Skip to main content

Charge Density and Chemical Reactions: A Unified View from Conceptual DFT

  • Chapter
  • First Online:
Modern Charge-Density Analysis

Abstract

Conceptual density-functional theory (DFT) provides a mathematical framework for using changes of the electron density to understand chemical reactions and chemical reactivity. The key idea is that by studying the response of a molecule or materials to perturbations, one can decipher its reactivity preferences. If a system reacts favorably to a perturbation, then this indicates that the system will react favorably with a certain class of reagents. Differentials of the energy may thus be interpreted as reactivity indicators. Because of the key role of energy differentials, the mathematical framework of conceptual DFT is similar to classical thermodynamics, with state functions, variational principles, and Legendre transforms. In this chapter we use this thermodynamic simile to present the mathematical underpinnings of conceptual DFT. Applications to systems of interest to organic, inorganic, and biological chemists are used to demonstrate how these abstract concepts may be applied to concrete chemical problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The relationship between Eqs. 21.5 and 21.6 will be more clear if one imagines the integral as a Riemann sum or, alternatively, conceives of the change in the function, δf(r), as a vector in a Hilbert (or, more generally, a Banach) space.

  2. 2.

    This is obvious from the fact that the number of electrons in, for example, a solvated ion is usual not an integer. However, any measurement of the number of electrons will always produce an integer answer.

  3. 3.

    Unfortunately, it is difficult to formulate the open-system picture at zero temperature because the Legendre transform from the number of electrons to the chemical potential is no longer well-defined. The electron-preceding picture may be formulated, but the hardness kernel has derivative discontinuities in both variables and is therefore difficult to work with.

  4. 4.

    Of course, matters are more complicated. A soft electrophile whose highest occupied orbital(s) do not have the appropriate size/symmetry to interact strongly with the sulfur atom may prefer to bind through the nitrogen atom. Similarly, a hard electrophile for which the charge on the active site is small (a rare, but not impossible occurrence) may prefer to bind through the sulfur atom. Finally, in some cases a molecular rearrangement subsequent to the initial attack may change the binding pattern. Complications like these arise in any qualitative theory of chemical reactivity, but the DFT-based approach is perhaps unique in that they can be addressed within the context of the theory, although capturing such effects usually require difficult to compute higher-order reactivity indicators.

  5. 5.

    The Fluorines do not react because the Fluorine atoms hold their charge very tightly and, in TeF5–, they are nowhere nearly as negative as their formal −1 charge might lead one to anticipate. The Hirshfeld charges on the Fluorine atoms range from −26 to −35 and the Mulliken charges range from −46 to −53. The least charged Fluorine atom is the “exposed” atom at the top of the deformed square pyramid, which one might otherwise expect to be the most reactive.

References

  1. Coppens P (2005) Charge densities come of age. Angew Chem Int Ed 44:6810–6811

    CAS  Google Scholar 

  2. Koritsanszky TS, Coppens P (2001) Chemical applications of X-ray charge-density analysis. Chem Rev 101:1583–1627

    CAS  Google Scholar 

  3. Parr RG, Yang W (1989) Density-functional theory of atoms and molecules. Oxford University Press, New York

    Google Scholar 

  4. Geerlings P, De Proft F, Langenaeker W (2003) Conceptual density functional theory. Chem Rev 103:1793–1873

    CAS  Google Scholar 

  5. Parr RG, Donnelly RA, Levy M, Palke WE (1978) Electronegativity: the density functional viewpoint. J Chem Phys 68:3801–3807

    CAS  Google Scholar 

  6. Nalewajski RF, Parr RG (1982) Legendre transforms and Maxwell relations in density functional theory. J Chem Phys 77:399–407

    CAS  Google Scholar 

  7. Berkowitz M, Parr RG (1988) Molecular hardness and softness, local hardness and softness, hardness and softness kernels, and relations among these quantities. J Chem Phys 88: 2554–2557

    CAS  Google Scholar 

  8. Fermi E, Amaldi E (1934) Le orbite oos degli elementi. Accad Ital Rome 6:117–149

    Google Scholar 

  9. Fermi E (1928) A statistical method for the determination of some atomic properties and the application of this method to the theory of the periodic system of elements. Z Phys 48:73–79

    CAS  Google Scholar 

  10. Dirac PAM (1930) Note on exchange phenomena in the Thomas atom. Proc Camb Philos Soc 26:376–385

    CAS  Google Scholar 

  11. Thomas LH (1927) The calculation of atomic fields. Proc Camb Philos Soc 23:542–548

    CAS  Google Scholar 

  12. Senet P (1996) Nonlinear electronic responses, Fukui functions and hardnesses as functionals of the ground-state electronic density. J Chem Phys 105:6471–6489

    CAS  Google Scholar 

  13. Ayers PW, Anderson JSM, Bartolotti LJ (2005) Perturbative perspectives on the chemical reaction prediction problem. Int J Quantum Chem 101:520–534

    CAS  Google Scholar 

  14. Cortona P (1991) Self-consistently determined properties of solids without band-structure calculations. Phys Rev B 44:8454–8458

    Google Scholar 

  15. Ayers PW, Parr RG (2001) Variational principles for describing chemical reactions. Reactivity indices based on the external potential. J Am Chem Soc 123:2007–2017

    CAS  Google Scholar 

  16. Ayers PW (2000) Atoms in molecules, an axiomatic approach. I. Maximum transferability. J Chem Phys 113:10886–10898

    CAS  Google Scholar 

  17. Wesolowski TA (2004) Quantum chemistry ‘without orbitals’ – an old idea and recent developments. Chimia 58:311–315

    CAS  Google Scholar 

  18. Wesolowski TA, Warshel A (1994) Ab-initio free-energy perturbation calculations of solvation free-energy using the frozen density-functional approach. J Phys Chem 98:5183–5187

    CAS  Google Scholar 

  19. Wesolowski TA, Warshel A (1993) Frozen density-functional approach for Ab-initio calculations of solvated molecules. J Phys Chem 97:8050–8053

    CAS  Google Scholar 

  20. Vaidehi N, Wesolowski TA, Warshel A (1992) Quantum-mechanical calculations of solvation free-energies – a combined ab initio pseudopotential free-energy perturbation approach. J Chem Phys 97:4264–4271

    CAS  Google Scholar 

  21. Parr RG, Bartolotti LJ (1982) On the geometric mean principle for electronegativity equalization. J Am Chem Soc 104:3801–3803

    CAS  Google Scholar 

  22. Mulliken RS (1934) A new electroaffinity scale: together with data on states and an ionization potential and electron affinities. J Chem Phys 2:782–793

    CAS  Google Scholar 

  23. Ayers PW, Parr RG, Pearson RG (2006) Elucidating the hard/soft acid/base principle: a perspective based on half-reactions. J Chem Phys 124:194107

    Google Scholar 

  24. Parr RG, Pearson RG (1983) Absolute hardness: companion parameter to absolute electronegativity. J Am Chem Soc 105:7512–7516

