Skip to main content

Aqueous Inorganic Sonochemistry

  • Chapter
  • First Online:

Abstract

This chapter discusses the effect of ultrasound propagation in water and aqueous solutions, in the atmosphere of inert and reactive gases. Sonochemical studies of aqueous solutions of divalent and trivalent metal ions and their salts have been reviewed and the precipitation behaviour of hydroxides of metal ions has been discussed. Synthesis of nanoparticles of many metals using ultrasound and in aqueous solutions has also been discussed briefly. Besides, the nephelometric and conductometric studies of sonicated solutions of these metal ions have been reported.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Thorneycroft J, Barnaby SW (1895) Torpedo-boat destroyers (including appendix and plate at back of volume). Inst C E 122:51–69

    Google Scholar 

  2. Rayleigh L (1917) On the pressure developed during the collapse of a spherical cavity. Philos Mag Ser 6(34):94–98

    Google Scholar 

  3. Langevin MP and Chilowsky MC (1918) Procédés et appareils pour la production de signaux sous-marins diriges et pour la localization á distance d’obstacles sous marins, French Patent No. 502913

    Google Scholar 

  4. Wood RW, Loomis AL (1927) The physical and biological effects of high-frequency sound-waves of great intensity. Philos Mag Ser 7:417–436

    Google Scholar 

  5. i. Mason TJ, Lorimer JP (1989) Sonochemistry – the theory, applications and uses of ultrasound in chemistry, Ellis Horwood, Chichester. ii. Pankaj, Sonu Misra (1999) Sonochemistry – An introduction, Chem Educ Rev 14(3): 21–24

    Google Scholar 

  6. i. Yeager E, Hovorka F (1953) Ultrasonic waves and electrochemistry. I. A survey of the electrochemical applications of ultrasonic waves. J Acoust Soc Am 25(3): 443–455. ii. Yeager E, Bugosh J, Hovorka F, McCarthy J (1949) The application of ultrasonics to the study of electrolyte solutions. II. The detection of Debye effect J Chem Phys 17(4): 411–415. iii. Yeager E, Hovorka F (1949) The application of ultrasonics to the study of electrolyte solutions. III. The effect of acoustical waves on the hydrogen electrode. J Chem Phys 17(4): 416–417. iv. Compton RG, Eklund JC, Marken F (1997) Sonoelectrochemical processes: a review. Electroanalysis 9: 509–522

    Google Scholar 

  7. i. Blandamer MJ (1973) Introduction to chemical ultrasonics. Academic Press, New York. ii. Suslick KS (1988) Ultrasound: its chemical, physical and biological effects. VHS Verlag, , New York. iii. Ley Steven V, Low CMR (1990) Ultrasound in synthesis. Springer Verleg, New York. iv. Mason TJ (1990) Sonochemistry: the uses of ultrasound in chemistry. Royal Society of Chemistry, Cambridge. v. Mason TJ (1990) Chemistry with ultrasound, Springer, Berlin. vi. Timothy J Mason (1991) Practical sonochemistry: user’s guide to application in chemistry and chemical engineering. Ellis Horwood, Chichester. vii. Gareth J Price (1992) Current trends in sonochemistry. Springer Verleg, New York. viii. Margulis MA (1995) Sonochemistry & cavitation. Taylor & Francis, London. ix. Jean-Louis Luche (1998) Synthetic organic sonochemistry. Springer, London. x. Timothy J Mason (1999) Sonochemistry. Oxford University Press (Premier Series no. 70), Oxford. xi. Timothy J Mason, John P Lorimer (2002) Applied sonochemistry: uses of power ultrasound in chemistry. Wiley-VCH, Weinheim. xii. Timothy J Mason (2002) Practical sonochemistry: power ultrasound uses and application. Horwood Publishing, Chichester.

