Skip to main content

Cavitation Generation and Usage Without Ultrasound: Hydrodynamic Cavitation

  • Chapter
  • First Online:

Abstract

Hydrodynamic Cavitation, which was and is still looked upon as an unavoidable nuisance in the flow systems, can be a serious contender as an alternative to acoustic cavitation for harnessing the spectacular effects of cavitation in physical and chemical processing. The present chapter covers the basics of hydrodynamic cavitation including the considerations for the bubble dynamics analysis, reactor designs and recommendations for optimum operating parameters. An overview of applications in different areas of physical, chemical and biological processing on scales ranging from few grams to several hundred kilograms has also been presented. Since hydrodynamic cavitation was initially proposed as an alternative to acoustic cavitation, it is necessary to compare the efficacy of both these modes of cavitations for a variety of applications and hence comparisons have been discussed either on the basis of energy efficiency or based on the scale of operation. Overall it appears that hydrodynamic cavitation results in conditions similar to those generated using acoustic cavitation but at comparatively much larger scale of operation and with better energy efficiencies.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Rayleigh L (1917) On the pressure developed in a liquid during the collapse of a spherical cavity. Philanthropic Mag 34:94–98

    Google Scholar 

  2. Chatterjee D, Arakeri VH (1997) Towards the concept of hydrodynamic cavitation control. J Fluid Mech 332:377–394

    CAS  Google Scholar 

  3. Gogate PR, Pandit AB (2001) Hydrodynamic cavitation reactors: A state of the art review. Rev Chem Eng 17:1–85

    Article  CAS  Google Scholar 

  4. Versluis M, Schmitz B, Von der Heydt A, Lohse D (2000) How snapping shrimp snap: Through cavitating bubbles. Science 289:2114–2117

    Article  CAS  Google Scholar 

  5. Gogate PR, Pandit AB (2005) A review and assessment of hydrodynamic cavitation as a technology for the future. Ultrason Sonochem 12:21–27

    Article  CAS  Google Scholar 

  6. Moholkar VS, Pandit AB (1997) Bubble behavior in hydrodynamic cavitation: Effect of turbulence. AIChE J 43:1641–1648

    Article  CAS  Google Scholar 

  7. Gogate PR, Pandit AB (2000) Engineering design methods for cavitation reactors II: Hydrodynamic cavitation reactors. AIChE J 46:1641–1649

    Article  CAS  Google Scholar 

  8. Yan Y, Thorpe RB, Pandit AB (1988) Cavitation noise and its suppression by air in orifice flow. In: Proceedings of the International Symposium on Flow Induced Vibration and Noise, Chicago, ASME, pp 25–40

    Google Scholar 

  9. Yan Y, Thorpe RB (1990) Flow regime transitions due to cavitation in flow through an orifice. Int J Multiphase flow 16:1023–1045

    Article  CAS  Google Scholar 

  10. Tullis JP, Govindrajan R (1973) Cavitation and size scale effect for orifices. J Hydraul Div HY13:417–430

    Google Scholar 

  11. Moholkar VS, Senthilkumar P, Pandit AB (1999) Hydrodynamic cavitation for sonochemical effects. Ultrason Sonochem 6:53–65

    Article  CAS  Google Scholar 

  12. Jyoti KK, Pandit AB (2001) Water disinfection by acoustic and hydrodynamic cavitation. Biochem Eng J 7:201–212

    Article  CAS  Google Scholar 

  13. Sivakumar M, Pandit AB (2002) Wastewater treatment: A novel energy efficient hydrodynamic cavitational technique. Ultrason Sonochem 9:123–131

    Article  CAS  Google Scholar 

  14. Kelkar MA, Gogate PR, Pandit AB (2008) Intensification of esterification of acids for synthesis of biodiesel using acoustic and hydrodynamic cavitation. Ultrason Sonochem 15:188–194

    Article  CAS  Google Scholar 

  15. Vichare NP, Gogate PR, Pandit AB (2000) Optimization of Hydrodynamic Cavitation Using a Model Reaction. Chem Eng Tech 23:683–690