    CAS  Google Scholar 

  25. Chattaraj PK, Lee H, Parr RG (1991) HSAB principle. J Am Chem Soc 113:1855–1856

    CAS  Google Scholar 

  26. Gazquez JL, Mendez F (1994) The hard and soft acids and bases principle: an atoms in molecules viewpoint. J Phys Chem 98:4591–4593

    CAS  Google Scholar 

  27. Mendez F, Gazquez JL (1994) Chemical-reactivity of enolate ions – the local hard and soft acids and bases principle viewpoint. J Am Chem Soc 116:9298–9301

    CAS  Google Scholar 

  28. Ayers PW (2005) An elementary derivation of the hard/soft-acid/base principle. J Chem Phys 122:141102

    Google Scholar 

  29. Ayers PW (2007) The physical basis of the hard/soft acid/base principle. Faraday Discuss 135:161–190

    CAS  Google Scholar 

  30. Nalewajski RF (1984) Electrostatic effects in interactions between hard (soft) acids and bases. J Am Chem Soc 106:944–945

    CAS  Google Scholar 

  31. Pearson RG (1987) Recent advances in the concept of hard and soft acids and bases. J Chem Educ 64:561–567

    CAS  Google Scholar 

  32. Pearson RG (1999) Maximum chemical and physical hardness. J Chem Educ 76:267–275

    CAS  Google Scholar 

  33. Parr RG, Chattaraj PK (1991) Principle of maximum hardness. J Am Chem Soc 113: 1854–1855

    CAS  Google Scholar 

  34. Ayers PW, Parr RG (2000) Variational principles for describing chemical reactions: the Fukui function and chemical hardness revisited. J Am Chem Soc 122:2010–2018

    CAS  Google Scholar 

  35. Pearson RG, Palke WE (1992) Support for a principle of maximum hardness. J Phys Chem 96:3283–3285

    CAS  Google Scholar 

  36. Zhou Z, Parr RG (1989) New measures of aromaticity: absolute hardness and relative hardness. J Am Chem Soc 111:7371–7379

    CAS  Google Scholar 

  37. Torrent-Sucarrat M, Luis JM, Duran M, Sola M (2004) The hardness profile as a tool to detect spurious stationary points in the potential energy surface. J Chem Phys 120:10914–10924

    CAS  Google Scholar 

  38. Torrent-Sucarrat M, Luis JM, Duran M, Sola M (2002) Are the maximum hardness and minimum polarizability principles always obeyed in nontotally symmetric vibrations? J Chem Phys 117:10561–10570

    CAS  Google Scholar 

  39. Parr RG, Yang WT (1984) Density functional approach to the frontier-electron theory of chemical reactivity. J Am Chem Soc 106:4049–4050

    CAS  Google Scholar 

  40. Yang WT, Parr RG, Pucci R (1984) Electron density, Kohn-Sham frontier orbitals, and Fukui functions. J Chem Phys 81:2862–2863

    CAS  Google Scholar 

  41. Ayers PW, Levy M (2000) Perspective on “density functional approach to the frontier-electron theory of chemical reactivity” by Parr RG, Yang W (1984). Theor Chem Acc 103:353–360

    CAS  Google Scholar 

  42. Ayers PW, Yang WT, Bartolotti LJ (2009) Fukui function. In: Chattaraj PK (ed) Chemical reactivity theory: a density functional view. CRC Press, Boca Raton, pp 255–267

    Google Scholar 

  43. Langenaeker W, Demel K, Geerlings P (1991) Quantum-chemical study of the Fukui function as a reactivity index. 2. Electrophilic substitution on mono-substituted benzenes. J Mol Struct THEOCHEM 80:329–342

    CAS  Google Scholar 

  44. Cohen MH, Ganduglia-Pirovano MV (1994) Electronic and nuclear chemical reactivity. J Chem Phys 101:8988–8997

    CAS  Google Scholar 

  45. Bartolotti LJ, Ayers PW (2005) An example where orbital relaxation is an important contribution to the Fukui function. J Phys Chem A 109:1146–1151

    CAS  Google Scholar 

  46. Fuentealba P, Parr RG (1991) Higher-order derivatives in density-functional theory, especially the hardness derivative. J Chem Phys 94:5559–5564

    CAS  Google Scholar 

  47. Geerlings P, Proft FD (2008) Conceptual DFT: the chemical relevance of higher response functions. Phys Chem Chem Phys 10:3028–3042

    CAS  Google Scholar 

  48. Cardenas C, Echegaray E, Chakraborty D, Anderson JSM, Ayers PW (2009) Relationships between third-order reactivity indicators in chemical density-functional theory. J Chem Phys 130:244105

    Google Scholar 

  49. Ayers PW, Parr RG (2008) Beyond electronegativity and local hardness: higher-order equalization criteria for determination of a ground-state electron density. J Chem Phys 129:054111

    Google Scholar 

  50. Morell C, Grand A, Toro-Labbé A (2006) Theoretical support for using the delta f(r) descriptor. Chem Phys Lett 425:342–346

    CAS  Google Scholar 

  51. Morell C, Grand A, Toro-Labbé A (2005) New dual descriptor for chemical reactivity. J Phys Chem A 109:205–212

    CAS  Google Scholar 

  52. Sablon N, de Proft F, Geerlings P (2009) Reformulating the Woodward-Hoffmann rules in a conceptual density functional theory context: the case of sigmatropic reactions. Croat Chem Acta 82:157–164

    CAS  Google Scholar 

  53. De Proft F, Chattaraj PK, Ayers PW, Torrent-Sucarrat M, Elango M, Subramanian V, Giri S, Geerlings P (2008) Initial hardness response and hardness profiles in the study of Woodward-Hoffmann rules for electrocyclizations. J Chem Theory Comput 4:595–602

    Google Scholar 

  54. Ayers PW, Morell C, De Proft F, Geerlings P (2007) Understanding the Woodward-Hoffmann rules using changes in the electron density. Chem Eur J 13:8240–8247

    CAS  Google Scholar 

  55. Morell C, Ayers PW, Grand A, Gutierrez-Oliva S, Toro-Labbé A (2008) Rationalization of Diels-Alder reactions through the use of the dual reactivity descriptor delta f(r). Phys Chem Chem Phys 10:7239–7246

    CAS  Google Scholar 

  56. Cardenas C, Rabi N, Ayers PW, Morell C, Jaramillo P, Fuentealba P (2009) Chemical reactivity descriptors for ambiphilic reagents: dual descriptor, local hypersoftness, and electrostatic potential. J Phys Chem A113:8660–8667

    Google Scholar 

  57. Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev B 136:864–871

    Google Scholar 

  58. Yang WT, Parr RG (1985) Hardness, softness, and the Fukui function in the electron theory of metals and catalysis. Proc Natl Acad Sci 82:6723–6726

    CAS  Google Scholar 

  59. De Proft F, Geerlings P, Liu S, Parr RG (1998) Variational calculation of the global hardness and the Fukui function via an approximation of the hardness kernel. Pol J Chem 72: 1737–1746

    Google Scholar 

  60. Fuentealba P (1998) Reactivity indices and response functions in density functional theory. J Mol Struct THEOCHEM 433:113–118

