Skip to main content

Abstract

Sonochemical synthesis, an energy efficient processing technique to induce a variety of physical and chemical transformations is on the rise. A variety of simple and mixed metal oxides and sulfides have been obtained using this technique. The present chapter reviews the types of oxides and sulfides obtained in the last few years.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. McNamara WB, Didenko YT, Suslick KS (1999) Sonoluminescence temperatures during multibubble cavitation. Nature 401:772–775

    Article  CAS  Google Scholar 

  2. Suslick KS, Price GJ (1999) Applications of ultrasound to materials chemistry. Annu Rev Mater Sci 29:295–326

    Article  CAS  Google Scholar 

  3. Suslick KS (1998) Kirk-Othmer encyclopedia of chemical technology, 4th edn, vol 26, pp 517–541. Wiley: New York.

    Google Scholar 

  4. Suslick KS, Hyeon T, Fang M (1996) Nanostructured materials generated by high-intensity ultrasound: Sonochemical synthesis and catalytic studies. Chem Mater 8(8):2172–2179

    Article  CAS  Google Scholar 

  5. Gedanken A (2004) Using sonochemistry for the fabrication of nanomaterials. Ultrason Sonochem 11(2):47–55

    Article  CAS  Google Scholar 

  6. Majetich SA, Jin Y (1999) Magnetisation directions of individual nanoparticles. Science 284(5413):470–473

    Article  CAS  Google Scholar 

  7. Zarur AJ, Ying JY (2000) Reverse microemulsion synthesis of nanostructured complex oxides for catalytic combustion. Nature 403:65–67

    Article  CAS  Google Scholar 

  8. Wang ZL (2004) Nanostructures of zinc oxide. Mater Today 7(6):26–33

    Article  CAS  Google Scholar 

  9. Sivakumar M, Towata A, Yasui K, Tuziuti T, Iida Y (2005) Ultrasonic cavitational activation: a simple and feasible route for the direct conversion of zinc acetate to highly monodispersed ZnO. Chem Lett 35(1):60–61

    Article  Google Scholar 

  10. Xiao Q, Huangb S, Zhang J, Xiao C, Tan X (2008) Sonochemical synthesis of ZnO nanosheet. J Alloys Compounds 459:L18–L22

    Article  CAS  Google Scholar 

  11. Bhattacharyya S, Gedanken A (2008) A template-free, sonochemical route to porous ZnO nano-disks. Microp Mesop Mater 110:553–559

    Article  CAS  Google Scholar 

  12. Mishra P, Yadav RS, Pandey AC (2009) Starch assisted sonochemical synthesis of flower-like ZnO nanostructure. Digest J Nanomaterials Biostructures 4(1):193–198

    Google Scholar 

  13. Pal U, Kim CW, Jadhav NA, Kang YS (2009) Ultrasound-assisted synthesis of mesoporous ZnO nanostructures of different porosities. J Phys Chem C 113(33):14676–14680

    Article  CAS  Google Scholar 

  14. Jia X, Fan H, Zhang F, Qin L (2010) Using sonochemistry for the fabrication of hollow ZnO microspheres. Ultrason Sonochem 17:284–287

    Article  CAS  Google Scholar 

  15. Hou X, Zhou F, Sun Y, Liu W (2007) Ultrasound-assisted synthesis of dentritic ZnO nanostructure in ionic liquid. Mater Lett 61:1789–1792

    Article  CAS  Google Scholar 

  16. Goharshadi EK, Ding Y, Jorabchi MN, Nancarrow P (2009) Ultrasound-assisted green synthesis of nanocrystalline ZnO in the ionic liquid [hmim][NTf2]. Ultrason Sonochem 16:120–123

    Article  CAS  Google Scholar 

  17. Alammar T, Mudring AV (2009) Facile ultrasound-assisted synthesis of ZnO nanorods in an ionic liquid. Mater Lett 63:732–735

    Article  CAS  Google Scholar 

  18. Arefian NA, Shokuhfar A, Vaezi MR, Kandjani AE, Tabriz MF (2008) Sonochemical synthesis of SnO/ZnO nano-Composite: the effects of temperature and sonication power. In: Öchsner A, Murch GE (eds) Defect and diffusion forum, vol 273–276, Diffusion in solids and liquids III., pp 34–39

    Google Scholar 

  19. Xiong HM, Shchukin DG, Möhwald H, Xu Y, Xia YY (2009) Sonochemical synthesis of hghly luminescent zinc oxide nanoparticles doped with magnesium (II). Angew Chem Int Ed 48(15):2727–2731