    Article  CAS  Google Scholar 

  16. Gogate PR, Shirgaonkar IZ, Sivakumar M, Senthilkumar P, Vichare NP, Pandit AB (2001) Cavitation reactors: Efficiency analysis using a model reaction. AIChE J 47:2326–2338

    Article  Google Scholar 

  17. Gogate PR, Pandit AB (2004) Sonochemical reactors: Scale up aspects. Ultrason Sonochem 11:105–117

    Article  CAS  Google Scholar 

  18. Kumar PS, Pandit AB (1999) Modeling hydrodynamic cavitation. Chem Eng Tech 22:1017–1027

    Article  CAS  Google Scholar 

  19. Moholkar VS, Pandit AB (2001) Numerical investigations in the behaviour of one-dimensional bubbly flow in hydrodynamic cavitation. Chem Eng Sci 56:1411–1418

    Article  CAS  Google Scholar 

  20. Moholkar VS, Pandit AB (2001) Modeling of hydrodynamic cavitation reactors: a unified approach. Chem Eng Sci 56:6295–6302

    Article  CAS  Google Scholar 

  21. Kanthale PM, Gogate PR, Wilhelm AM, Pandit AB (2005) Dynamics of cavitational bubbles and design of a hydrodynamic cavitational reactor: cluster approach. Ultrason Sonochem 12:441–452

    Article  CAS  Google Scholar 

  22. Sharma A, Gogate PR, Mahulkar A, Pandit AB (2008) Modeling of hydrodynamic cavitation reactors using orifice plates considering hydrodynamics and chemical reactions occurring in bubble. Chem Eng J 143:201–209

    Article  CAS  Google Scholar 

  23. Davies JT (1972) Turbulence phenomenon. Academic Press, New York

    Google Scholar 

  24. Hansson I, Morch KA, Preece CM (1977) A comparison of u1trasonically generated cavitation erosion and natural flow cavitation erosion. In: Proceedings of the Ultrasonics International Conference, Brighton, UK, pp 267–274

    Google Scholar 

  25. Shirgaonkar IZ, Lothe RR, Pandit AB (1998) Comments on the mechanism of microbial cell disruption in High Pressure and High speed devices. Biotech Prog 14:657–660

    Article  CAS  Google Scholar 

  26. Senthilkumar P, Sivakumar M, Pandit AB (2000) Experimental quantification of chemical effects of hydrodynamic cavitation. Chem Eng Sci 55:1633–1639

    Article  Google Scholar 

  27. Sampathkumar K, Moholkar VS (2007) Conceptual design of a novel hydrodynamic cavitation reactor. Chem Eng Sci 62:2698–2711

    Article  Google Scholar 

  28. Pandit AB, Joshi JB (1993) Hydrolysis of fatty oils: Effect of cavitation. Chem Eng Sci 48:3440–3442

    Article  CAS  Google Scholar 

  29. Chivate MM, Pandit AB (1993) Effect of hydrodynamic and sonic cavitation on aqueous polymeric solutions. Ind Chem Engr 35:52–57

    CAS  Google Scholar 

  30. Ambulgekar GV, Samant SD, Pandit AB (2004) Oxidation of alkylarenes to the corresponding acids using aqueous potassium permanganate by hydrodynamic cavitation. Ultrason Sonochem 11:191–196

    Article  CAS  Google Scholar 

  31. Ambulgekar GV, Samant SD, Pandit AB (2005) Oxidation of alkylarenes using aqueous potassium permanganate under cavitation: Comparison of acoustic and hydrodynamic techniques. Ultrason Sonochem 12:85–90

    Article  CAS  Google Scholar 

  32. Zhang Y, Dube MA, Mclean DD, Kates M (2003) Biodiesel production from waste cooking oil: 1 Process design and technological assessment. Biores Tech 89:1–16