    CAS  Google Scholar 

  61. Simon-Manso Y, Fuentealba P (1998) On the density functional relationship between static dipole polarizability and global softness. J Phys Chem A 102:2029–2032

    CAS  Google Scholar 

  62. Nakatsuji H (1974) Common nature of the electron cloud of a system undergoing change in nuclear configuration. J Am Chem Soc 96:24–30

    CAS  Google Scholar 

  63. Nakatsuji H (1974) Electron-cloud following and preceding and the shapes of molecules. J Am Chem Soc 96:30–37

    CAS  Google Scholar 

  64. Parr RG, Bartolotti LJ (1983) Some remarks on the density functional theory of few-electron systems. J Phys Chem 87:2810–2815

    CAS  Google Scholar 

  65. Gal T (2001) Differentiation of density functionals that conserves the normalization of the density. Phys Rev A 63:049903

    Google Scholar 

  66. Gal T (2007) The mathematics of functional differentiation under conservation constraint. J Math Chem 42:661–676

    CAS  Google Scholar 

  67. Gal T (2002) Functional differentiation under conservation constraints. J Phys A 35: 5899–5905

    Google Scholar 

  68. Lieb EH (1983) Density functionals for Coulomb systems. Int J Quantum Chem 24:243–277

    CAS  Google Scholar 

  69. Levy M, Perdew JP (1985) The constrained search formulation of density functional theory. NATO ASI Ser B 123:11–30

    CAS  Google Scholar 

  70. Chattaraj PK, Cedillo A, Parr RG (1995) Variational method for determining the Fukui function and chemical hardness of an electronic system. J Chem Phys 103:7645–7646

    CAS  Google Scholar 

  71. Levy M, Parr RG (1976) Long-range behavior of natural orbitals and electron density. J Chem Phys 64:2707–2708

    CAS  Google Scholar 

  72. Morrell MM, Parr RG, Levy M (1975) Calculation of ionization potentials from density matrixes and natural functions, and the long-range behavior of natural orbitals and electron density. J Chem Phys 62:549–554

    CAS  Google Scholar 

  73. Katriel J, Davidson ER (1980) Asymptotic behavior of atomic and molecular wave functions. Proc Natl Acad Sci 77:4403–4406

    CAS  Google Scholar 

  74. Ahlrichs R, Hoffmann-Ostenhof M, Hoffmann-Ostenhof T, Morgan JD III (1981) Bounds on the decay of electron densities with screening. Phys Rev A 23:2106–2117

    CAS  Google Scholar 

  75. Hoffmann-Ostenhof M, Hoffmann-Ostenhof T (1977) “Schrodinger inequalities” and asymptotic behavior of the electron density of atoms and molecules. Phys Rev A 16:1782–1785

    CAS  Google Scholar 

  76. Baekelandt BG, Cedillo A, Parr RG (1995) Reactivity indexes and fluctuation formulas in density- functional theory – isomorphic ensembles and a new measure of local hardness. J Chem Phys 103:8548–8556

    CAS  Google Scholar 

  77. Freed KF, Levy M (1982) Direct 1st principles algorithm for the universal electron- density functional. J Chem Phys 77:396–398

    CAS  Google Scholar 

  78. Zhao Q, Parr RG (1993) Constrained-search method to determine electronic wave functions from electronic densities. J Chem Phys 98:543–548

    CAS  Google Scholar 

  79. Zhao Q, Morrison RC, Parr RG (1994) From electron-densities to Kohn-Sham kinetic energies, orbital energies, exchange-correlation potentials, and exchange- correlation energies. Phys Rev A 50:2138–2142

    CAS  Google Scholar 

  80. van Leeuwen R, Baerends EJ (1994) Exchange-correlation potential with correct asymptotic-behavior. Phys Rev A 49:2421–2431

    Google Scholar 

  81. Wu Q, Yang WT (2003) A direct optimization method for calculating density functionals and exchange-correlation potentials from electron densities. J Chem Phys 118:2498–2509

    CAS  Google Scholar 

  82. Colonna F, Savin A (1999) Correlation energies for some two- and four-electron systems along the adiabatic connection in density functional theory. J Chem Phys 110:2828–2835

    CAS  Google Scholar 

  83. Senet P (1997) Kohn-Sham orbital formulation of the chemical electronic responses, including the hardness. J Chem Phys 107:2516–2524

    CAS  Google Scholar 

  84. Ayers PW (2001) Strategies for computing chemical reactivity indices. Theor Chem Acc 106:271–279

    CAS  Google Scholar 

  85. Parr RG, Von Szentpaly L, Liu SB (1999) Electrophilicity index. J Am Chem Soc 121: 1922–1924

    CAS  Google Scholar 

  86. Chattaraj PK, Sarkar U, Roy DR (2006) Electrophilicity index. Chem Rev 106:2065–2091

    CAS  Google Scholar 

  87. Chattaraj PK, Maiti B, Sarkar U (2003) Philicity: a unified treatment of chemical reactivity and selectivity. J Phys Chem A 107:4973–4975

    CAS  Google Scholar 

  88. Ayers PW, Anderson JSM, Rodriguez JI, Jawed Z (2005) Indices for predicting the quality of leaving groups. Phys Chem Chem Phys 7:1918–1925

    CAS  Google Scholar 

  89. Anderson JSM, Melin J, Ayers PW (2007) Conceptual density-functional theory for general chemical reactions, including those that are neither charge nor frontier-orbital controlled. I. Theory and derivation of a general-purpose reactivity indicator. J Chem Theory Comput 3:358–374

    CAS  Google Scholar 

  90. Anderson JSM, Melin J, Ayers PW (2007) Conceptual density-functional theory for general chemical reactions, including those that are neither charge- nor frontier-orbital-controlled. 2. Application to molecules where frontier molecular orbital theory fails. J Chem Theory Comput 3:375–389

    CAS  Google Scholar 

  91. Cedillo A, Contreras R, Galvan M, Aizman A, Andres J, Safont VS (2007) Nucleophilicity index from perturbed electrostatic potentials. J Phys Chem A 111:2442–2447

    CAS  Google Scholar 

  92. Roy RK, Krishnamurti S, Geerlings P, Pal S (1998) Local softness and hardness based reactivity descriptors for predicting intra- and intermolecular reactivity sequences: carbonyl compounds. J Phys Chem A 102:3746–3755

    CAS  Google Scholar 

  93. Campodonico PR, Aizman A, Contreras R (2006) Group electrophilicity as a model of nucleofugality in nucleophilic substitution reactions. Chem Phys Lett 422:340–344

    CAS  Google Scholar 

  94. Campodonico PR, Andres J, Aizman A, Contreras R (2007) Nucleofugality index in alpha-elimination reactions. Chem Phys Lett 439:177–182

    CAS  Google Scholar 

  95. Campodonico PR, Perez C, Aliaga M, Gazitua M, Contreras R (2007) Electrofugality index for benhydryl derivatives. Chem Phys Lett 447:375–378

