exploring relationships between phenological and weather data using smoothing. Int J Biometeorol 52:463–470

    Article  PubMed  Google Scholar 

  • Rodó X, Pascual M, Fuchs G et al. (2002) ENSO and cholera: a nonstationary link related to climate change. PNAS 99:12901–12906

    Article  PubMed  Google Scholar 

  • Rozynski G, Larson M, Pruszak Z (2001) Forced and self-organized shoreline response for a beach in the Southern Baltic sea determined through singular spectrum analysis. Coast Eng 43: 41–58

    Article  Google Scholar 

  • Salmerón M, Ortega J, García C et al. (2002) SSA, SVD, QR-cp, and RBF model reduction Lect Notes Comput Sci 2415:589–594

    Article  Google Scholar 

  • Schneider T (2001) Analysis of incomplete climate data: estimation of mean values and covariance matrices and imputation of missing values. J Climate 14:853–871

    Article  Google Scholar 

  • Schneider T (2007) Comment on “spatio-temporal filling of missing points in geophysical data sets” by D Kondrashov and M Ghil, Nonlin Processes Geophys 13, 151–159, 2006. Nonlin Proc Geophy 14:1–2

    Article  CAS  Google Scholar 

  • Schollhamer D (2001) Singular spectrum analysis for time series with missing data. Geophys Res Lett 16:3187–3190

    Article  Google Scholar 

  • Setterfield SA, Williams RJ (1996) Patterns of flowering and seed production in Eucalyptus miniata and E. tetradonta in a tropical savanna woodland, Northern Australia. Aust J Bot 44:107–122

    Article  Google Scholar 

  • Shun T, Duffy C (1999) Low-frequency oscillations in precipitation, temperature, and run-off on a west facing mountain front: a hydrologic interpretation. Water Resour Res 35:191–201

    Article  Google Scholar 

  • Schwartz MD, Reiter BE (2000) Changes in North American spring. Int J Climatol 20:929–932

    Article  Google Scholar 

  • Schwartz MD, Reed BC, White MA (2002) Assessing satellite derived start-of-season (SOS) measures in the conterminous USA. Int J Climatol 22:1793–1805

    Article  Google Scholar 

  • Schwartz MD (2003) Introduction. Phenology: an integrative environmental science. Tasks for vegetation science, vol 39. Kluwer Academic Publishers, The Netherlands

    Google Scholar 

  • Slepian D (1978) Prolate spheroidal wave-functions, Fourier-analysis and uncertainty. 5. Discrete case. Bell Syst Tech J 57:1371–1430

    Google Scholar 

  • Somerville D, Campbell S (1997) Beekeeping in the Narrandera State Forests. N.S.W Agriculture, Goulburn, Australia

    Google Scholar 

  • Stöckli R, Rutishauser T, Dragoni D et al. (2008) Remote sensing data assimilation for a prognostic phenology model. J Geophys Res 113:G04021 doi:10.1029/2008JG000781

    Article  Google Scholar 

  • Sparks TH, Carey PD (1995) The responses of species to climate over two centuries: an analysis of the Marshman phenological record, 1736–1947. J Ecol 83:321–329

    Article  Google Scholar 

  • Sparks TH, Menzel A (2002) Observed changes in seasons: an overview. Int J Climate 22:1715–1725

    Article  Google Scholar 

  • Sparks TH, Tryjanowski P (2005) The detection of climate change impacts: some methodological considerations. Int J Climate 25:271–277

    Article  Google Scholar 

  • Studer S, Appenzeller C, Defila C (2005) Inter-annual variability and decadal trends in alpine spring phenology: a multivariate approach. Clim Change 73:395– 414

    Article  Google Scholar 

  • Studer S, Stöckli R, Appenzeller C et al. (2007) A comparative study of satellite and ground-based phenology. Int J Biometeorol 51:405–414

    Article  CAS  PubMed  Google Scholar 

  • SSA-MTMGroup (2000) SSA-MTM toolkit 4.1 user’s guide. University of California, Los Angeles

    Google Scholar 

  • Tatli H, Dalfes HN, Mentes SS (2005) Surface air temperature variability over Turkey and its connection to large-scale upper air circulation via multivariate techniques. Int J Climatol 25:3 331–350

    Article  Google Scholar 

  • Thompson JD (1982) Spectrum estimation and harmonic analysis. Proc IEEE 70:1055–1096

    Article  Google Scholar 

  • Vautard R, Ghil M (1989) Singular spectrum analysis in nonlinear dynamics, with applications to paleoclimatic time series. Physica D 35:395–424

    Article  Google Scholar 

  • Vautard R, Yiou P, Ghil M (1992) Singular-spectrum analysis: a toolkit for short, noisy chaotic signals. Physica D 58:95–126

    Article  Google Scholar 

  • Weedon GP (2003) Time-series analysis and cyclostratigraphy: examining stratigraphic records of environmental cycles. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Wells K (2000) Long term cyclic and environmentally induced effects on flowering of four Box-ironbark eucalypts. Dissertation, University of Melbourne

    Google Scholar 

  • Wilson J (2002) Flowering ecology of a Box-ironbark Eucalyptus community. Dissertation, Deakin University

    Google Scholar 

  • Wilson J, Bennett AF (1999) Patchiness of a floral resource: flowering of red ironbark Eucalyptus tricarpa in a box and ironbark forest. Victorian Nat 116:48–53

    Google Scholar 

  • White MA, Hoffman F, Hargrove WW (2005) A global framework for monitoring phenological responses to climate change. Geophys Res Lett 32(L04705)

    Article  Google Scholar 

  • Yiou P, Sornette D, Ghil M (2000) Data-adaptive wavelets and multi-scale singular-spectrum analysis. Physica D 142:254–290

    Article  Google Scholar 

  • Zhang X, Friedl MA, Schaaf CB et al. (2004) Climate controls on vegetation phonological patterns in northern mid- and high latitudes inferred from MODIS data. Glob Change Biol 10:1133–1145

    Article  Google Scholar 

Download references

Acknowledgments

We thank D Kupke, Hypatia Scholarship student in the School of Mathematics and Statistics, University of South Australia, for valuable editorial assistance in 2008 regarding the mathematical exposition. We also acknowledge the preliminary work of C Li in 2003, Honours student to Irene Hudson, at the University of Canterbury, Department of Mathematics and Statistics, Christchurch, New Zealand. Li’s Honours project “SSA – Theory and Application to Economic Time Series” inspired all our SSA ventures! Our work using SSA on eucalypts was started by K. Fukuda whose summer pilot project work in 2003 led to the joint presentation at the XXIInd International Biometric Conference: Hudson IL, Fukuda K, Keatley MR (2004) Detecting underlying time series structures and change points within a phenological dataset using SSA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irene L. Hudson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Hudson, I.L., Keatley, M.R. (2010). Singular Spectrum Analysis: Climatic Niche Identification. In: Hudson, I., Keatley, M. (eds) Phenological Research. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3335-2_18

Download citation

Publish with us

Policies and ethics