    Article  CAS  Google Scholar 

  20. Pinkas J, Reichlova V, Zboril R, Moravec Z, Bezdicka P, Matejkova J (2008) Sonochemical synthesis of amorphous nanoscopic iron (III) oxide from Fe(acac)3. Ultrason Sonochem 15:257–264

    Article  CAS  Google Scholar 

  21. Raya I, Chakraborty S, Chowdhury A, Majumdar S, Prakash A, Pyare R, Sena A (2008) Room temperature synthesis of γ-Fe2O3 by sonochemical route and its response towards butane. Sens Actu B 130:882–888

    Article  Google Scholar 

  22. Stengl V, Bakardjieva S, Marikova M, Bezdicka P, Subrt J (2003) Magnesium oxide nanoparticles prepared by ultrasound enhanced hydrolysis of Mg-alkoxides. Mater Lett 57:3998–4003

    Article  CAS  Google Scholar 

  23. Karami H, Karimi MA, Haghdar S, Sadeghi A, Mir-Ghasemi R, Mahdi-Khani S (2008) Synthesis of lead oxide nanoparticles by sonochemical method and its application as cathode and anode of lead-acid batteries. Mater Chem Phys 108:337–344

    Article  CAS  Google Scholar 

  24. Ghasemi S, Mousavi MF, Shamsipur M, Karami H (2008) Sonochemical-assisted synthesis of nano-structured lead dioxide. Ultrason Sonochem 15:448–455

    Article  CAS  Google Scholar 

  25. Majumdar S, Chakraborty S, Sujatha Devi P, Sen A (2008) Room temperature synthesis of nanocrystalline SnO through sonochemical route. Mater Lett 62:1249–1251

    Article  CAS  Google Scholar 

  26. Wang HC, Li Y, Yang MJ (2006) Fast response thin film SnO2 gas sensors operating at room temperature. Sens Actu B 119:380–383

    Article  Google Scholar 

  27. Mosadegh Sedghi S, Mortazavi Y, Khodadadi A (2009) Low temperature CO and CH4 dual selective gas sensor using SnO2 quantum dots prepared by sonochemical method. Sens Actu B (In Press)

    Google Scholar 

  28. Pol VG, Palchik O, Gedanken A, Felner I (2002) Synthesis of europium oxide nanorods by ultrasound irradiation. J Phys Chem B 106(38):9737–9743

    Article  CAS  Google Scholar 

  29. Askarinejad A, Morsali A (2009) Synthesis and characterization of mercury oxide unusual nanostructures by ultrasonic method. Chem Eng J 153:183–186

    Article  CAS  Google Scholar 

  30. Bourlinos AB, Karakassides MA, Petridis D (2001) Synthesis and characterisation of hollow clay microspheres through a resin template approach. Chem Commun 16:1518–1519

    Article  Google Scholar 

  31. Hubert DHW, Jung M, Frederick PM, Bomans PHH, Meuldijk J, German AL (2000) Vesicle-directed growth of silica. Adv Mater 12(17):1286–1290

    Article  CAS  Google Scholar 

  32. Rana RK, Mastai Y, Gedanken A (2002) Acoustic cavitation leading to the morphosynthesis of mesoporous silica vesicles. Adv Mater 14(19):1414–1418

    Article  CAS  Google Scholar 

  33. Fan W, Gao L (2006) Synthesis of silica hollow spheres assisted by ultrasound. J Colloid Interface Sci 297:157–160

    Article  CAS  Google Scholar 

  34. Taufiq-Yap YH, Wong YC, Zainal Z, Hussein MZ (2009) Synthesis of self-assembled nanorod vanadium oxide bundles by sonochemical treatment. J Nat Gas Chem 18:312–318

    Article  CAS  Google Scholar 

  35. Gonzalez-Reyes L, Hernandez-Perez I, Robles Hernandez FC, Rosales HD, Arce-Estrada EM (2008) Sonochemical synthesis of nanostructured anatase and study of the kinetics among phase transformation and coarsening as a function of heat treatment conditions. J Eur Ceramic Soc 28:1585–1594

    Article  CAS  Google Scholar 

  36. Gabashvili A, Major DT, Perkas N, Gedanken A (2010) The sonochemical synthesis and characterization of mesoporous chiral titania using a chiral inorganic precursor. Ultrason Sonochem 17:605–609

    Article  CAS  Google Scholar 

  37. Ohayon E, Gedanken A (2010) The application of ultrasound radiation to the synthesis of nanocrystalline metal oxide in a non-aqueous solvent. Ultrason Sonochem 17:173–178

    Article  CAS  Google Scholar 

  38. Murray EP, Tsai T, Barnett SA (1999) A direct-methane fuel cell with a ceria-based anode. Nature 400:649–651

    Article  CAS  Google Scholar 

  39. Wang SB, Murata K, Hayakawa T, Hamakawa S, Suzuki K (1999) Excellent performance of lithium doped sulphated zirconia in oxidative dehydrogenation of ethane. Chem Commun 103–104.