    CAS  Google Scholar 

  96. Padmanabhan J, Parthasarathi R, Elango M, Subramanian V, Krishnamoorthy BS, Gutierrez-Oliva S, Toro-Labbé A, Roy DR, Chattaraj PK (2007) Multiphilic descriptor for chemical reactivity and selectivity. J Phys Chem A 111:9130–9138

    CAS  Google Scholar 

  97. Padmanabhan J, Parthasarathi R, Subramanian V, Chattaraj PK (2006) Chemical reactivity indices for the complete series of chlorinated benzenes: solvent effect. J Phys Chem A 110:2739–2745

    CAS  Google Scholar 

  98. Chattaraj PK, Roy DR, Geerlings P, Torrent-Sucarrat M (2007) Local hardness: a critical account. Theor Chem Acc 118:923–930

    CAS  Google Scholar 

  99. Torrent-Sucarrat M, De Proft F, Geerlings P, Ayers PW (2008) Do the local softness and hardness indicate the softest and hardest regions of a molecule? Chem Eur J 14:8652–8660

    CAS  Google Scholar 

  100. Ayers PW, Parr RG (2008) Local hardness equalization: exploiting the ambiguity. J Chem Phys 128:184108

    Google Scholar 

  101. Ghosh SK, Berkowitz M, Parr RG (1984) Transcription of ground-state density-functional theory into a local thermodynamics. Proc Natl Acad Sci 81:8028–8031

    CAS  Google Scholar 

  102. Berkowitz M, Ghosh SK, Parr RG (1985) On the concept of local hardness in chemistry. J Am Chem Soc 107:6811–6814

    CAS  Google Scholar 

  103. Bagaria P, Saha S, Murru S, Kavala V, Patel BK, Roy RK (2009) A comprehensive decomposition analysis of stabilization energy (CDASE) and its application in locating the rate-determining step of multi-step reactions. Phys Chem Chem Phys 11:8306–8315

    CAS  Google Scholar 

  104. Gazquez JL, Cedillo A, Vela A (2007) Electrodonating and electroaccepting powers. J Phys Chem A 111:1966–1970

    CAS  Google Scholar 

  105. Politzer P, Truhlar D (1981) Chemical applications of atomic and molecular electrostatic potentials. Plenum, New York

    Google Scholar 

  106. Gadre SR, Kulkarni SA, Shrivastava IH (1992) Molecular electrostatic potentials – a topographical study. J Chem Phys 96:5253–5260

    CAS  Google Scholar 

  107. Berkowitz M (1987) Density functional-approach to frontier controlled reactions. J Am Chem Soc 109:4823–4825

    CAS  Google Scholar 

  108. Ayers PW, Liu SB, Li TL (2009) Chargephilicity and chargephobicity: two new reactivity indicators for external potential changes from density functional reactivity theory. Chem Phys Lett 480:318–321

    CAS  Google Scholar 

  109. Yang WT, Mortier WJ (1986) The use of global and local molecular parameters for the analysis of the gas-phase basicity of amines. J Am Chem Soc 108:5708–5711

    CAS  Google Scholar 

  110. Fuentealba P, Perez P, Contreras R (2000) On the condensed Fukui function. J Chem Phys 113:2544–2551

    CAS  Google Scholar 

  111. De Proft F, Van Alsenoy C, Peeters A, Langenaeker W, Geerlings P (2002) Atomic charges, dipole moments, and Fukui functions using the Hirshfeld partitioning of the electron density. J Comput Chem 23:1198–1209

    Google Scholar 

  112. Ayers PW, Morrison RC, Roy RK (2002) Variational principles for describing chemical reactions: condensed reactivity indices. J Chem Phys 116:8731–8744

    CAS  Google Scholar 

  113. Chamorro E, Perez P (2005) Condensed-to-atoms electronic Fukui functions within the framework of spin-polarized density-functional theory. J Chem Phys 123:114107

    Google Scholar 

  114. Tiznado W, Chamorro E, Contreras R, Fuentealba P (2005) Comparison among four different ways to condense the Fukui function. J Phys Chem A 109:3220–3224

    CAS  Google Scholar 

  115. Sablon N, De Proft F, Ayers PW, Geerlings P (2007) Computing Fukui functions without differentiating with respect to electron number. II. Calculation of condensed molecular Fukui functions. J Chem Phys 126:224108

    Google Scholar 

  116. Bultinck P, Fias S, Alsenoy CV, Ayers PW, Carbó-Dorca R (2007) Critical thoughts on computing atom condensed Fukui functions. J Chem Phys 127:034102

    Google Scholar 

  117. Olah J, Van Alsenoy C, Sannigrahi AB (2002) Condensed Fukui functions derived from stockholder charges: assessment of their performance as local reactivity descriptors. J Phys Chem A 106:3885–3890

    CAS  Google Scholar 

  118. Nalewajski RF (1995) Chemical reactivity concepts in charge sensitivity analysis. Int J Quantum Chem 56:453–476

    CAS  Google Scholar 

  119. Bader RFW (1990) Atoms in molecules: a quantum theory. Clarendon, Oxford

    Google Scholar 

  120. Popelier PLA (2000) Atoms in molecules: an introduction. Pearson, Harlow

    Google Scholar 

  121. Bulat FA, Chamorro E, Fuentealba P, Toro-Labbé A (2004) Condensation of frontier molecular orbital Fukui functions. J Phys Chem A 108:342–349

    CAS  Google Scholar 

  122. Hirshfeld FL (1977) Bonded-atom fragments for describing molecular charge densities. Theor Chim Act 44:129–138

    CAS  Google Scholar 

  123. Nalewajski RF, Parr RG (2000) Information theory, atoms in molecules, and molecular similarity. Proc Natl Acad Sci 97:8879–8882

    CAS  Google Scholar 

  124. Parr RG, Ayers PW, Nalewajski RF (2005) What is an atom in a molecule? J Phys Chem A 109:3957–3959

    CAS  Google Scholar 

  125. Bultinck P, Van Alsenoy C, Ayers PW, Carbó-Dorca R (2007) Critical analysis and extension of the Hirshfeld atoms in molecules. J Chem Phys 126:144111

    Google Scholar 

  126. Mulliken RS (1955) Electronic population analysis on LCAO-MO molecular wave functions 1. J Chem Phys 23:1833

    CAS  Google Scholar 

  127. Mulliken RS (1955) Electronic population analysis on LCAO-MO molecular wave functions 2. J Chem Phys 23:1841

    CAS  Google Scholar 

  128. Mulliken RS (1955) Electronic population analysis on LCAO-MO molecular wave functions 4. J Chem Phys 23:2343

    CAS  Google Scholar 

  129. Mulliken RS (1955) Electronic population analysis on LCAO-MO molecular wave functions 3. J Chem Phys 23:2338

    CAS  Google Scholar 

  130. Von Barth U, Hedin L (1972) A local exchange-correlation potential for the spin polarized case I. J Phys C 5:1629–1642

    Google Scholar 

  131. Rajagopal AK, Callaway J (1973) Inhomogeneous electron gas. Phys Rev B 7:1912–1919

    CAS  Google Scholar 

  132. Ghanty TK, Ghosh SK (1994) Spin-polarized generalization of the concepts of electronegativity and hardness and the description of chemical-binding. J Am Chem Soc 116:3943–3948