    Article  CAS  Google Scholar 

  33. Freedman B, Butterfield RO, Pryde EH (1986) Transesterification kinetics of soyabean oil. J Am Oil Chem Soc 63:1375–1380

    Article  CAS  Google Scholar 

  34. Freedman B, Pryde EH, Mounts TL (1984) Variables affecting the yields of fatty esters from transesterified vegetable oils. J Am Oil Chem Soc 61:1638–1643

    Article  CAS  Google Scholar 

  35. Gogate PR (2008) Cavitational reactors for process Intensification of chemical processing applications: A critical review. Chem Eng Proc 47:515–527

    Article  CAS  Google Scholar 

  36. Patil MN, Pandit AB (2007) Cavitation-A novel technique for nano-suspensions/nanoemulsions. Ultrason Sonochem 14:519–530

    Article  CAS  Google Scholar 

  37. Moser WR, Marshik-Geurts BJ, Kingsley J, Lemberger M, Willette R, Chan A, Sunstrom JE, Boye AJ (1995) The synthesis and characterization of solid state materials produced by high shear hydrodynamic cavitation. J Mater Res 10:2322–2335

    Article  CAS  Google Scholar 

  38. Sunstrom JE, Moser WR, Marshik-Guerts B (1996) General route to nanocrystalline oxides by hydrodynamic cavitation. Chem Mater 8:2061–2067

    Article  CAS  Google Scholar 

  39. Moser WR, Sunstrom JE, Marshik-Guerts B (1996) The synthesis of nanostructured pure-phase catalysts by hydrodynamic cavitation, in: Moser WR (eds.) Proceedings of the Advanced Catalysts and Nanostructured Materials, pp 285-306.

    Google Scholar 

  40. Solonitsyn RA, Fumbarev AG, Pilipenko SD (1991) Use of hydrodynamic flow cavitation in pulp and paper technology. Bum Prom-st 8–9:16–19

    Google Scholar 

  41. Danforth DN (1986) Effect of refining parameters on paper properties. Proceedings of the International Conference on New Technologies in Refining, 2, PIRA, Birmingham, England, UK

    Google Scholar 

  42. Solonitsyn RA, Fumbarov AG, Tomashchuk GL, Grinin TV (1987) Advantages of Cavitation Method for Activation of Waste Paper. Bum Prom-St 1:25–27

    Google Scholar 

  43. Geciova J, Bury D, Jelen P (2002) Methods for disruption of microbial cells for potential use in the dairy industry – a review. Int Dairy J 12:541–553

    Article  CAS  Google Scholar 

  44. Harrison STL (2002) Bacterial cell disruption: A key unit operation in the recovery of intracellular products. Biotech Adv 9:217–240

    Article  Google Scholar 

  45. Harrison STL, Pandit AB (1992) The disruption of microbial cells by hydrodynamic cavitation. 9th International Biotechnology Symp. Washington, DC

    Google Scholar 

  46. Save SS, Pandit AB, Joshi JB (1994) Microbial cell disruption: Role of cavitation. Chem Eng J 55:B67–B72

    Google Scholar 

  47. Save SS, Pandit AB, Joshi JB (1997) Use of hydrodynamic cavitation for large scale cell disruption. Chem Eng Res Des 75:41–49

    Google Scholar 

  48. Balasundaram B, Pandit AB (2001) Selective release of invertase by hydrodynamic cavitation. Biochem Eng J 8:251–256

    Article  CAS  Google Scholar 

  49. Balasundaram B, Pandit AB (2001) Significance of location of enzymes on their release during microbial cell disruption. Biotech Bioeng 75:607–614

    Article  CAS  Google Scholar 

  50. Balasundaram B, Harrison STL (2006) Study of physical and biological factors involved in the disruption of E. coli by hydrodynamic cavitation. Biotech Prog 22:907–913

    Article  CAS  Google Scholar 

  51. Balasundaram B, Harrison STL (2006) Disruption of Brewers’ yeast by hydrodynamic cavitation: Process variables and their influence on selective release. Biotech Bioeng 94:303–311

