Skip to main content

Fundamentals of Acoustic Cavitation and Sonochemistry

  • Chapter
  • First Online:
Book cover Theoretical and Experimental Sonochemistry Involving Inorganic Systems

Abstract

Acoustic cavitation is the formation and collapse of bubbles in liquid irradiated by intense ultrasound. The speed of the bubble collapse sometimes reaches the sound velocity in the liquid. Accordingly, the bubble collapse becomes a quasi-adiabatic process. The temperature and pressure inside a bubble increase to thousands of Kelvin and thousands of bars, respectively. As a result, water vapor and oxygen, if present, are dissociated inside a bubble and oxidants such as OH, O, and H2O2 are produced, which is called sonochemical reactions. The pulsation of active bubbles is intrinsically nonlinear. In the present review, fundamentals of acoustic cavitation, sonochemistry, and acoustic fields in sonochemical reactors have been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kinsler LE, Frey AR, Coppens AB, Sanders JV (1982) Fundamentals of acoustics. Wiley, New York

    Google Scholar 

  2. Cheeke JDN (2002) Fundamentals and applications of ultrasonic waves. CRC Press, Boca Raton

    Google Scholar 

  3. Maris H, Balibar S (2000) Negative pressures and cavitation in liquid helium. Phys Today 53:29–34

    Article  CAS  Google Scholar 

  4. Yasui K, Tuziuti T, Sivakumar M, Iida Y (2004) Sonoluminescence. Appl Spectrosc Rev 39:399–436

    Article  CAS  Google Scholar 

  5. Neppiras EA (1980) Acoustic cavitation. Phys Rep 61:159–251

    Article  Google Scholar 

  6. Young FR (1999) Cavitation. Imperial College, London

    Book  Google Scholar 

  7. Suslick KS, Flannigan DJ (2008) Inside a collapsing bubble: Sonoluminescence and the conditions during cavitation. Ann Rev Phys Chem 59:659–683

    Article  CAS  Google Scholar 

  8. Pecha R, Gompf B (2000) Micoimplosions: cavitaion collapse and shock wave emission on a nanosecond time scale. Phys Rev Lett 84:1328–1330

    Article  CAS  Google Scholar 

  9. Holzfuss J, Rüggeberg M, Billo A (1998) Shock wave emissions of a sonoluminescing bubble. Phys Rev Lett 81:5434–5437

    Article  CAS  Google Scholar 

  10. Weninger KR, Camara CG, Putterman SJ (2001) Observation of bubble dynamics within luminescent cavitation clouds: sonoluminescence at the nano-scale. Phys Rev E 63:016310

    Article  CAS  Google Scholar 

  11. Fujikawa S, Akamatsu T (1980) Effects of the nonequilibrium condensation of vapor on the pressure wave produced by the collapse of a bubble in a liquid. J Fluid Mech 97:481–512

    Article  CAS  Google Scholar 

  12. Henglein A (1993) Contributions to various aspects of cavitation chemistry. In: Mason TJ (ed) Advances in Sonochemistry, vol. 3:17–83, JAI Press, London

    Google Scholar 

  13. Riesz P, Kondo T (1992) Free radical formation induced by ultrasound and its biological implications. Free Radic Biol Med 13:247–270

    Article  CAS  Google Scholar 

  14. Leighton TG (1994) The acoustic bubble. Academic Press, London

    Google Scholar 

  15. Yasui K, Tuziuti T, Lee J, Kozuka T, Towata A, Iida Y (2010) Numerical simulations of acoustic cavitation noise with the temporal fluctuation in the number of bubbles. Ultrason Sonochem 17:460–472

    Article  CAS  Google Scholar 

  16. Yasui K (2002) Influence of ultrasonic frequency on multibubble sonoluminescence. J Acoust Soc Am 112:1405–1413

    Article  CAS  Google Scholar 

  17. Ashokkumar M, Lee J, Iida Y, Yasui K, Kozuka T, Tuziuti T, Towata A (2009) The detection and control of stable and transient acoustic cavitation bubbles. Phys Chem Chem Phys 11:10118–10121

    Article  CAS  Google Scholar 

  18. Ashokkumar M, Hodnett M, Zeqiri B, Grieser F, Price G (2007) Acoustic emission spectra from 515 kHz cavitation in aqueous solutions containing surface-active solutes. J Am Chem Soc 129:2250–2258