    CAS  Google Scholar 

  133. Galvan M, Vela A, Gazquez JL (1988) Chemical-reactivity in spin-polarized density functional theory. J Phys Chem 92:6470–6474

    CAS  Google Scholar 

  134. Vargas R, Galvan M, Vela A (1998) Singlet-triplet gaps and spin potentials. J Phys Chem A 102:3134–3140

    CAS  Google Scholar 

  135. Vargas R, Galvan M (1996) On the stability of half-filled shells. J Phys Chem 100: 14651–14654

    CAS  Google Scholar 

  136. Galvan M, Vargas R (1992) Spin potential in Kohn Sham theory. J Phys Chem 96:1625–1630

    CAS  Google Scholar 

  137. Garza J, Vargas R, Cedillo A, Galvan M, Chattaraj PK (2006) Comparison between the frozen core and finite differences approximations for the generalized spin-dependent global and local reactivity descriptors in small molecules. Theor Chem Acc 115:257–265

    CAS  Google Scholar 

  138. Perez P, Chamorro E, Ayers PW (2008) Universal mathematical identities in density functional theory: results from three different spin-resolved representations. J Chem Phys 128:204108

    CAS  Google Scholar 

  139. Chamorro E, Perez P, Duque M, De Proft F, Geerlings P (2008) Dual descriptors within the framework of spin-polarized density functional theory. J Chem Phys 129:064117

    CAS  Google Scholar 

  140. Pinter B, De Proft F, Van Speybroeck V, Hemelsoet K, Waroquier M, Chamorro E, Veszpremi T, Geerlings P (2007) Spin-polarized conceptual density functional theory study of the regioselectivity in ring closures of radicals. J Org Chem 72:348–356

    CAS  Google Scholar 

  141. Chamorro E, Perez P, De Proft F, Geerlings P (2006) Philicity indices within the spin-polarized density-functional theory framework. J Chem Phys 124:044105

    CAS  Google Scholar 

  142. Chamorro E, De Proft F, Geerlings P (2005) Hardness and softness reactivity kernels within the spin-polarized density-functional theory. J Chem Phys 123:154104

    Google Scholar 

  143. Chamorro E, De Proft F, Geerlings P (2005) Generalized nuclear Fukui functions in the framework of spin-polarized density-functional theory. J Chem Phys 123:084104

    CAS  Google Scholar 

  144. De Proft F, Chamorro E, Perez P, Duque M, De Vleesschouwer F, Geerlings P (2009) Spin-polarized reactivity indices from density functional theory: theory and applications. RSC periodical specialist report. Chem Model 6:63

    Google Scholar 

  145. Ugur I, De Vleeschouwer F, Tuzun N, Aviyente V, Geerlings P, Liu SB, Ayers PW, De Proft F (2009) Cyclopolymerization reactions of diallyl monomers: exploring electronic and steric effects using DFT reactivity indices. J Phys Chem A 113:8704–8711

    CAS  Google Scholar 

  146. Melin J, Aparicio F, Galvan M, Fuentealba P, Contreras R (2003) Chemical reactivity in the N, N-S, ν(r) space. J Phys Chem A 107:3831–3835

    CAS  Google Scholar 

  147. Fuentealba P, Simon-Manso Y, Chattaraj PK (2000) Molecular electronic excitations and the minimum polarizability principle. J Phys Chem A 104:3185–3187

    CAS  Google Scholar 

  148. Chattaraj PK, Poddar A (1999) Molecular reactivity in the ground and excited electronic states through density-dependent local and global reactivity parameters. J Phys Chem A 103: 8691–8699

    CAS  Google Scholar 

  149. Chattaraj PK, Poddar A (1999) Chemical reactivity and excited-state density functional theory. J Phys Chem A 103:1274–1275

    CAS  Google Scholar 

  150. Chattaraj PK, Poddar A (1998) A density functional treatment of chemical reactivity and the associated electronic structure principles in the excited electronic states. J Phys Chem A 102:9944–9948

    CAS  Google Scholar 

  151. Ayers PW, Parr RG (2000) A theoretical perspective on the bond length rule of Grochala, Albrecht, and Hoffmann. J Phys Chem A 104:2211–2220

    CAS  Google Scholar 

  152. Morell C, Labet V, Grand A, Ayers PW, De Proft F, Geerlings P, Chermette H (2009) Characterization of the chemical behavior of the low excited states through a local chemical potential. J Chem Theory Comput 5:2274–2283

    CAS  Google Scholar 

  153. Ayers PW (2001) PhD dissertation, Department of Chemistry, University of North Carolina at Chapel Hill

    Google Scholar 

  154. Lieb EH (1985) Density functionals for coulomb systems. NATO ASI Ser B 123:31–80

    Google Scholar 

  155. Singh R, Deb BM (1999) Developments in excited-state density functional theory. Phys Lett 311:48–94

    Google Scholar 

  156. Theophilou AK, Gidopoulos NI (1995) Density-functional theory for excited-states. Int J Quantum Chem 56:333–336

    CAS  Google Scholar 

  157. Theophilou AK (1979) Energy density functional formalism for excited-states. J Phys C 12:5419–5430

    CAS  Google Scholar 

  158. Ayers PW, Levy M (2009) Time-independent (static) density-functional theories for pure excited states: extensions and unification. Phys Rev A 80:012508

    Google Scholar 

  159. Nagy A, Levy M (2001) Variational density-functional theory for degenerate excited states. Phys Rev A 63:052502

    Google Scholar 

  160. Levy M, Nagy A (1999) Variational density-functional theory for an individual excited state. Phys Rev Lett 83:4361–4364

    CAS  Google Scholar 

  161. Levy M, Nagy A (1999) Excited-state Koopmans theorem for ensembles. Phys Rev A 59:1687–1689

    CAS  Google Scholar 

  162. Levy M (1999) On time-independent density-functional theories for excited states. In: Proceedings of the 1st international workshop electron correlation and material properties, 1999, pp 299–308

    Google Scholar 

  163. Gorling A (1996) Density-functional theory for excited states. Phys Rev A 54:3912–3915

    Google Scholar 

  164. Nagy A (2005) Hardness and excitation energy. J Chem Sci 117:437–440

    CAS  Google Scholar 

  165. Perdew JP, Parr RG, Levy M, Balduz JL Jr (1982) Density-functional theory for fractional particle number: derivative discontinuities of the energy. Phys Rev Lett 49:1691–1694

    CAS  Google Scholar 

  166. Zhang YK, Yang WT (2000) Perspective on “density-functional theory for fractional particle number: derivative discontinuities of the energy”. Theor Chem Acc 103:346–348

    CAS  Google Scholar 

  167. Yang WT, Zhang YK, Ayers PW (2000) Degenerate ground states and fractional number of electrons in density and reduced density matrix functional theory. Phys Rev Lett 84: 5172–5175

    CAS  Google Scholar 

  168. Ayers PW (2008) The continuity of the energy and other molecular properties with respect to the number of electrons. J Math Chem 43:285–303

