Skip to main content

Sonoelectrochemical Synthesis of Materials

  • Chapter
  • First Online:

Abstract

In the last decade, the sonoelectrochemical synthesis of inorganic materials has experienced an important development motivated by the emerging interest in the nanostructures production. However, other traditional sonoelectrochemical synthesis such as gas production, metal deposits and metallic oxide films have also been improved with the simultaneous application of both electric and ultrasound fields. In this chapter, a summary of the fundamental basis, experimental set-up and different applications found in literature are reported, giving the reader a general approach to this branch of Applied Sonoelectrochemistry.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. González-García J, Esclapez MD, Bonete P et al (2010) Current topics on Sonoelectrochemistry. Ultrasonics 50:318–322

    Google Scholar 

  2. Compton RG, Eklund JC, Marken F (1997) Dual activation: coupling ultrasound to electrochemistry – an overview. Electrochim Acta 42:2919–2927

    CAS  Google Scholar 

  3. Winand R (1998) Contribution to the study of copper electrocrystallization in view of industrial applications-submicrocopic and macroscopic considerations. Electrochim Acta 43:2925–2932

    CAS  Google Scholar 

  4. Saez V, Mason TJ (2009) The synthesis of nanoparticles using Sonoelectrochemistry: a review. Molecules 14:4284–4299

    CAS  Google Scholar 

  5. Asami R, Atobe M, Fuchigami T (2006) Ultrasonic effects on electroorganic processes. Part 27. Electroreduction of acrylonitrile at suspended lead particle-electrode. Ultrason Sonochem 13:19–23, and the series

    CAS  Google Scholar 

  6. Gogate PR (2008) Treatment of wastewater streams containing phenolic compounds using hybrid techniques based on cavitation: a review of the current status and the way forward. Ultrason Sonochem 15:1–15

    CAS  Google Scholar 

  7. Agulló E, González-García J, Expósito E et al (1999) Influence of an ultrasonic field on lead electrodeposition on copper using a fluoroboric bath. New J Chem 23:95–101

    Google Scholar 

  8. Mohapatra SK, Misra M, Mahajan VK et al (2007) A novel method for the synthesis of titania nanotubes using sonoelectrochemical method and its application for photoelectrochemical splitting of water. J Catal 246:362–369

    CAS  Google Scholar 

  9. Compton RG, Hardcastle JL, del Campo J et al (2003) Sonoelectroanalysis: applications. In: Bard AJ, Stratmann M (eds) Encyclopedia of electrochemistry, vol 3. Wiley-VCH, Weinheim

    Google Scholar 

  10. Haas I, Gedanken A (2006) Sonoelectrochemistry of Cu2+ in the presence of cetyltrimethylammonium bromide: obtaining CuBr instead of copper. Chem Mater 18:1184–1189

    CAS  Google Scholar 

  11. González-García J, Iniesta J, Aldaz A et al (1998) Effects of ultrasound on the electrodeposition of lead dioxide on glassy carbon electrodes. New J Chem 22:343–347

    Google Scholar 

  12. Oturan MA, Sirés I, Oturan N (2008) Sonoelectro-Fenton process: a novel hybrid technique for the destruction of organic pollutants in water. J Electroanal Chem 624:329–332

    CAS  Google Scholar 

  13. Brett C (2008) Sonoelectrochemistry. In: Antonio Arnau Vives (ed) Piezoelectric transducer and Applications. Springer, Berlin Heidelberg

    Google Scholar 

  14. Pollet BG, Phull SS (2001) Sonoelectrochemistry-theory, principles and applications. Recent Res Develop Electrochem 4:55–78

    CAS  Google Scholar 

  15. Mason TJ, Lorimer JP, Walton DJ (1990) Sonoelectrochemistry. Ultrasonics 28:333–337

    CAS  Google Scholar 

  16. Suslick KS (1990) Sonochemistry. Science 247:1439–1445

    CAS  Google Scholar 

  17. Marken F, Compton RG (1998) Sonoelectrochemically modified electrodes: ultrasound assisted electrode cleaning, conditioning, and product trapping in 1-octanol/water emulsion systems. Electrochim Acta 43:2157–2165