    Google Scholar 

  8. i. Suslick KS, Price GJ (1999) Applications of ultrasound to material chemistry. Annu Rev Mater Sci 29: 295–326. ii. Thompson LH, nd Doraiswamy LK (1999) Sonochemistry: science and engineering. Ind Eng Chem Res 38: 1215–1249. iii. Chen D, He Z, Weavers LK, Chin Y-P, Walker HW, Hatcher PG (2004) Sonochemical reactions of dissolved organic matter. Res Chem Intermed 30(7–8): 735–753

    Google Scholar 

  9. William RT, Alfred LL (1927) The chemical effects of high frequency sound waves 1. A Preliminary Survey. J Am Chem Soc 49:3086–3100

    Google Scholar 

  10. Weissler A, Herbert Cooper W, Snyder Stuart (1950) Chemical effects of ultrasonic waves: oxidation of potassium iodide solution by carbon tetrachloride. J Am Chem Soc 72:1769–1775

    CAS  Google Scholar 

  11. Edwin Hart J, Henglein Arnim (1985) Free radical and free atom reactions in the sonolysis of aqueous iodide and formate solutions. J Phys Chem 89:4342–4347

    Google Scholar 

  12. Martiza G, Arnim H, Fernando I (1991) Radical scavenging in the sonolysis of aqueous solutions of I, Br and N 3 . J Phys Chem 95:6044–6047

    Google Scholar 

  13. Hart Edwin J, Henglein Arnim (1986) Sonolysis of ozone in aqueous solution. J Phys Chem 90:3061–3062

    Google Scholar 

  14. Hart Edwin J, Henglein Arnim (1986) Sonolytic decomposition of nitrous oxide in aqueous solution. J Phys Chem 90:5992–5995

    Google Scholar 

  15. Hart Edwin J, Fischer Ch-Herbert, Henglein Arnim (1986) Isotopic exchange in the sonolysis of aqueous solutions containing 14.14N2 and 15.15N2. J Phys Chem 90:5989–5991

    Google Scholar 

  16. Fischer C-H, Hart Edwin J, Henglein Arnim (1986) H/D isotopic exchange in the HD – H2O system under the influence of ultrasound. J Phys Chem 90:3059–3060

    CAS  Google Scholar 

  17. Fischer Christian-H, Hart Edwin J, Henglein Arnim (1986) H/D isotopic exchange in the D2 – H2+ system under the influence of ultrasound. J Phys Chem 90:222–224

    CAS  Google Scholar 

  18. Hart Edwin J, Fischer Ch-H, Henglein A (1987) Isotopic exchange in the sonolysis of aqueous solutions containing D2 and CH4. J Phys Chem 91:4166–4169

    Google Scholar 

  19. Fischer Christian-H, Hart Edwin J, Henglein Arnim (1986) Ultrasonic irradiation of water in the presence of 18.18O2: Isotope exchange and isotopic distribution of H2O2. J Phys Chem 90:1954–1956

    CAS  Google Scholar 

  20. Hart Edwin J, Henglein A (1987) Sonochemistry of aqueous solutions: H2–O2 combustion in cavitation bubbles. J Phys Chem 91:3654–3656

    Google Scholar 

  21. Hart Edwin J, Fischer C-H, Henglein A (1990) Pyrolysis of acetylene in sonolytic cavitation bubbles in aqueous solution. J Phys Chem 94:284–290

    Google Scholar 

  22. P Christian, Dominick C (2001) The sonochemical degradation of aromatic and chloroaromatic contaminants. In: Mason TJ and Tiehm A (eds) Advances in sonochemistry: ultrasound in environmental protection, Elsevier 6: 102–103

    Google Scholar 

  23. Miller N (1950) Chemical actions of sound waves on aqueous solutions. J Chem Soc Faraday Trans 46:546–550

    CAS  Google Scholar 

  24. Makino K, Mosobba MM, Riesz P (1982) Chemical effects of ultrasound in aqueous solutions. Evidence for OH and H by spin-trapping. J Am Chem Soc 104:3537–3539

    CAS  Google Scholar 

  25. Rosentel IK, Mosobba MM, Riesz P (1981) Sonolysis of perhalomethane as studied by EPR and spin trapping. J Magn Reson 45:359–361

    Google Scholar 

  26. Makino K, Mosobba MM, Riesz P (1983) Formation of .OH and .H in aqueous solutions by ultrasound using clinical equipment. Radiat Res 96(2):416–421

    CAS  Google Scholar 

  27. Henglein A (1987) Sonochemistry: historical developments and modern aspects. Ultrasonics 25:6–16

    CAS  Google Scholar 

  28. Margulis MA, Mal’tsev (1968) Estimation of energetic yield of chemical reactions initiated by ultrasonic waves. II. Initial chemical acoustic yields of products of water decomposition by ultrasound. Zh Fiz Khim 42:2660–2663, Russ J Phys Chem (42): 1447–1451