    Article  CAS  Google Scholar 

  52. Chisti Y, Moo-Young M (1986) Disruption of microbial cells for intracellular products. Enz Microb Tech 8:194–204

    Article  CAS  Google Scholar 

  53. Farkade VD, Harrison STL, Pandit AB (2005) Heat induced translocation of proteins and enzymes within the cells: an effective way to optimize the microbial cell disruption process. Biochem Eng J 23:247–257

    Article  CAS  Google Scholar 

  54. Farkade VD, Harrison STL, Pandit AB (2006) Improved cavitational cell disruption following pH pretreatment for the extraction of β-galactosidase from Kluveromyces lactis. Biochem Eng J 31:25–30

    Article  CAS  Google Scholar 

  55. Anand H, Balasundaram B, Pandit AB, Harrison STL (2007) The effect of chemical pretreatment combined with mechanical disruption on the extent of disruption and release of intracellular protein from E. coli. Biochem Eng J 35:166–173

    Article  CAS  Google Scholar 

  56. Mason TJ, Joyce E, Phull SS, Lorimer JP (2003) Potential uses of ultrasound in the biological decontamination of water. Ultrason Sonochem 10:319–323

    Article  CAS  Google Scholar 

  57. Scherba G, Weigel RM, O’Brien WD (1991) Quantitative assessment of the germicidal efficacy of ultrasonic energy. App Env Microb 57:2079–2084

    CAS  Google Scholar 

  58. Doulah MS (1977) Mechanism of disintegration of biological cells in ultrasonic cavitation. Biotech Bioeng 19:649–660

    Article  CAS  Google Scholar 

  59. Phull SS, Newman AP, Lorimer JP, Pollet B, Mason TJ (1997) The development and evaluation of ultrasound in the biocidal treatment of water. Ultrason Sonochem 4:157–164

    Article  CAS  Google Scholar 

  60. Piyasena P, Mohareb E, McKellar RC (2003) Inactivation of microbes using ultrasound: A review. Int J Food Microb 87:207–216

    Article  CAS  Google Scholar 

  61. Cheremissinoff NP, Cheremissinoff PN, Trattner RB (1981) Chemical and nonchemical disinfection. Ann Arbor Science Publishing, Ann Arbor, MI

    Google Scholar 

  62. Jyoti KK, Pandit AB (2003) Water disinfection by acoustic and hydrodynamic cavitation. Biochem Eng J 7:201–212

    Article  Google Scholar 

  63. Jyoti KK, Pandit AB (2004) Effect of cavitation on chemical disinfection efficiency. Water Res 38:2249–2258

    Article  CAS  Google Scholar 

  64. Chand R, Bremner DH, Namkung KC, Collier PJ, Gogate PR (2007) Water disinfection using a novel approach of ozone assisted liquid whistle reactor. Biochem Eng J 35:357–364

    Article  CAS  Google Scholar 

  65. Suslick KS, Mdleleni MM, Reis JT (1997) Chemistry Induced by Hydrodynamic Cavitation. J Am Chem Soc 119:9303–9304

    Article  CAS  Google Scholar 

  66. Kalumuck KM, Chahine GL (2000) The use of cavitating jets to oxidize organic compounds in water. J Fluids Eng 122:465–470

    Article  CAS  Google Scholar 

  67. Wang X, Wang J, Guo P, Guo W, Li G (2008) Chemical effect of swirling jet-induced cavitation: Degradation of rhodamine B in aqueous solution. Ultrason Sonochem 15:357–363

    Article  Google Scholar 

  68. Braeutigam P, Wu Z-L, Stark A, Ondruschka B (2009) Degradation of BTEX in Aqueous Solution by Hydrodynamic Cavitation. Chem Eng Tech 32:745–753

    Article  CAS  Google Scholar 

  69. Wang X, Zhang Y (2009) Degradation of alachlor in aqueous solution by using hydrodynamic cavitation. J Haz Mat 161:202–207