    Article  CAS  Google Scholar 

  19. Lee J, Ashokkumar M, Kentish S, Grieser F (2005) Determination of the size distribution of sonoluminescence bubbles in a pulsed acoustic field. J Am Chem Soc 127:16810–16811

    Article  CAS  Google Scholar 

  20. Guan J, Matula TJ (2003) Time scales for quenching single-bubble sonoluminescence in the presence of alcohols. J Phys Chem 107:8917–8921

    CAS  Google Scholar 

  21. Madanshetty SI, Apfel RE (1991) Acoustic microcavitation: Enhancement and applications. J Acoust Soc Am 90:1508–1514

    Article  CAS  Google Scholar 

  22. Tuziuti T, Yasui K, Sivakumar M, Iida Y, Miyoshi N (2005) Correlation between acoustic cavitation noise and yield enhancement of sonochemical reaction by particle addition. J Phys Chem A 109:4869–4872

    Article  CAS  Google Scholar 

  23. Borkent BM, Arora M, Ohl CD, Jong ND, Versluis M, Lohse D, Morch KA, Klaseboer E, Khoo BC (2008) The acceleration of solid particles subjected to cavitation nucleation. J Fluid Mech 610:157–182

    Article  CAS  Google Scholar 

  24. Yount DE, Gillary EW, Hoffman DC (1984) A microscopic investigation of bubble formation nuclei. J Acoust Soc Am 76:1511–1521

    Article  Google Scholar 

  25. Bremond N, Arora M, Dammer SM, Lohse D (2006) Interaction of cavitation bubbles on a wall. Phys Fluids 18:121505 (10 pages)

    Article  Google Scholar 

  26. Calvisi ML, Lindau O, Blake JR, Szeri AJ (2007) Shape stability and violent collapse of microbubbles in acoustic traveling waves. Phys Fluids 19:047101 (15 pages)

    Article  Google Scholar 

  27. Wang E, Chen W, Lu M, Wei R (2003) Bubble oscillations driven by aspherical ultrasound in liquid. J Acoust Soc Am 114:1898–1904

    Article  CAS  Google Scholar 

  28. Lee J, Tuziuti T, Yasui K, Kentish S, Grieser F, Ashokkumar M, Iida Y (2007) Influence of surface-active solutes on the coalescence, clustering, and fragmentation of acoustic bubbles confined in a microspace. J Phys Chem C 111:19015–19023

    Article  CAS  Google Scholar 

  29. Matula TJ, Cordry SM, Roy RA, Crum LA (1997) Bjerknes force and bubble levitation under single-bubble sonoluminescence conditions. J Acoust Soc Am 102:1522–1527

    Article  Google Scholar 

  30. Yasui K (2001) Temperature in multibubble sonoluminescence. J Chem Phys 115:2893–2896

    Article  CAS  Google Scholar 

  31. Crum LA (1980) Measurements of the growth of air bubbles by rectified diffusion. J Acoust Soc Am 68:203–211

    Article  Google Scholar 

  32. Lee J, Kentish S, Ashokkumar M (2005) Effect of surfactants on the rate of growth of an air bubble by rectified diffusion. J Phys Chem B 109:14595–14598

    Article  CAS  Google Scholar 

  33. Louisnard O, Gomez F (2003) Growth by rectified diffusion of strongly acoustically forced gas bubbles in nearly saturated liquids. Phys Rev E 67:036610

    Article  Google Scholar 

  34. Iida Y, Ashokkumar M, Tuziuti T, Kozuka T, Yasui K, Towata A, Lee J (2010) Bubble population phenomena in sonochemical reactor: II Estimation of bubble size distribution and its number density by simple coalescence model calculation. Ultrason Sonochem 17:480–486

    Article  CAS  Google Scholar 

  35. Mettin R (2005) Bubble structures in acoustic cavitation. In Doinikov AA (ed) Bubble and particle dynamics in acoustic fields: modern trends and applications, pp. 1–36. Research Signpost, Trivandrum

    Google Scholar 

  36. Beyer RT (1997) Nonlinear acoustics. Acoustical Society of America, New York

    Google Scholar 

  37. Mitome H, Kozuka T, Tuziuti T, Wang L (1997) Quasi acoustic streaming induced by generation of cavitation bubbles. IEEE Ultrason Sympo Proc 1:533–536