    CAS  Google Scholar 

  169. Mermin ND (1965) Thermal Properities of the inhomogeneous electron Gas. Phys Rev 137:A1441–A1443

    Google Scholar 

  170. Nalewajski RF (1992) On geometric concepts in sensitivity analysis of molecular charge distribution. Int J Quantum Chem 42:243–265

    CAS  Google Scholar 

  171. Brandhorst K, Grunenberg J (2007) Characterizing chemical bond strengths using generalized compliance constants. Chem Phys Chem 8:1151–1156

    CAS  Google Scholar 

  172. Nalewajski RF (2003) Electronic structure and chemical reactivity: density functional and information-theoretic perspectives. Adv Quantum Chem 43:119–184

    CAS  Google Scholar 

  173. Jones LH, Ryan RR (1979) Interaction coordinates and compliance constants. J Chem Phys 52:2003–2004

    Google Scholar 

  174. Swanson BI, Satija SK (1977) Molecular vibrations and reaction pathways – minimum energy coordinates and compliance constants for some tetrahedral and octahedral complexes. J Am Chem Soc 99:987–991

    CAS  Google Scholar 

  175. Decius JC (1963) Compliance matrix and molecular vibrations. J Chem Phys 38:241–248

    CAS  Google Scholar 

  176. Cardenas C, Chamorro E, Galvan M, Fuentealba P (2007) Nuclear Fukui functions from nonintegral electron number calculations. Int J Quantum Chem 107:807–815

    CAS  Google Scholar 

  177. Cardenas C, Lamsabhi AM, Fuentealba P (2006) Nuclear reactivity indices in the context of spin polarized density functional theory. Chem Phys 322:303–310

    CAS  Google Scholar 

  178. Nalewajski RF (2000) Coupling relations between molecular electronic and geometrical degrees of freedom in density functional theory and charge sensitivity analysis. Comput Chem 24:243–257

    CAS  Google Scholar 

  179. De Proft F, Liu SB, Geerlings P (1998) Calculation of the nuclear Fukui function and New relations for nuclear softness and hardness kernels. J Chem Phys 108:7549–7554

    Google Scholar 

  180. Nalewajski RF, Korchowiec J, Michalak A (1996) Reactivity criteria in charge sensitivity analysis. In: Nalewajski RF (ed) Density functional theory IV: theory of chemical reactivity. Springer, Berlin, pp 25–141

    Google Scholar 

  181. Balawender R, De Proft F, Geerlings P (2001) Nuclear Fukui function and Berlin’s binding function: prediction of the Jahn-Teller distortion. J Chem Phys 114:4441–4449

    CAS  Google Scholar 

  182. Li TL, Ayers PW, Liu SB, Swadley MJ, Aubrey-Medendorp C (2009) Crystallization force-a density functional theory concept for revealing intermolecular interactions and molecular packing in organic crystals. Chem Eur J 15:361–371

    CAS  Google Scholar 

  183. Li TL (2007) Understanding the polymorphism of aspirin with electronic calculations. J Pharm Sci 96:755–760

    CAS  Google Scholar 

  184. Li TL (2006) Understanding the large librational motion of the methyl group in aspirin and acetaminophen crystals: insights from density functional theory. Cryst Growth Des 6: 2000–2003

    CAS  Google Scholar 

  185. Li TL, Feng SX (2005) Study of crystal packing on the solid-state reactivity of indomethacin with density functional theory. Pharm Res 22:1964–1969

    CAS  Google Scholar 

  186. Feng SX, Li TL (2005) Understanding solid-state reactions of organic crystals with density functional theory-based concepts. J Phys Chem A 109:7258–7263

    CAS  Google Scholar 

  187. Swadley MJ, Li TL (2007) Reaction mechanism of 1,3,5-trinitro-s-triazine (RDX) deciphered by density functional theory. J Chem Theory Comput 3:505–513

    CAS  Google Scholar 

  188. Eickerling G, Reiher M (2008) The shell structure of atoms. J Chem Theory Comput 4:286–296

    CAS  Google Scholar 

  189. Kiewisch K, Eickerling G, Reiher M, Neugebauer J (2008) Topological analysis of electron densities from Kohn-Sham and subsystem density functional theory. J Chem Phys 128:044114

    Google Scholar 

  190. Ghosh SK, Berkowitz M (1985) A classical fluid-like approach to the density-functional formalism of many-electron systems. J Chem Phys 83:2976–2983

    CAS  Google Scholar 

  191. Nagy A, Parr RG (1994) Density-functional theory as thermodynamics. Proc Indian Acad Sci Chem Sci 106:217–227

    CAS  Google Scholar 

  192. Nagy A, Parr RG (2000) Remarks on density functional theory as a thermodynamics. J Mol Struct THEOCHEM 501:101–106

    Google Scholar 

  193. Ayers PW, Parr RG, Nagy A (2002) Local kinetic energy and local temperature in the density- functional theory of electronic structure. Int J Quantum Chem 90:309–326

    CAS  Google Scholar 

  194. Ayers PW (2005) Electron localization functions and local measures of the covariance. J Chem Sci 117:441–454

    CAS  Google Scholar 

  195. Chattaraj PK, Chamorro E, Fuentealba P (1999) Chemical bonding and reactivity: a local thermodynamic viewpoint. Chem Phys Lett 314:114–121

    CAS  Google Scholar 

  196. Becke AD, Edgecombe KE (1990) A simple measure of electron localization in atomic and molecular-systems. J Chem Phys 92:5397–5403

    CAS  Google Scholar 

  197. Silvi B, Savin A (1994) Classification of chemical-bonds based on topological analysis of electron localization functions. Nature 371:683–686

    CAS  Google Scholar 

  198. Savin A, Becke AD, Flad J, Nesper R, Preuss H, Vonschnering HG (1991) A New look at electron localization. Angew Chem 30:409–412

    Google Scholar 

  199. Bader RFW, Gillespie RJ, Macdougall PJ (1988) A physical basis for the VSEPR model of molecular-geometry. J Am Chem Soc 110:7329–7336

    CAS  Google Scholar 

  200. Gillespie RJ, Bytheway I, Dewitte RS, Bader RFW (1994) Trigonal bipyramidal and related molecules of the main-group elements – investigation of apparent exceptions to the VSEPR model through the analysis of the Laplacian of the electron-density. Inorg Chem 33: 2115–2121

    CAS  Google Scholar 

  201. Malcolm NOJ, Popelier PLA (2003) The full topology of the Laplacian of the electron density: scrutinising a physical basis for the VSEPR model. Faraday Discuss 124:353–363

    CAS  Google Scholar 

  202. Bader RFW (1980) Quantum topology of molecular charge-distributions .3. The mechanics of an atom in a molecule. J Chem Phys 73:2871–2883

    CAS  Google Scholar 

  203. Bartolotti LJ, Parr RG (1980) The concept of pressure in density functional theory. J Chem Phys 72:1593–1596

    CAS  Google Scholar 

  204. Szarek P, Sueda Y, Tachibana A (2008) Electronic stress tensor description of chemical bonds using nonclassical bond order concept. J Chem Phys 129:094102