    CAS  Google Scholar 

  29. Lippitt B, McCord JM, Fridovitch IJ (1972) The sonochemical reduction of cytochrome c and its inhibition by superoxide dismutase. Biol Chem 247:4688–4690

    CAS  Google Scholar 

  30. Henglein A (1956) The acceleration of chemical reactions of ultrasound in solutions of oxygen-rare gas mixtures. Naturwissenschaften (in German) 43(12):277–278

    Google Scholar 

  31. DelDuca M, Yeager E, Davies MO, Havorka F (1958) Isotopic technique in the study of the sonochemical formation of hydrogen peroxide. J Acoust Soc Am 30(4):301–307

    Google Scholar 

  32. Henglein A (1957) The formation of hydrogen peroxide through ultrasound in aqueous solutions of hydrogen in presence of argon and oxygen (in German). Naturwissenschaften 44(6):179

    CAS  Google Scholar 

  33. Virtanen AJ, Ellfolk NJ (1950) Nitrogen fixation in an ultrasonic field. J Am Chem Soc 72:1046–1047

    CAS  Google Scholar 

  34. Virtanen AJ, Ellfolk NJ (1950) Oxidative nitrogen fixation in ultrasonic field. Acta Chem Scand 4:93–102

    CAS  Google Scholar 

  35. Virtanen AJ, Ellfolk NJ (1952) Inhibition of oxidative nitrogen fixation in ultrasonic field by volatile substances. Acta Chem Scand 6(5):660–666

    CAS  Google Scholar 

  36. Sokol’skaya, El’piner IE (1957) The halogen treatments of coals under the action of ultrasonic waves. Dokl Akad Nauk SSSR 114(2):372–374

    Google Scholar 

  37. Sokol’skaya, Elpiner IE (1958) Chemical synthesis under the action of supersonic waves in a water saturated with gases of a reducing atmosphere. Dokl Akad Nauk USSR 119(6):1180–1182

    Google Scholar 

  38. Buttner J, Gutiérrez M, Henglein A (1991) Sonolysis of water – methanol mixtures. J Phys Chem 95:1528–1530

    Google Scholar 

  39. Lindstrom O (1955) Physico-chemical aspects of chemically active ultrasonic cavitation in aqueous solutions. J Acoust Soc Am 27(4):654–671

    CAS  Google Scholar 

  40. Gueguen H (1963) Recherches sur les effets chimiques suscites par les ultrasons dans les solutions aqueuses de quelques halogenures. Ann Chim 8(11–12):667–713

    CAS  Google Scholar 

  41. Prudhomme RO, Grabar P (1949) De l’action Chimique des ultrasons sur certain solutions aqueuses. J Chim Phys 46:323–331

    CAS  Google Scholar 

  42. Beuthe U (1933) Concerning the influence of ultrasonic waves on chemical processes. Z Phys Chem 163(3/4):161–171

    Google Scholar 

  43. Srivastava SC (1958) Chemical reactions initiated by ultrasonic waves. Nature 182:47

    Google Scholar 

  44. Gutierrez M, Henglein A, Dohrmann Jurgen K (1987) H atom reactions in the sonolysis of aqueous solutions. J Phys Chem 91:6687–6690

    CAS  Google Scholar 

  45. Hart EJ, Henglein A (1986) Sonolytic decomposition of nitrous oxide in aqueous solution. J Phys Chem 90:5992–5995

    CAS  Google Scholar 

  46. Matyjaszewski Krzysztof, Dorota Gresta, Hrkach Jeffrey S, Hwan Kyu Kim (1995) Sonochemical synthesis of polysilylenes by reductive coupling of disubstituted dichlorosilanes with alkali metals. Macromolecules 28:59–72

    CAS  Google Scholar 

  47. Francoise L-M, Voglet N, Thierry L, Rudi A (2001) Evidence for the emission of ‘alkali-metal–noble-gas’ van der Waals molecules from cavitation bubbles. Ultrason Sonochem 8(2):151–158

    Google Scholar 

  48. Lynne K, Maritza G, Arnim H (1996) Bimetallic colloids: Silver and Mercury. J Phys Chem 100(27):11203–11206

    Google Scholar 

  49. Kuppa R, Moholkar VS (2010) Physical features of ultrasound-enhanced heterogeneous permanganate oxidation. Ultrason Sonochem 17(1):123–131

    CAS  Google Scholar 

  50. Soudagar SR, Samant SD (1995) Investigation of ultrasound catalyzed oxidation of arylalkanes using aqueous potassium permanganate. Ultrason Sonochem 2(1):S15–S18