    Google Scholar 

  38. Mettin R, Akhatov I, Parlitz U, Ohl CD, Lauterborn W (1997) Bjerknes forces between small cavitation bubbles in a strong acoustic field. Phys Rev E 56:2924–2931

    Article  CAS  Google Scholar 

  39. Yasui K, Tuziuti T, Lee J, Kozuka T, Towata A, Iida Y (2008) The range of ambient radius for an active bubble in sonoluminescence and sonochemical reactions. J Chem Phys 128:184705

    Article  Google Scholar 

  40. Brenner MP, Hilgenfeldt S, Lohse D (2002) Single-bubble sonoluminescence. Rev Mod Phys 74:425–484

    Article  CAS  Google Scholar 

  41. Prosperetti A, Lezzi A (1986) Bubble dynamics in a compressible liquid. Part I. First-order theory. J Fluid Mech 168:457–478

    Article  CAS  Google Scholar 

  42. Yasui K (2001) Effect of liquid temperature on sonoluminescence. Phys Rev E 64:016310

    Article  CAS  Google Scholar 

  43. Yasui K, Tuziuti T, Sivakumar M, Iida Y (2005) Theoretical study of single-bubble sonochemistry. J Chem Phys 122:224706

    Article  Google Scholar 

  44. Vanhille C, Campos-Pozuelo C (2008) Nonlinear ultrasonic propagation in bubbly liquids: A numerical model. Ultrasound Med Biol 34:792–808

    Article  Google Scholar 

  45. Tuziuti T, Yasui K, Lee J, Kozuka T, Towata A, Iida Y (2009) Influence of surface active solute on ultrasonic waveform distortion in liquid containing air bubbles. J Phys Chem A 113:8893–8900

    Article  CAS  Google Scholar 

  46. Hilgenfeldt S, Grossmann S, Lohse D (1999) A simple explanation of light emission in sonoluminescence. Nature (London) 398:402–405

    Article  CAS  Google Scholar 

  47. Yasui K (1999) Mechanism of single-bubble sonoluminescence. Phys Rev E 60:1754–1758

    Article  CAS  Google Scholar 

  48. An Y (2006) Mechanism of single-bubble sonoluminescence. Phys Rev E 74:026304 (14 pages)

    Article  Google Scholar 

  49. Flannigan DJ, Suslick KS (2005) Plasma formation and temperature measurement during single-bubble cavitation. Nature (London) 434:52–55

    Article  CAS  Google Scholar 

  50. Hatanaka S, Mitome H, Yasui K, Hayashi S (2002) Single-bubble sonochemiluminescence in aqueous luminol solutions. J Am Chem Soc 124:10250–10251

    Article  CAS  Google Scholar 

  51. Didenko YT, Suslick KS (2002) The energy efficiency and formation of photons, radicals and ions during single-bubble cavitation. Nature (London) 418:394–397

    Article  CAS  Google Scholar 

  52. Koda S, Tanaka K, Sakamoto H, Matsuoka T, Nomura H (2004) Sonochemical efficiency during single-bubble cavitation in water. J Phys Chem A 108:11609–11612

    Article  CAS  Google Scholar 

  53. Yasui K, Tuziuti T, Iida Y, Mitome H (2003) Theoretical study of the ambient-pressure dependence of sonochemical reactions. J Chem Phys 119:346–356

    Article  CAS  Google Scholar 

  54. Yasui K, Tuziuti T, Iida Y (2004) Optimum bubble temperature for the sonochemical production of oxidants. Ultrasonics 42:579–584

    Article  CAS  Google Scholar 

  55. Brotchie A, Grieser F, Ashokkumar M (2009) Effect of power and frequency on bubble-size distributions in acoustic cavitation. Phys Rev Lett 102:084302 (4 pages)

    Article  Google Scholar 

  56. Mason TJ (1999) Sonochemistry. Oxford University Press, Oxford

    Google Scholar 

  57. Suslick KS, Hammerton DA, Cline RE, J (1986) The sonochemical hot spot. J Am Chem Soc 108:5641–5642

    Article  CAS  Google Scholar 

  58. Yasui K (1996) Variation of liquid temperature at bubble wall near the sonoluminescence threshold. J Phys Soc Jpn 65:2830–2840