    CAS  Google Scholar 

  18. Rejňák M, Klíma J, Svodoba J et al (2004) Synthesis and electrochemical reduction of methyl 3-halo-1-benzothiophene-2-carboxylates. Collect Czech Chem Commum 69:242–260

    Google Scholar 

  19. Zhang H, Coury LA Jr (1993) Effects of high-intensity ultrasound on glassy carbon electrodes. Anal Chem 65:1552–1558

    CAS  Google Scholar 

  20. Compton RG, Eklund JC, Page SD et al (1994) Voltammetry in the presence of ultrasound. Sonovoltammetry and surface effects. J Phys Chem 98:12410–12414

    CAS  Google Scholar 

  21. Cooper EL, Coury LA jr (1998) Mass transport in sonovoltammetry with evidence of hydrodynamic modulation from ultrasound. J Electrochem Soc 145:1994–1999

    CAS  Google Scholar 

  22. Compton RG, Eklund JC, Marken F (1997) Sonoelectrochemical processes. A review. Electroanalysis 9:509–522

    CAS  Google Scholar 

  23. Compton RG, Hardcastle JL, del Campo J et al (2003) Sonoelectrochemistry: physical aspects. In: Bard AJ, Stratmann M (eds) Encyclopedia of electrochemistry, vol 3. Wiley-VCH, Weinheim

    Google Scholar 

  24. Curie J, Curie P (1880) Dévelopment, par pression, de l’électricité polaire dans les cristaux hémièdres à faces inclinées. Compt Rend 91:291–294

    Google Scholar 

  25. Gallego-Juárez JA, Rodríguez Corral G, Riera E et al. (2001) Development of industrial models of high power stepped-plate sonic and ultrasonic transducer for use in fluids. IEEE Ultrasonic Sypoos. Proceedings, pp 571–578

    Google Scholar 

  26. Mason TJ, Cordemans E (1998) In: Jean-Louis Luche (ed) Practical considerations for process optimization in synthetic organic sonochemistry. Plenum Press, London

    Google Scholar 

  27. Mason TJ, Lorimer JP (1988) Ultrasonic equipment and chemical reactor design in: Sonochemistry: theory, applications and uses of ultrasound in Chemistry. Ellis Horwood, Chichester

    Google Scholar 

  28. Walsh FC (1993) A first course in electrochemical engineering. The electrochemical consultancy, Romsey

    Google Scholar 

  29. Hyde ME, Compton RG (2002) How ultrasound influences the electrodeposition of metals. J Electroanal Chem 531:19–24

    CAS  Google Scholar 

  30. Touyeras F, Hihn JY, Bourgoin X et al (2005) Effects of ultrasonic irradiation on the properties of coatings obtained by electroless plating and electroplating. Ultrason Sonochem 12:13–19

    CAS  Google Scholar 

  31. Yegnaraman V, Bharathi S (1992) Sonoelectrochemistry – an emerging area. Bull Electrochem 8:84–85

    CAS  Google Scholar 

  32. Mohapatra SK, Raja KS, Misra M et al (2007) Synthesis of self-organized mixed oxide nanotubes by sonoelectrochemical anodization of Ti-8Mn alloy. Electrochim Acta 53:590–597

    CAS  Google Scholar 

  33. Klíma J, Bernard C, Degrand C (1994) Sonoelectrochemistry: effects of ultrasound on voltammetric measurements at a solid electrode. J Electroanal Chem 367:297–300

    Google Scholar 

  34. Klíma J, Bernard C, Degrand C (1995) Sonoelectrochemistry: transient cavitation in acetonitrile in the neighbourhood of a polarized electrode. J Electroanal Chem 399:147–155

    Google Scholar 

  35. Klíma J, Bernard C (1999) Sonoassisted electrooxidative polymerisation of salicylic acid. Role of acoustic streaming and microjetting. J Electroanal Chem 462:181–186