    Google Scholar 

  40. Liang J, Jiang X, Liu G, Deng Z, Zhuang J, Li F, Li Y (2003) Characterisation and synthesis of pure ZrO2 nanopowders via sonochemical method. Mater Res Bull 38:161–168

    Article  CAS  Google Scholar 

  41. Thongtem T, Phuruangrat A, Thongtem S (2008) Sonochemical synthesis of MMoO4 (M = Ca, Sr and Ba) nanocrystals. J Cer Proc Res 9(2):189–191

    Google Scholar 

  42. Dutta DP, Ghildiyal R, Tyagi AK (2009) Luminescent properties of doped zinc aluminate and zinc gallate white light emitting nanophosphors prepared via sonochemical method. J Phys Chem C 113(39):16954–16961

    Article  CAS  Google Scholar 

  43. Kim KH, Kim KB (2008) Ultrasound assisted synthesis of nanosized lithium cobalt oxide. Ultrason Sonochem 15:1019–1025

    Article  CAS  Google Scholar 

  44. Nagarajan R, Tomar N (2009) Ultrasound assisted ambient temperature synthesis of ternary oxide AgMO2 (M = Fe, Ga). J Solid State Chem 182:1283–1290

    Article  CAS  Google Scholar 

  45. Kang K, Meng YS, Breger J, Grey CP, Ceder G (2006) Electrodes with high power and high capacity for rechargeable lithium batteries. Science 311:977–80

    Article  CAS  Google Scholar 

  46. Park JP, Kim SK, Park JY, Hwang CH, Choi MH, Kim JE, Ok KM, Kwak HY, Shim IW (2009) Syntheses of Mn3O4 and LiMn2O4 nanoparticles by a simple sonochemical method. Mater Lett 63:2201–2204

    Article  CAS  Google Scholar 

  47. Das N, Bhattacharya D, Sen A, Maiti HS (2009) Sonochemical synthesis of LaMnO3 nano-powder. Ceram Int 35:21–24

    Article  CAS  Google Scholar 

  48. Baudin C, Martinez R, Pena P (1995) High temperature mechanical behaviour of stoichiometric magnesium spinel. J Am Ceram Soc 78(7):1857–1862

    Article  CAS  Google Scholar 

  49. Troia A, Pavese M, Geobaldo F (2009) Sonochemical preparation of high surface area MgAl2O4 spinel. Ultrason Sonochem 16(1):136–140

    Article  CAS  Google Scholar 

  50. Pirola C, Bianchi CL, Michele AD, Diodati P, Boffito D, Ragaini V (2010) Ultrasound and microwave assisted synthesis of high loading Fe-supported Fischer–Tropsch catalysts. Ultrason Sonochem 17:610–616

    Article  CAS  Google Scholar 

  51. Sun L, Li J, Wang C, Li S, Lai Y, Chen H, Lin C (2009) Ultrasound aided photochemical synthesis of Ag loaded TiO2 nanotube arrays to enhance photocatalytic activity. J Hazar Mater 171:1045–1050

    Article  CAS  Google Scholar 

  52. Reisse J, Francois H, Vandercammen J, Fabre O, Kirsch-de Mesmaeker A, Maerschalk C, Delplancke JL (1994) Sonoelectrochemistry in aqueous electrolyte: a new type of sonoelectroreactor. Electrochim Acta 39(1):37–39

    Article  CAS  Google Scholar 

  53. Mancier V, Daltin AL, Leclercq D (2008) Synthesis and characterization of copper oxide (I) nanoparticles produced by pulsed sonoelectrochemistry. Ultrason Sonochem 15:157–163

    Article  CAS  Google Scholar 

  54. Hassan ML, Ali AF (2008) Synthesis of nanostructured cadmium and zinc sulfides in aqueous solutions of hyperbranched polyethyleneimine. J Crys Growth 310:5252–5258

    Article  CAS  Google Scholar 

  55. Dhas NA, Zaban A, Gedanken A (1999) Surface synthesis of zinc sulfide nanoparticles on silica microspheres: sonochemical preparation, characterization, and optical properties. Chem Mater 11(3):806–813

    Article  CAS  Google Scholar 

  56. Rana RK, Zhang L, Yu JC, Mastai Y, Gedanken A (2003) Mesoporous structures from supramolecular assembly of in situ generated ZnS nanoparticles. Langmuir 19(14):5904–5911