    Article  CAS  Google Scholar 

  59. Storey BD, Szeri AJ (2000) Water vapour, sonoluminescence and sonochemistry. Proc R Soc Lond A 456:1685–1709

    Article  CAS  Google Scholar 

  60. Hua I, Hochemer RH, Hoffmann MR (1995) Sonolytic hydrolysis of p-nitrophenyl acetate: The role of supercritical water. J Phys Chem 99:2335–2342

    Article  CAS  Google Scholar 

  61. Sostaric JZ (1999) Interfacial effects on aqueous sonochemistry and sonoluminescence. PhD thesis, University of Melbourne, Australia

    Google Scholar 

  62. Yasui K (2002) Effect of volatile solutes on sonoluminescence. J Chem Phys 116:2945–2954

    Article  CAS  Google Scholar 

  63. Yasui K, Tuziuti T, Kozuka T, Towata A, Iida Y (2007) Relationship between the bubble temperature and main oxidant created inside an air bubble under ultrasound. J Chem Phys 127:154502

    Article  Google Scholar 

  64. Parlitz U, Mettin R, Luther S, Akhatov I, Voss M, Lauterborn W (1999) Spatio-temporal dynamics of acoustic cavitation bubble cloud. Philos Trans R Soc London A 357:313–334

    Article  CAS  Google Scholar 

  65. Oolman TO, Blanch HW (1986) Bubble coalescence in stagnant liquids. Chem Engnrg Commun 43:237–261

    Article  CAS  Google Scholar 

  66. Iida Y, Ashokkumar M, Tuziuti T, Kozuka T, Yasui K, Towata A, Lee J (2010) Bubble population phenomena in sonochemical reactor: I Estimation of bubble size distribution and its number density with pulsed sonocation – laser diffraction method. Ultrason Sonochem 17:473–479

    Article  CAS  Google Scholar 

  67. Lee J, Yasui K, Tuziuti T, Kozuka T, Towata A, Iida Y (2008) Spatial distribution enhancement of sonoluminescence activity by altering sonication and solution conditions. J Phys Chem B 112:15333–15341

    Article  CAS  Google Scholar 

  68. Ashokkumar M, Hall R, Mulvaney P, Grieser F (1997) Sonoluminescence from aqueous alcohol and surfactant solutions. J Phys Chem B 101:10845–10850

    Article  CAS  Google Scholar 

  69. Segebarth N, Eulaerts O, Reisse J, Crum LA, Matula TJ (2002) Correlation between acoustic cavitation noise, bubble population, and sonochemistry. J Phys Chem B 106:9181–9190

    Article  CAS  Google Scholar 

  70. Tuziuti T, Yasui K, Iida Y, Sivakumar M, Koda S (2004) Laser-light scattering from a multibubble system for sonochemistry. J Phys Chem A 108:9011–9013

    Article  CAS  Google Scholar 

  71. Tuziuti T, Yasui K, Lee J, Kozuka T, Towata A, Iida Y (2008) Mechanism of enhancement of sonochemical-reaction efficiency by pulsed ultrasound. J Phys Chem A 112:4875–4878

    Article  CAS  Google Scholar 

  72. Chow R, Blindt R, Chivers R, Povey M (2005) A study on the primary and secondary nucleation of ice by power ultrasound. Ultrasonics 43:227–230

    Article  CAS  Google Scholar 

  73. Luque de Castro MD, Priego-Capote F (2007) Ultrasound-assisted crystallization (sonocrystallization). Ultrason Sonochem 14:717–724

    Article  CAS  Google Scholar 

  74. Kordylla A, Krawczyk T, Tumakaka F, Schembecker G (2009) Modeling ultrasound-induced nucleation during cooling crystallization. Chem Engnrg Sci 64:1635–1642

    Article  CAS  Google Scholar 

  75. Saclier M, Peczalski R, Andrieu J (2010) A theoretical model for ice primary nucleation induced by acoustic cavitation. Ultrason Sonochem 17:98–105

    Article  CAS  Google Scholar 

  76. Xu M, Lu Y, Liu Y, Shi S, Qian T, Lu D (2006) Sonochemical synthesis of monosized spherical BaTiO3 particles. Powder Technol 161:185–189

    Article  CAS  Google Scholar 

  77. Testinon A, Buscaglia MT, Viviani M, Buscaglia V, Nanni P (2004) Synthesis of BaTiO3 particles with tailored size by precipitation from aqueous solutions. J Am Ceram Soc 87:79–83