    Google Scholar 

  36. Costa C, Hihn JH, Rebetez M et al (2008) Transport-limited current and microsonoreactor characterization at 3 low frequencies in the presence of water, acetonitrile and imidazolium-based ionic liquids ([BuMIm] [(CF3SO2)2N]). Phys Chem Chem Phys 10:2149–2158

    CAS  Google Scholar 

  37. Louisnard O, González-García J, Tudela I et al (2009) FEM simulation of a son-reactor accounting for vibrations of the boundaries. Ultrason Sonochem 16:250–259

    CAS  Google Scholar 

  38. Dewald HD, Peterson BA (1990) Ultrasonic hydrodynamic modulation voltammetry. Anal Chem 62:779–782

    CAS  Google Scholar 

  39. Eklund JC, Marken F, Waller DN et al (1996) Voltammetry in the presence of ultrasound: a novel sono-electrode geometry. Electrochim Acta 41:1541–1547

    CAS  Google Scholar 

  40. Marken F, Compton RG (1996) Electrochemistry in the presence of ultrasound: the need for bipotentiostatic control in sonovoltammetric experiments. Ultrason Sonochem 3:S131–S134

    CAS  Google Scholar 

  41. Reisse J, François H, Vandercammen J et al (1994) Sonoelectrochemistry in aqueous electrolyte: a new type of sonoelectroreactor. Electrochim Acta 39:37–39

    CAS  Google Scholar 

  42. Aqil A, Serwas H, Delplancke JL (2008) Preparation of stable suspensions of gold nanoparticles in water by sonoelectrochemistry. Ultrason Sonochem 15:1055–1061

    CAS  Google Scholar 

  43. Lei H, Tang YJ, Wei JJ et al (2007) Synthesis of tugsten nanoparticles by sonoelectrochemistry. Ultrason Sonochem 14:81–83

    CAS  Google Scholar 

  44. Marken F, Kumbhat S, Sanders GHW et al (1996) Voltammetry in the presence of ultrasound: surface and solution processes in the sonovoltammetric reduction at glassy carbon and gold electrodes. J Electroanal Chem 414:95–105

    Google Scholar 

  45. Sonovoltametric measurement of the rates of electrode processes with fast coupled homogeneous kinetics: making macroelectrodes behave like microelectrodes: Compton RG, Marken F, Rebbitt TO (1996) Chem Commun 1017–1018

    Google Scholar 

  46. Marken F, Compton RG, Davies SG et al (1997) Electrolysis in the presence of ultrasound: cell geometries for the application of rates of mass transfer in electrosynthesis. J Chem Soc (Perkin Trans) 2(10):2055–2059

    Google Scholar 

  47. Esclapez MD, Sáez V, Milán-Yáñez D et al (2010) Sonochemical treatment of water poulled with trichloroacetic acid: from sonovoltammetry to pre-pilot plant scale. Ultrason Sonochem 17:1010–1020

    CAS  Google Scholar 

  48. Sáez V, Frías-Ferrer A, Iniesta J et al (2005) Characterization of a 20 kHz sonoreactor. Part I: analysis of mechanical effects by classical and numerical methods. Ultrason Sonochem 12:59–65

    Google Scholar 

  49. Klima J, Frías-Ferrer A, González-García J et al (2007) Optimisation of 20 kHz sonoreactor geometry on the basis of numerical simulation of local ultrasonic intensity and qualitative comparison with experimental results. Ultrason Sonochem 14:19–28

    CAS  Google Scholar 

  50. Compton RG, Hardcastle JL, del Campo J et al (2003) Ultrasound and electrosynthesis. In: Bard AJ, Stratmann M (eds) Encyclopedia of electrochemistry, vol 3. Wiley-VCH, Weinheim