    CAS  Google Scholar 

  51. Salkar RA, Jeevanandam P, Aruna ST, Yuri K, Gedanken A (1999) The sonochemical preparation of silver nanoparticles. J Mater Chem 9:1333–1335

    CAS  Google Scholar 

  52. Jhu J, Suwen Liu O, Palchik YL, Gedanken A (2000) Shape-controlled synthesis of silver nanoparticles by pulse sonoelectrochemical methods. Langmiur 16(16):6396–6399

    Google Scholar 

  53. Pol VG, Srivastava DN, Palchik O, Palchik V, Slifkin MA, Weiss AM, Gedanken A (2000) Sonochemical deposition of silver nanoparticles on silica spheres. Langmuir 18(8):3352–3357

    Google Scholar 

  54. Pol VG, Grisaru H, Gedanken A (2005) Coating noble metal nanocrystals (Ag, Au, Pd and Pt) on polystyrene spheres via ultrasound irradiation. Langmuir 21:3635–3640

    CAS  Google Scholar 

  55. Vijaya Kumar R, Palchik O, Koltypin Yu, Diamant Y, Gedanken A (2002) Sonochemical synthesis and characterization of Ag2S/PVA and CuS/PVA nanocomposite. Ultrason Sonochem 9(2):65–70

    Google Scholar 

  56. Salim OM, Mahir I, Mahmut Bayramo glu (2005) Leaching of silver from solid waste using ultrasound assisted thiourea method. Ultrason Sonochem 12(3):237–242

    Google Scholar 

  57. Wang Wang Xi-Kui, Li S, Wei-Lin G, Jin_Gang Wang, Yu-ping Zhu, Chen Wang (2009) Synthesis of dendritic silver nanostructures by means of ultrasonic irradiation. Ultrason Sonochem 16(6):747–751

    CAS  Google Scholar 

  58. Yu-ping Z, Xi-Kui W, Wei-lin G, Jin-gang W, Chen W (2010) Sonochemical synthesis of silver nanorods by reduction of sliver nitrate in aqueous solution. Ultrason Sonochem 17:675–679

    Google Scholar 

  59. Nina P, Galina A, Claudio R, de la Fernando Vega, Aharon Gedanken (2009) Sonochemical deposition of magnetite on silver nanocrystals. Ultrason Sonochem 16(1):132–135

    Google Scholar 

  60. Nagata Y, Watananbe S, Fujita S, Dohmaru T and Taniguchi (1992) Formation of colloidal silver in water by ultrasonic irradiation. J Chem Soc Commun 1620–1622

    Google Scholar 

  61. Eckfeldt Edgar L, Eynon James U (1964) Conductivity (electrical) measurements. In: Hampel CA (ed) Encyclopedia of electrochemistry. Krieges, Huntington, NY, pp 232–236

    Google Scholar 

  62. Zhu JJ, Aruna ST, Yuri K, Gedanken A (2000) A novel method for the preparation of lead selenide: pulse sonoelectrochemical synthesis of lead selenide nanoparticles. Chem Mater 12:143–147

    CAS  Google Scholar 

  63. Zhu Jun-Jie, Wang Hui, Xu Shu, Chen Hong-Yuan Chen (2002) Sonochemical method for the preparation of monodisperse spherical and rectangular lead selenide nanoparticles. Langmuir 18:3306–3310

    CAS  Google Scholar 

  64. Purkayastha A, Qingyu Y, Gandhi Darshan D, Li H, Gyana P, Theodorian B-T, Ravishankar N, Ramanath G (2008) Sequential organic−inorganic templating and thermoelectric properties of high-aspect-ratio single-crystal lead telluride nanorods. Chem Mater 20(15):4791–4793

    CAS  Google Scholar 

  65. Mohammad Jafar Soltanian Fard-Jahromi and Ali Morsali (2010) Sonochemical synthesis of nanoscale mixed-ligands lead(II) coordination polymers as precursors for preparation of Pb2(SO4)O and PbO nanoparticles; thermal, structural and X-ray powder diffraction studies. Ultrason Sonochem 17(2):435–440

    Google Scholar 

  66. Sadeghzadeh H, Morsali A, Yilmaz VY, Buyukgungor O (2010) Sonochemical synthesis of nano-scale mixed-ligands lead(II) coordination polymers as precursors for preparation of PbO and PbBr(OH) nano-structures; thermal, structural and X-ray powder diffraction studies. Ultrason Sonochem 17(3):592–597