    Article  Google Scholar 

  78. Elder SA (1959) Cavitation microstreaming. J Acoust Soc Am 31:54–64

    Article  Google Scholar 

  79. Walton DJ, Phull SS (1996) Sonoelectrochemistry. In: Mason TJ (ed) Advances in Sonochemistry, vol. 4:205–284, JAI Press, Greenwich

    Chapter  Google Scholar 

  80. Hacias KJ, Cormier GJ, Nourie SM, Kubel EJ (1997) Guide to acid, alkaline, emulsion, and ultrasonic cleaning. ASM International, Materials Park

    Google Scholar 

  81. Lamminen MO, Walker HW, Weavers LK (2006) Cleaning of particle-fouled membranes during cross-flow filtration using an embedded ultrasonic transducer system. J Membrane Sci 283:225–232

    Article  CAS  Google Scholar 

  82. Ohl CD, Arora M, Dijkink R, Janve V, Lohse D (2006) Surface cleaning from laser-induced cavitation bubbles. Appl Phys Lett 89:074102 (3 pages)

    Article  Google Scholar 

  83. Kim W, Kim TH, Choi J, Kim HY (2009) Mechanism of particle removal by megasonic waves. Appl Phys Lett 94:081908 (3 pages)

    Article  Google Scholar 

  84. Bakhtari K, Guldiken RO, Busnaina AA, Park JG (2006) Experimental and analytical study of semicrometer particle removal from deep trenches. J Electrochem Soc 153:C603–C607

    Article  CAS  Google Scholar 

  85. Bakhtari K, Guldiken RO, Makaram P, Busnaina AA, Park JG (2006) Experimental and numerical investigation of nanoparticle removal using acoustic streaming and the effect of time. J Electrochem Soc 153:G846–G850

    Article  CAS  Google Scholar 

  86. Yasui K, Kozuka T, Tuziuti T, Towata A, Iida Y, King J, Macey P (2007) FEM calculation of an acoustic field in a sonochemical reactor. Ultrason Sonochem 14:605–614

    Article  CAS  Google Scholar 

  87. Dahnke S, Keil F (1998) Modeling of sound fields in liquids with a nonhomogeneous distribution of cavitation bubbles as a basis for the design of sonochemical reactors. Chem Eng Technol 21:873–877

    Article  Google Scholar 

  88. Wilson PS, Roy RA, Carey WM (2005) Phase speed and attenuation in bubbly liquids inferred from impedance measurements near the individual bubble resonance frequency. J Acoust Soc Am 117:1895–1910

    Article  Google Scholar 

  89. Yasui K, Iida Y, Tuziuti T, Kozuka T, Towata A (2008) Strongly interacting bubbles under an ultrasonic horn. Phys Rev E 77:016609

    Article  Google Scholar 

  90. Yasui K, Lee J, Tuziuti T, Towata A, Kozuka T, Iida Y (2009) Influence of the bubble-bubble interaction on destruction of encapsulated microbubbles under ultrasound. J Acoust Soc Am 126:973–982

    Article  Google Scholar 

  91. Ida M, Naoe T, Futakawa M (2007) Suppression of cavitation inception by gas bubble injection: A numerical study focusing on bubble-bubble interaction. Phys Rev E 76:046309

    Article  Google Scholar 

  92. Gogate PR, Shirgaonkar IZ, Sivakumar M, Senthilkumar P, Vichare NP, Pandit AB (2001) Cavitation reactors: Efficiency assessment using a model reaction. AIChE J 47:2526–2538

    Article  CAS  Google Scholar 

  93. Wang X, Zhang Y (2009) Degradation of alachlor in aqueous solution by using hydrodynamic cavitation. J Haz Mater 161:202–207

    Article  CAS  Google Scholar 

Download references

Acknowledgments

I would like to thank my coworkers T.Tuziuti, J.Lee, T.Kozuka, A.Towata, and Y.Iida for useful discussions. I would also like to thank H.Mitome for his encouragement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyuichi Yasui .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Yasui, K. (2010). Fundamentals of Acoustic Cavitation and Sonochemistry. In: Ashokkumar, M. (eds) Theoretical and Experimental Sonochemistry Involving Inorganic Systems. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3887-6_1

Download citation

Publish with us

Policies and ethics