    Google Scholar 

  51. Cognet P, Wilhem AM, Delmas H et al (2000) Ultrasound in organic electrosynthesis. Ultrason Sonochem 7:163–167

    CAS  Google Scholar 

  52. Walton DJ, Mason TJ (1998) In: Jean-Louis Luche (ed) Organic sonoelectrochemistry in synthetic organic sonochemistry. Plenum Press, London, pp 263–300

    Google Scholar 

  53. Morigushi N (1934) The effect of supersonic waves on chemical phenomena (III). The effect of the concentration polarization. J Chem Soc Jpn 55:749–750

    Google Scholar 

  54. Cataldo F (1992) Effects of ultrasound on the yield of hydrogen and chlorine during electrolysis of aqueous solutions of NaCl or HCl. J Electroanal Chem 332:325–331

    CAS  Google Scholar 

  55. Walton DJ, Burke LD, Murphy MM (1996) Sonoelectrochemistry: chlorine, hydrogen and oxygen evolution at platinised platinum. Electrochim Acta 41:2747–2751

    CAS  Google Scholar 

  56. Šljukić B, Bank CE, Compton RG (2004) The search for stable and efficient sonoelectrocatalysts for oxygen reduction and hydrogen peroxide formation: azobenzene and derivatives. Phys Chem Chem Phys 6:4034–4041

    Google Scholar 

  57. Šljukić B, Bank CE, Compton RG (2005) Exploration of stable sonoelectrocatalysis for the electrochemical reduction of oxygen. Electroanalysis 17:1025–1034

    Google Scholar 

  58. González-García J, Banks CE, Šljukić B et al (2007) Electrosynthesis of hydrogen peroxide via the reduction of oxygen assisted by power ultrasound. Ultrason Sonochem 14:405–412

    Google Scholar 

  59. Murphy MA, Marken F, Mocak J (2003) Sonoelectrochemistry of molecular and colloidal redox systems at carbon nanofiber-ceramic composite electrodes. Electrochim Acta 48:3411–3417

    CAS  Google Scholar 

  60. Pletcher D, Walsh FC (1993) Industrial electrochemistry. Chapman & Hall, London

    Google Scholar 

  61. Kuhn AT (1971) Industrial electrochemical processes. Elsevier, Amsterdam

    Google Scholar 

  62. Lindstrom O (1952) Astudy of some electrochemical effects in a field of stationary ultrasonic waves. Acta Chem Scand 6:1313–1323

    CAS  Google Scholar 

  63. Dereska J, Jaeger E, Hovorka F (1957) Effects of acoustical waves on the electrodeposition of Chromium. J Acoust Soc Am 29:769–769

    Google Scholar 

  64. Walker R (1990) Ultrasound and electroplating. Chem Britain 26:251–254

    CAS  Google Scholar 

  65. Lorimer P, Mason TJ (1999) Sonoelectrochemisry. The application of ultrasound in electroplating. Electrochemistry 67:924–930

    CAS  Google Scholar 

  66. Hardcastle JL, Compton RG (2001) The electroanalytical detection and determination of copper in heavily passivating media: ultrasonically enhanced solvent extraction by N-benzoyl-N-phenyl-hydroxylamine in ethyl acetate coupled with electrochemical detection by sono-square wave stripping voltammetry analysis. Analyst 126:2025–2031

    CAS  Google Scholar 

  67. Prasad PBSN, Vasudevan R, Seshadri SK (1994) Effect of ultrasonic agitation on surface finish of electrodeposits Indian. J Eng Mater Sci 1:178–180

    CAS  Google Scholar 

  68. Walken R, Halagan SA (1985) Electrodeposition of nickel-iron alloys with ultrasound. Plat Surf Finish 72:68–73

    Google Scholar 

  69. Namgoong E, Chun JS (1984) The effect of ultrasonic vibration on hard chromium plating in a modified self-regulating high speed bath. Thin Solid Films 120:153–159

    CAS  Google Scholar 

  70. Walker R, Walker CT (1975) New explanation for the brightness of electrodeposits produced by ultrasound. Ultrasonics 13:79–82