    Article  CAS  Google Scholar 

  57. Zhou H, Fan T, Zhang D, Guo Q, Ogawa H (2007) Novel bacteria-templated sonochemical route for the in situ one-step synthesis of ZnS hollow nanostructures. Chem Mater 19(9):2144–2146

    Article  CAS  Google Scholar 

  58. Elbaum R, Vega S, Hodes G (2001) Preparation and surface structure of nanocrystalline cadmium sulfide (sulfoselenide) precipitated from dimethyl sulfoxide solutions. Chem Mater 13(7):2272–2280

    Article  CAS  Google Scholar 

  59. Li HL, Zhu YC, Chen SG, Palchik O, Xiong JP, Koltypin Y, Gofer Y, Gedanken A (2003) A novel ultrasound-assisted approach to the synthesis of CdSe and CdS nanoparticles. J Solid State Chem 172:102–110

    Article  CAS  Google Scholar 

  60. Tao C, Zheng S, Möhwald H, Li J (2003) CdS crystal growth of lamellar morphology within templates of polyelectrolyte/surfactant complex. Langmuir 19(21):9039–9042

    Article  CAS  Google Scholar 

  61. Jian D, Gao Q (2006) Synthesis of CdS nanocrystals and Au/CdS nanocomposites through ultrasound activation liquid–liquid two-phase approach at room temperature. Chem Eng J 121:9–16

    Article  CAS  Google Scholar 

  62. Yadav RS, Mishra P, Mishra R, Kumar M, Pandey AC (2010) Growth mechanism and optical property of CdS nanoparticles synthesised using amino-acid histidine as chelating agent under sonochemical process. Ultrason Sonochem 17:116–122

    Article  CAS  Google Scholar 

  63. Wu YD, Wang LS, Xiao MW, Huang XJ (2008) A novel sonochemical synthesis and nanostructured assembly of polyvinylpyrrolidone-capped CdS colloidal nanoparticles. J Non-Cryst Solid 354(26):2993–3000

    Article  CAS  Google Scholar 

  64. Singh KV, Martinez-Morales AA, Senthil Andavan GT, Bozhilov KN, Ozkan M (2007) A simple way of synthesizing single-crystalline semiconducting copper sulfide nanorods by using ultrasonication during template-assisted electrodeposition. Chem Mater 19(10):2446–2454

    Article  CAS  Google Scholar 

  65. Ma J, Tai G, Guo W (2010) Ultrasound-assisted microwave preparation of Ag-doped CdS nanoparticles. Ultrason Sonochem 17:534–540

    Article  CAS  Google Scholar 

  66. Xiu Z, Liu S, Yu J, Xu F, Yu W, Feng G (2008) Sonochemical synthesis of PbS nanorods. J Alloys Compounds 457:L9–L11

    Article  CAS  Google Scholar 

  67. Mdleleni MM, Hyeon T, Suslick KS (1998) Sonochemical synthesis of nanostructured molybdenum sulfide. J Am Chem Soc 120:6189–6190

    Article  CAS  Google Scholar 

  68. Uzcanga I, Bezverkhyy I, Afanasiev P, Scott C, Vrinat M (2005) Sonochemical preparation of MoS2 in aqueous solution: replication of the cavitation bubbles in an inorganic material morphology. Chem Mater 17(14):3575–3577

    Article  CAS  Google Scholar 

  69. Avivi (Levi) A, Palchik O, Palchik V, Slifkin MA, Weiss AM, Gedanken A (2001) Sonochemical synthesis of nanophase indium sulphide. Chem Mater 13(6):2195–2200

    Article  Google Scholar 

  70. Wang H, Zhu JJ, Zhu JM, Chen HY (2002) Sonochemical method for the preparation of bismuth sulfide nanorods. J Phys Chem B 106(15):3848–3854

    Article  CAS  Google Scholar 

  71. Zhu YQ, Hsu WK, Kroto HW, Walton DRM (2002) An alternative route to NbS2 nanotubes. J Phys Chem B 106(31):7623–7626

    Article  CAS  Google Scholar 

  72. Pejova B, Grozdanov I, Nesheva D, Petrova A (2008) Size-dependent properties of sonochemically synthesized three-dimensional arrays of close-packed semiconducting AgBiS2 quantum dots. Chem Mater 20(7):2551–2565

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sivakumar Manickam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Manickam, S. (2010). Sonochemical Synthesis of Oxides and Sulfides. In: Ashokkumar, M. (eds) Theoretical and Experimental Sonochemistry Involving Inorganic Systems. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3887-6_8

Download citation

Publish with us

Policies and ethics