Skip to main content

Phase Ordering in Mixtures of Liquid Crystals and Nanoparticles

  • Conference paper
Metastable Systems under Pressure

Abstract

We have studied the coupling interaction between liquid crystal (LC) molecules and nanoparticles (NPs) in LC=NPs mixtures. Using a simple phenomenological approach, possible structures of the coupling term are derived for strongly anisotropic NPs. The coupling terms include (i) an interaction term promoting the mutual ordering of the LC molecules and the NPs, and (ii) the Flory-Huggins-type term enforcing the phase separation. Both contributions exhibit the same scaling dependence on the diameter of the NPs. However, these terms only exist for a finite degree of nematic LC ordering. The magnetic response due to the LC-NPs coupling is probed experimentally for a mixture of weakly anisotropic magnetic NPs and a ferroelectric LC. A finite coupling effect was observed in the ferroelectric LC phase, suggesting such systems can be used as soft magnetoelectrics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Iijima, S. (1991) Nature 354, 56

    Article  ADS  Google Scholar 

  2. Endo, M., Takeuchi, K., Igarashi, S., Kobori, K., Shiraishi, M., and W. Kroto, H. (1993) J. Phys. Chem. Solids 54, 1841

    Article  ADS  Google Scholar 

  3. Colbert, D. T., Zhang, J., McClure, S. M., Nikolaev, P., Chen, Z., Hafner, J. H., Owens, D. W., Kotula, P. G., Carter, C. B., Weaver, J. H., Rinzler, A. G., and Smalley, R. E. (1994) Science 266, 1218

    Article  ADS  Google Scholar 

  4. Kamat, P. V., Thomas, K. G., Barazzouk, S., Girishkumar, G., Vinodgopal, K., and Meisel, D. (2004) J. Am. Chem. Soc. 126, 10757

    Article  Google Scholar 

  5. Wang, H., Christopherson, G., Xu, Z., Porcar, L., Ho, D., Fry, D., and Hobbie, E. (2005) Chem. Phys. Lett. 416, 182

    Article  ADS  Google Scholar 

  6. Gerdes, S., Ondarcuhu, T., Cholet, S., and Joachim, C. (1999) Europhys. Lett. 48, 292

    Article  ADS  Google Scholar 

  7. Balazs, A. C., et al. (2006) Science 314, 1107

    Article  MathSciNet  ADS  Google Scholar 

  8. Lynch, M. D., and Patrick, D. L. (2002) Nano. Lett. 2, 1197

    Article  ADS  Google Scholar 

  9. Dierking, I., Scalia, G., and Morales, P. (2005) J. of Appl. Phys. 97, 044309

    Article  ADS  Google Scholar 

  10. Lagerwall, J., Scalia, G., Haluska, M., Dettlaff-Weglikowska, U., Roth, S., and Giesselmann, F. (2007) Adv. Mater. 19, 359

    Article  Google Scholar 

  11. de Gennes, P. G., and Prost, J. (1993) The Physics of Liquid Crystals, Oxford University Press, Oxford

    Google Scholar 

  12. Scott, J. F. (2007) Science 315, 954

    Article  ADS  Google Scholar 

  13. Doi, M., and Edwards, S. F. (1989) Theory of Polymer Dynamics (Clarendon, Oxford)

    Google Scholar 

  14. Onsager, L. (1949) Ann. N. Y. Acad. Sci. 51, 727

    Article  Google Scholar 

  15. Flory, P. J. (1956) Proc. R. Soc. A 243, 73

    Article  ADS  Google Scholar 

  16. Doi, M. J. (1981) Polym. Sci., Part B: Polym. Phys. 19, 229

    ADS  Google Scholar 

  17. Rapini, A., and Papoular, M. (1969) J. Phys. (Paris) Colloq. 30, C4–54

    Article  Google Scholar 

  18. Brochard, F., and de Gennes, P. G. (1970) J. Phys. (Paris) 31, 691

    Google Scholar 

  19. Burylov, S. V., and Raikher, Yu. L. (1994) Phys. Rev. E 50, 358

    Article  ADS  Google Scholar 

  20. van der Schoot, P., Popa Nita, V., and Kralj, S. (2008) J. Phys. Chem. B 112, 4512

    Article  Google Scholar 

  21. Lubensky, C., Pettey, D., Currier, N., and Stark, H. (1998) Phys. Rev. E 57, 610

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this paper

Cite this paper

Rožič, B. et al. (2010). Phase Ordering in Mixtures of Liquid Crystals and Nanoparticles. In: Rzoska, S., Drozd-Rzoska, A., Mazur, V. (eds) Metastable Systems under Pressure. NATO Science for Peace and Security Series A: Chemistry and Biology. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3408-3_9

Download citation

Publish with us

Policies and ethics