    CAS  Google Scholar 

  71. Lee C-W, Compton RG, Eklund JC et al (1995) Mercury-electroplated platinum electrodes and microelectrodes for sonoelectrochemistry. Ultrason Sonochem 2:S59–S62

    CAS  Google Scholar 

  72. Kang J, Shin Y, Tak Y (2005) Growth of etch pits formed during sonoelectrochemical etching of aluminium. Electrochim Acta 51:1012–1016

    CAS  Google Scholar 

  73. Doche ML, Hihn JY, Mandroyan A et al (2003) Influence of ultrasound power and frequency upon corrosion kinetics of zinc in saline media. Ultrason Sonochem 3:357–362

    Google Scholar 

  74. Effects of sonication on the anodic dissolution of copper and nickel electrodeposits: Chiba A (2003) Met Finish 117–122

    Google Scholar 

  75. Holt KB, Sabin G, Compton RG et al (2002) Reduction of tetrachloroaureate(III) at boron-doped diamond electrodes: gold deposition versus gold colloid formation. Electroanalysis 14:797–803

    CAS  Google Scholar 

  76. Narasimham KC, Gomathi PS, Udupa HVK (1976) The influence of ultrasonics on the electrodeposition of lead dioxide. J Appl Electrochem 6:397–401

    CAS  Google Scholar 

  77. González-García J, Gallud F, Iniesta J et al (2001) Kinetics of electrocrystallization of PbO2 on glassy carbon electrodes: influence of ultrasound. New J Chem 25:1195–1198

    Google Scholar 

  78. González-García J, Sáez V, Iniesta J et al (2002) Electrodeposition of PbO2 on glassy carbon electrodes: influence of ultrasound power. Electrochem Commun 4:370–373

    Google Scholar 

  79. Sáez V, González-García J, Iniesta J et al (2004) Electrodeposition of PbO2 on glassy carbon electrodes: influence of ultrasound frequency. Electrochem Commun 6:757–761

    Google Scholar 

  80. González-García J, Iniesta J, Expósito E et al (1999) Early stages of lead dioxide electrodeposition on rough titanium. This Solid Films 352:49–56

    Google Scholar 

  81. Saterlay AJ, Wilkins SJ, Holt KB et al (2001) Lead dioxide deposition and electrocalysis at highly boron-doped diamond electrodes in the presence of ultrasound. J Electrochem Soc 148:E66–E72

    CAS  Google Scholar 

  82. Saterlay AJ, Wilkins SJ, Goeting CH et al (2000) Sonoelectrochemistry at highly boron-doped diamond electrodes: silver oxide deposition and electrocatalysis in the presence of ultrasound. J Solid State Electrochem 4:383–389

    CAS  Google Scholar 

  83. Ko WY, Chen WH, Tzeng SD et al (2006) Synthesis of pyramidal copper nanoparticles on gold substrate. Chem Mater 18:6097–6099

    CAS  Google Scholar 

  84. Fukami K, Nakanishi S, Yamasaki H et al (2007) General Mechanism for the synchronization of electrochemical oscillations and self-organized dendrite electrodeposition of metals with ordered 2D and 3D microstructures. J Phys Chem C 111:1150–1160

    CAS  Google Scholar 

  85. Jiang LP, Wang AN, Zhao Y et al (2004) A novel route for the preparation of monodisperse silver nanoparticles via a pulsed sonoelectrochemical technique. Inorg Chem Commun 7:506–509

    CAS  Google Scholar 

  86. Gedanken A (2004) Using sonochemistry for the fabrication of nanomaterials. Ultrason Sonochem 11:47–55

    CAS  Google Scholar 

  87. Tang S, Men X, Lu H et al (2009) PVP-assisted sonoelectrochemical growth of silver nanostructures with various shapes. Mater Chem Phys 116:464–468

    CAS  Google Scholar 

  88. Pileni MP, Lisiecki I (1993) Nanometer metallic copper particle synthesis in reverse micelles. Colloids Surf A 80:63–68