    Article  CAS  Google Scholar 

  70. Gogate PR, Pandit AB (2004) A review of imperative technologies for Waste water treatment II: Hybrid methods. Adv Env Res 8:553–597

    Article  CAS  Google Scholar 

  71. Chakinala AG, Gogate PR, Burgess AE, Bremner DH (2008) Treatment of industrial wastewater effluents using hydrodynamic cavitation and the advanced Fenton process. Ultrason Sonochem 15:49–54

    Article  CAS  Google Scholar 

  72. Wang X, Wang J, Guo P, Guo W, Wang C (2009) Degradation of rhodamine B in aqueous solution by using swirling jet-induced cavitation combined with H2O2. J Haz Mat 169:486–491

    Article  CAS  Google Scholar 

  73. Pradhan AA, Gogate PR (2009) Degradation of p-nitrophenol Using Acoustic Cavitation and Fenton Chemistry. J Haz Mat 173:517–522

    Article  Google Scholar 

  74. CAV-OX Cavitation Oxidation Process (1994) Application Analysis Report, Magnum Water Technology, Inc., Risk Reduction Engineering Laboratory, Office of Research and Development, U.S.E.P.A., Cincinnati, OH

    Google Scholar 

  75. Zhou ZA, Hu H, Xu Z, Finch JA, Rao SR (1997) Role of hydrodynamic cavitation in fine particle flotation. Int J Miner Process 51:139–149

    Article  CAS  Google Scholar 

  76. Rao SR, Finch JA, Zhou ZA, Xu Z (1998) Relative flotation response of zinc sulfide: mineral and precipitate. Sep Sci Tech 33:819–833

    Article  CAS  Google Scholar 

  77. Hu H, Zhou ZA, Xu Z, Finch JA (1998) Numerical and experimental study of a cavitation tube. Metallur Mat Trans B 29:911–917

    Article  Google Scholar 

  78. Zhou ZA, Langlois R, Xu Z, Finch JA, Agnew R (1997) In-plant testing of a hydrodynamic reactor in flotation. In: Finch JA, Rao SR, Huang LM (eds) Processing of Complex Ores. CIM, Sudbury, Canada, pp 185–193

    Google Scholar 

  79. Hart G, Morgan S, Bramall N, Nicol S (2002) Enhanced coal flotation using picobubbles. CSIRO Report-C9048, Australia

    Google Scholar 

  80. Hart G, Townsend P, Morgan S, Morgan P, Firth B (2005) Enhanced coal flotation using picobubbles. CSIRO Report-C12049, Australia

    Google Scholar 

  81. Zhou ZA, Xu Z, Finch JA (1994) On the role of cavitation in particle collection during flotation – a critical review. Minerals Eng 7:1073–1084

    Article  CAS  Google Scholar 

  82. Tao Y, Liu J, Yu S, Tao D (2006) Picobubble enhanced fine coal flotation. Sep Sci Tech 41:3597–3607

    Article  CAS  Google Scholar 

  83. Cox DW (1999) Dental irrigator employing hydrodynamic cavitation. US Patent number US 5860942A.

    Google Scholar 

  84. Kozyuk OV (1996) Method and device for obtaining free disperse system in liquid. US Patent application No. 602069

    Google Scholar 

  85. Kozyuk OV (1998) Method of obtaining a free disperse system in liquid and device for effecting the same. US Patent US 5810 052

    Google Scholar 

  86. Kozyuk OV (1999) Use of hydrodynamic cavitation for emulsifying and homogenizing processes. Am Lab 31:6–8

    Google Scholar 

  87. Kozyuk OV (1999) Method and apparatus for producing ultra-thin emulsions and dispersions. US Patent US 5931771A

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parag R. Gogate .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Gogate, P.R., Pandit, A.B. (2010). Cavitation Generation and Usage Without Ultrasound: Hydrodynamic Cavitation. In: Ashokkumar, M. (eds) Theoretical and Experimental Sonochemistry Involving Inorganic Systems. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3887-6_3

Download citation

Publish with us

Policies and ethics