    Google Scholar 

  205. Szarek P, Tachibana A (2007) The field theoretical study of chemical interaction in terms of the rigged QED: new reactivity indices. J Mol Model 13:651–663

    CAS  Google Scholar 

  206. Tachibana A (2005) A new visualization scheme of chemical energy density and bonds in molecules. J Mol Model 11:301–311

    CAS  Google Scholar 

  207. Tachibana A (2004) Spindle structure of the stress tensor of chemical bond. Int J Quantum Chem 100:981–993

    CAS  Google Scholar 

  208. Ichikawa K, Tachibana A (2009) Stress tensor of the hydrogen molecular ion. Phys Rev A 80:062507

    Google Scholar 

  209. Ayers PW, Jenkins S (2009) An electron-preceding perspective on the deformation of materials. J Chem Phys 130:154104

    Google Scholar 

  210. Nalewajski RF, Parr RG (2001) Information theory thermodynamics of molecules and their Hirshfeld fragments. J Phys Chem A 105:7391–7400

    CAS  Google Scholar 

  211. Ayers PW (2006) Information theory, the shape function, and the Hirshfeld atom. Theor Chem Acc 115:370–378

    CAS  Google Scholar 

  212. Nalewajski RF (2008) Use of fisher information in quantum chemistry. Int J Quantum Chem 108:2230–2252

    CAS  Google Scholar 

  213. Nalewajski RF (2006) Probing the interplay between electronic and geometric degrees-of-freedom in molecules and reactive systems. Adv Quantum Chem 51:235–305

    CAS  Google Scholar 

  214. Nalewajski RF (2005) Partial communication channels of molecular fragments and their entropy/information indices. Mol Phys 103:451–470

    CAS  Google Scholar 

  215. Nalewajski RF (2004) Communication theory approach to the chemical bond. Struct Chem 15:391–403

    CAS  Google Scholar 

  216. Nalewajski RF (2003) Information theoretic approach to fluctuations and electron flows between molecular fragments. J Phys Chem A 107:3792–3802

    CAS  Google Scholar 

  217. Nalewajski RF (2003) Information principles in the theory of electronic structure. Chem Phys Lett 372:28–34

    CAS  Google Scholar 

  218. Nalewajski RF, Switka E (2002) Information theoretic approach to molecular and reactive systems. Phys Chem Chem Phys 4:4952–4958

    CAS  Google Scholar 

  219. Nalewajski RF, Switka E, Michalak A (2002) Information distance analysis of molecular electron densities. Int J Quantum Chem 87:198–213

    CAS  Google Scholar 

  220. Nalewajski RF (2000) Entropic measures of bond multiplicity from the information theory. J Phys Chem A 104:11940–11951

    CAS  Google Scholar 

  221. Borgoo A, Godefroid M, Indelicato P, De Proft F, Geerlings P (2007) Quantum similarity study of atomic density functions: insights from information theory and the role of relativistic effects. J Chem Phys 126:044102

    CAS  Google Scholar 

  222. Sen KD, De Proft F, Borgoo A, Geerlings P (2005) N-derivative of Shannon entropy of shape function for atoms. Chem Phys Lett 410:70–76

    CAS  Google Scholar 

  223. Borgoo A, Godefroid M, Sen KD, De Proft F, Geerlings P (2004) Quantum similarity of atoms: a numerical Hartree-Fock and information theory approach. Chem Phys Lett 399: 363–367

    CAS  Google Scholar 

  224. Moens J, Jaque P, De Proft F, Geerlings P (2008) The study of redox reactions on the basis of conceptual DFT principles: EEM and vertical quantities. J Phys Chem A 112:6023–6031

    CAS  Google Scholar 

  225. Moens J, Geerlings P, Roos G (2007) A conceptual DFT approach for the evaluation and interpretation of redox potentials. Chem Eur J 13:8174–8184

    CAS  Google Scholar 

  226. Moens J, Roos G, Jaque P, Proft F, Geerlings P (2007) Can electrophilicity act as a measure of the redox potential of first-row transition metal ions? Chem Eur J 13:9331–9343

    CAS  Google Scholar 

  227. Moens J, Jaque P, De Proft F, Geerlings P (2009) A New view on the spectrochemical and nephelauxetic series on the basis of spin-polarized conceptual DFT. Chem Phys Chem 10:847–854

    CAS  Google Scholar 

  228. Liu SB (2007) Steric effect: a quantitative description from density functional theory. J Chem Phys 126:244103

    Google Scholar 

  229. Torrent-Sucarrat M, Liu SB, De Proft F (2009) Steric effect: partitioning in atomic and functional group contributions. J Phys Chem A 113:3698–3702

    CAS  Google Scholar 

  230. Anderson JSM, Ayers PW (2007) Predicting the reactivity of ambidentate nucleophiles and electrophiles using a single, general-purpose, reactivity indicator. Phys Chem Chem Phys 9:2371–2378

    CAS  Google Scholar 

  231. Li TL, Liu SB, Feng SX, Aubrey CE (2005) Face-integrated Fukui function: understanding wettability anisotropy of molecular crystals from density functional theory. J Am Chem Soc 127:1364–1365

    CAS  Google Scholar 

  232. Cardenas C, De Proft F, Chamorro E, Fuentealba P, Geerlings P (2008) Theoretical study of the surface reactivity of alkaline earth oxides: local density of states evaluation of the local softness. J Chem Phys 128:034708

    Google Scholar 

  233. Calatayud M, Tielens F, De Proft F (2008) Reactivity of gas-phase, crystal and supported V2O5 systems studied using density functional theory based reactivity indices. Chem Phys Lett 456:59–63

    CAS  Google Scholar 

  234. Sablon N, De Proft F, Geerlings P (2009) Molecular orbital-averaged Fukui function for the reactivity description of alkaline earth metal oxide clusters. J Chem Theory Comput 5: 1245–1253

    CAS  Google Scholar 

  235. Liu SB, Li TL, Ayers PW (2009) Potentialphilicity and potentialphobicity: reactivity indicators for external potential changes from density functional reactivity theory. J Chem Phys 131:114106

    Google Scholar 

  236. Liu SB, Schauer CK, Pedersen LG (2009) Molecular acidity: a quantitative conceptual density functional theory description. J Chem Phys 131:164107

    Google Scholar 

  237. De Proft F, Martin JML, Geerlings P (1996) Calculation of molecular electrostatic potentials and Fukui functions using density functional methods. Chem Phys Lett 256:400–408

    Google Scholar 

  238. Melin J, Ayers PW, Ortiz JV (2007) Removing electrons can increase the electron density: a computational study of negative Fukui functions. J Phys Chem A 111:10017–10019

    CAS  Google Scholar 

  239. Klopman G (1968) Chemical reactivity and the concept of charge and frontier-controlled reactions. J Am Chem Soc 90:223–234

    CAS  Google Scholar 

  240. Gazquez JL (1997) The hard and soft acids and bases principle. J Phys Chem A 101: 4657–4659

    CAS  Google Scholar 

  241. Melin J, Aparicio F, Subramanian V, Galvan M, Chattaraj PK (2004) Is the Fukui function a right descriptor of hard-hard interactions? J Phys Chem A 108:2487–2491