    CAS  Google Scholar 

  89. Zhu J, Liu S, Palchik O et al (2000) Shape-controlled synthesis of silver nanoparticles by pulse sonoelectrochemical methods. Langmuir 16:6396–6399

    CAS  Google Scholar 

  90. Socol Y, Abramson O, Gedanken A et al (2002) Suspensive electrode formation in pulsed sonoelectrochemical synthesis of silver nanoparticles. Lagmuir 18:4736–4740

    CAS  Google Scholar 

  91. Mancier V, Daltin A-L, Leckercq D (2008) Synthesis and characterization of copper oxide (I) nanoparticles produced by pulsed sonoelectrochemistry. Ultrason Sonochem 15:157–163

    CAS  Google Scholar 

  92. Dabalà M, Pollet BG, Zin V et al (2008) Sonoelectrochemical (20 kHz) production of Co65Fe35 alloy nanoparticles from Aotani solutions. J Appl Electrochem 38:395–402

    Google Scholar 

  93. Ganesan R, Shanmugam S, Gedanken A (2008) Pulsed sonoelectrochemical synthesis of polyaniline nanoparticles and their capacitance properties. Synt Met 158:848–853

    CAS  Google Scholar 

  94. Shen Q, Jiang K, Zhang H et al (2008) Three-dimensional dendritic Pt Nanostructures: sonoelectrochemical synthesis and electrochemical applications. J Phys Chem C 112:16385–16392

    CAS  Google Scholar 

  95. Mastai Y, Polsky R, Koltypin Y et al (1999) Pulsed sonoelectrochemical of cadmium selenide nanoparticles. J Am Chem Soc 121:10047–10052

    CAS  Google Scholar 

  96. Zhu JJ, Aruna ST, Koltypin Y et al (2000) A novel method for the preparation of lead selenide: pulse sonoelectrochemical synthesis of lead selenide nanoparticles. Chem Mater 12:143–147

    CAS  Google Scholar 

  97. Synthesis of metallic magnesium by sonoelectrochemistry: Hass I, Gedanken A (2008) Chem Commun 1795–1797

    Google Scholar 

  98. Mohapatra SK, Misra M, Mahajan VK et al (2008) Synthesis of Y-branched TiO2 nanotubes. Mat Lett 62:1772–1774

    CAS  Google Scholar 

  99. Haas I, Shanmugam S, Gedanken A (2006) Pulsed sonoelectrochemical synthesis of size-controlled copper nanoparticles stabilize by poly(N-vinylpyrrolidone). J Phys Chem B 110:16947–16952

    CAS  Google Scholar 

  100. Lei H, Tang Y-J, Wei J-J et al (2007) Synthesis of tungsten nanoparticles by sonoelectrochemistry. Ultrason Sonochem 14:81–83

    CAS  Google Scholar 

  101. Sáez V, González-García J, Kulandainathan MA et al (2007) Electro-deposition and stripping of catalytically iron metal nanoparticles at boron-doped diamond electrodes. Electrochem Commun 9:1127–1133

    Google Scholar 

  102. Liu YC, Lin LH (2004) New pathway for the synthesis of ultrafine silver nanoparticles from bulk silver substrates in aqueous solutions by sonoelectrochemical methods. Electrochem Commun 6:1163–1168

    CAS  Google Scholar 

  103. Liu S, Huang W, Chen S et al (2001) Synthesis of X-ray amorphous silver nanoparticles by the pulse sonoelectrochemical method. J Non-Cryst solids 283:231–236

    CAS  Google Scholar 

  104. Liu YC, Yu CC, Yang KH (2006) Active catalysts of electrochemically prepared gold nanoparticles for the decomposition of aldehyde in alcohol solutions. Electrochem Commun 8:1163–1167

    CAS  Google Scholar 

  105. Liu YC, Kin LH, Chiu WH (2004) Size-controlled synthesis of gold nanoparticles from bulk gold substrates by sonoelectrochemical methods. J Phys Chem B 108:19237–19240