    CAS  Google Scholar 

  242. Loos R, Kobayashi S, Mayr H (2003) Ambident reactivity of the thiocyanate anion revisited: Can the product ratio be explained by the hard soft acid base principle? J Am Chem Soc 125:14126–14132

    CAS  Google Scholar 

  243. Suresh CH, Koga N, Gadre SR (2001) Revisiting Markovnikov addition to alkenes via molecular electrostatic potential. J Org Chem 66:6883–6890

    CAS  Google Scholar 

  244. Petragnani N, Stefani HA (2005) Advances in organic tellurium chemistry. Tetrahedron 61:1613–1679

    CAS  Google Scholar 

  245. Huheey JE, Keiter EA, Keiter RL (1993) Inorganic chemistry: principles of structure and reactivity. HarperCollins, New York

    Google Scholar 

  246. Drews T, Rusch D, Seidel S, Willemsen S, Seppelt K (2008) Systematic reactions of Pt(PF3)(4). Chem Eur J 14:4280–4286

    CAS  Google Scholar 

  247. Kruck T (1967) Trifluorophosphine complexes of transition metals. Angew Chem Int Ed 6:53–67

    CAS  Google Scholar 

  248. Kruck T, Baur H (1965) Synthesis of tetrakis(trifluorophosphine)-platinum(0) and tetrakis(trifluorophosphine)-palladium(0). Angew Chem Int Ed 4:521

    Google Scholar 

  249. Basolo F, Johnston RD, Pearson RG (1971) Kinetics and mechanism of substitution reactions of the tetrakis(trifluorophosphine) complexes of nickel(0) and platinum(0). Inorg Chem 10:247–251

    CAS  Google Scholar 

  250. Pei KM, Liang J, Li HY (2004) Gas-phase chemistry of nitrogen trifluoride NF3: structure and stability of its M+-NF3 (M = H, Li, Na, K) complexes. J Mol Struct 690:159–163

    CAS  Google Scholar 

  251. Borocci S, Bronzolino N, Giordani M, Grandinetti F (2006) Ligation of Be+ and Mg+ to NF3: structure, stability, and thermochernistry of the Be+-(NF3) and Mg+-(NF3) complexes. Int J Mass Spectrom 255:11–19

    Google Scholar 

  252. De Proft F, Ayers PW, Fias S, Geerlings P (2006) Woodward-Hoffmann rules in conceptual density functional theory: initial hardness response and transition state hardness. J Chem Phys 125:214101

    Google Scholar 

  253. Jaque P, Correa JV, Toro-Labbé A, De Proft F, Geerlings P (2010) Regaining the Woodward–Hoffmann rules for chelotropic reactions via conceptual DFT. Can J Chem 88:858–865

    CAS  Google Scholar 

  254. Mulliken RS (1965) Molecular scientists and molecular science: some reminiscences. J Chem Phys 43:S2–S11

    Google Scholar 

  255. Head-Gordon M (1996) Quantum chemistry and molecular processes. J Phys Chem 100:13213–13225

    CAS  Google Scholar 

  256. Bader RFW (1994) Why define atoms in real-space. Int J Quantum Chem 49:299–308

    CAS  Google Scholar 

  257. Bader RFW, Nguyen-Dang TT (1981) Quantum-theory of atoms in molecules – Dalton revisited. Adv Quantum Chem 14:63–124

    CAS  Google Scholar 

  258. Matta CF, Bader RFW (2006) An experimentalist’s reply to “what is an atom in a molecule?”. J Phys Chem A 110:6365–6371

    CAS  Google Scholar 

  259. Melin J, Ayers PW, Ortiz JV (2005) The electron-propagator approach to conceptual density-functional theory. J Chem Sci 117:387–400

    CAS  Google Scholar 

  260. Ayers PW, Melin J (2007) Computing the Fukui function from ab initio quantum chemistry: approaches based on the extended Koopmans’ theorem. Theor Chem Acc 117:371–381

    CAS  Google Scholar 

  261. Sablon N, Mastalriz R, De Proft F, Geerlings P, Reiher M (2010) Relativistic Effects on the Fukui Function. Theoret Chem Acc 126:xxx–yyy

    Google Scholar 

  262. Nalewajski RF, Korchowiec J (1997) Charge sensitivity approach to electronic structure and chemical reactivity. World Sciengific, Singapore

    Google Scholar 

  263. Ayers PW (2006) Can one oxidize an atom by reducing the molecule that contains It? Phys Chem Chem Phys 8:3387–3390

    CAS  Google Scholar 

  264. Senet P, Yang M (2005) Relation between the Fukui function and the Coulomb hole. J Chem Sci 117:411–418

    CAS  Google Scholar 

  265. Min KS, DiPasquale AG, Rheingold AL, White HS, Miller JS (2009) Observation of redox-induced electron transfer and spin crossover for dinuclear cobalt and iron complexes with the 2,5-Di-tert-butyl-3,6-dihydroxy-1,4-benzoquinonate bridging ligand. J Am Chem Soc 131:6229–6236

    CAS  Google Scholar 

  266. Miller JS, Min KS (2009) Oxidation leading to reduction: redox-induced electron transfer (RIET). Angew Chem Int Ed 48:262–272

    CAS  Google Scholar 

  267. Dewar MJS (1989) A critique of frontier orbital theory. J Mol Struct THEOCHEM 59: 301–323

    CAS  Google Scholar 

  268. Ayers PW, unpublished

    Google Scholar 

  269. Jaque P, Toro-Labbé A, Geerlings P, De Proft F (2009) Theoretical study of the regioselectivity of 2 + 2 photocycloaddition reactions of Acroleins with olefins. J Phys Chem A 113:332–344

    CAS  Google Scholar 

  270. Pinter B, De Proft F, Veszpremi T, Geerlings P (2008) Photochemical nucleophilic aromatic substitution: a conceptual DFT study. J Org Chem 73:1243–1252

    CAS  Google Scholar 

Download references

Acknowledgments

Paul Johnson thanks the governments of Ontario and Canada for OGS-M and CGS-M graduate fellowships. Paul Ayers acknowledges research support for NSERC, Sharcnet, and the Canada Research Chairs. Paul Geerlings acknowledges the Fund for Sciengific Reasearch-Flanders (FWO) and the Free University of Brussels (VUB) for continuous support to his group. He thanks all present and past group members for many years of intellectually stimulating work in the area of Conceptual DFT. Tim Fievez thanks the FWO-Flanders for a Predoctoral Fellowhip as Aspirant. Lee Bartolotti acknowledges financial support from RENCI@ECU.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Geerlings .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Johnson, P.A., Bartolotti, L.J., Ayers, P.W., Fievez, T., Geerlings, P. (2011). Charge Density and Chemical Reactions: A Unified View from Conceptual DFT. In: Gatti, C., Macchi, P. (eds) Modern Charge-Density Analysis. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3836-4_21

Download citation

Publish with us

Policies and ethics