    CAS  Google Scholar 

  106. Liu YC, Yang KH, Yang SJ (2006) Sonoelectrochemical synthesis of spike-like gold-silver alloy nanoparticles from bulk substrates and the application on surface-enhanced Raman scattering. Anal Chim Acta 572:290–294

    CAS  Google Scholar 

  107. Reisse J, Caulier T, Deckerkheer C et al (1996) Quantitative sonochemistry. Ultrason Sonochem 3:S147–S151

    CAS  Google Scholar 

  108. Yang YJ (2006) A novel electrochemical preparation of PbS nanoparticles. Mat Sci Eng B 131:200–202

    CAS  Google Scholar 

  109. Mastai Y, Homyonfer M, Gedanken A et al (1999) Room temperature sonoelectrochemical synthesis of molybdenum sulfide fullurene-like nanoparticles. Adv Mat 11:1010–1013

    CAS  Google Scholar 

  110. Liu YC, Wang CC, Juang LC (2004) Sonoelectrochemical methods of preparing silver-coated TiO2 nanoparticles with extremely high coverage. J Electroanal Chem 574:71–75

    CAS  Google Scholar 

  111. Zhu JJ, Qiu QF, Wang H et al (2002) Synthesis of silver nanowires by a sonoelectrochemical method. Inor Chem Commun 5:242–244

    CAS  Google Scholar 

  112. Singh KV, Martinez-Morales AA, Senthil Andavan GT et al (2007) A simple way of synthesizing single-crystalline semiconducting copper sulfide nanorods by using ultrasonication using template-assisted electrodeposition. Chem Mater 19:2446–2454

    CAS  Google Scholar 

  113. Qiu X, Lou Y, Samia ACS et al (2005) PbTe nanorods by sonoelectrochemistry Angew. Chem Int Ed 44:5855–5857

    CAS  Google Scholar 

  114. Sonoelectrochemical synthesis of CdSe nanotubes: Shen Q, Jiang L, Miao J (2008) Chem Commun 1683–1685

    Google Scholar 

  115. Jia F, Hu Y, Tang Y et al (2007) A general nonaqueous sonoelectrochemical approach to nanoporous Zn and Ni particles. Power Tech 176:130–136

    CAS  Google Scholar 

  116. Haas I, Shanmugam S, Gedanken A (2008) Synthesis of copper dendrite nanostructures by a sonochemical method. Chem Eur J 14:4696–7403

    CAS  Google Scholar 

  117. Qiu XF, Xu JZ, Zhu JM et al (2003) Controlable synthesis of palladium nanopaticles via a simple sonochemical method. J Mater Res 18:1399–1404

    CAS  Google Scholar 

  118. Del Campo FJ, Coles BA, Marken F et al (1999) High-frequency sonoelectrochemical process: mass transport, thermal and surface effects induced by cavitation in a 500 kHz reactor. Ultrason Sonochem 6:189–197

    Google Scholar 

  119. Qiu XF, Burda C, Fu RL et al (2004) Heterostructured Bi2Se3 nanowires with periodic phase boundaries. J Am Chem Soc 126:16276–16277

    CAS  Google Scholar 

  120. Raja KS, Misra M, Paramguru K (2005) Formation of self-ordered nano-tubular structure of anodic oxide layer of titanium. Electrochim Acta 51:154–165

    CAS  Google Scholar 

Download references

Acknowledgments

The author would like to thank to his collegues R. Gómez, P. Bonete, T. Lana-Villarreal, O. Louisnard and Ph. D students A. J. Frías-Ferrer, V. Sáez, M. D. Esclapez-Vicente, D. Milán, I. Tudela, M. I. Díez, A. Rico for their help and friendship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José González-García .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

González-García, J. (2010). Sonoelectrochemical Synthesis of Materials. In: Ashokkumar, M. (eds) Theoretical and Experimental Sonochemistry Involving Inorganic Systems. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3887-6_4

Download citation

Publish with us

Policies and ethics