    CAS  Google Scholar 

  67. Ziki H, Samual TJ, Jerry BM, Linda WK (2005) Sonolytic desorption of mercury from aluminium oxide. Environ Sci Technol 39(4):1037–1044

    Google Scholar 

  68. Ziki H, Samual TJ, Linda WK (2007) Sonochemical dissolution of cinnabar (α-HgS). Environ Sci Technol 41(3):773–778

    Google Scholar 

  69. Gil S, Lavilla I, Bendicho C (2008) Mercury removal from contaminated water by ultrasound-promoted reduction/vaporization in a microscale reactor. Ultrason Sonochem 15(3):212–216

    CAS  Google Scholar 

  70. Di Michele A, Diodati P, Morresi A, Sassi P (2009) Mercury acetate produced by metallic mercury subjected to acoustic cavitation in a solution of acetic acid in water. Ultrason Sonochem 16(1):141–144

    Google Scholar 

  71. Kristl M, Drofenik M (2008) Sonochemical synthesis of nanocrystalline mercury sulfide, selenide and telluride in aqueous solutions. Ultrason Sonochem 15(5):695–699

    CAS  Google Scholar 

  72. Wang H, Zhu J-J (2004) A sonochemical method for the selective synthesis of α-HgS and β-HgS nanoparticles. Ultrason Sonochem 11(5):293–300

    Google Scholar 

  73. Vogel AI (1995) A text book of quantitative inorganic analysis. ELBS, London, 133

    Google Scholar 

  74. Haas I, Gedanken A (2006) Sonoelectrochemistry of Cu2+ in the presence of cetyltrimethylammonium bromide: obtaining CuBr instead of copper. Chem Mater 18(5):1184–1189

    CAS  Google Scholar 

  75. Gutterez M, Henglein A, Dohrmann JK (1987) Hydrogen atom reactions in the sonolysis of aqueous solutions. J Phys Chem 91(27):6687–6690

    Google Scholar 

  76. Yonghong N, li Hua, Jin Lina, Hong Jianming (2009) Synthesis of ID Cu(OH)2 nanowires and transition to 3D CuO microstructures under ultrasonic irradiation, and their electrochemical property. Cryst Growth Des 9(9):3868–3873

    Google Scholar 

  77. Wen XG, Zhang WX, Yang SH (2002) Solution phase synthesis of Cu(OH)2 nanoribbons by coordination self-assembly using Cu2S nanowires as precursors. Nano Lett 2(12):1397–1401

    CAS  Google Scholar 

  78. Lu CH, Qi LM, Yang JH, Jhang DY, Wu NZ, Ma JM (2004) Simple template-free solution route for the controlled synthesis of Cu(OH)2 and CuO nanostructures. J Phys Chem B 108:17825–17831

    CAS  Google Scholar 

  79. Zhang W, Wen X, Yang S, Yolande B, Wang ZL (2003) Single-crystalline scroll-type nanotube arrays of copper hydroxide synthesized at room temperature. Adv Mater 15(10):822–825

    CAS  Google Scholar 

  80. Haas I, Shanmugam S, Gedanken A (2006) Pulsed sonoelectrochemical synthesis of size-controlled copper nanoparticles under protection of poly (N-vinylpyrrolidone). J Phys Chem B 110:16947–16952

    CAS  Google Scholar 

  81. Baioni AP, Vidotti M, Fiorito PA, Ponzio EA, Cordoba de Torresi SI (2007) Synthesis and characterization of copper hexacyanoferrate nanoparticles for building up long-term stability electrochromic electrodes. Langmuir 23(12):6796–6800

    CAS  Google Scholar 

  82. Salkar RA, Jeevanandam P, Kataby G, Aruna ST, Koltipin yuri, Palchik O, Gedanken A (2000) Elongated copper nanoparticles coated with a zwitterionic surfactant. J Phys Chem B 104:893–897

    CAS  Google Scholar 

  83. Vijay Kumar R, Elgamiel R, Diamant Y, Gedanken A (2001) Sonochemical preparation and characterization of nanocrystalline copper oxide embedded in poly(vinyl alcohol) and Its effect on crystal growth of copper oxide. Langmuir 17(5):1406–1410

    Google Scholar 

  84. Vijay Kumar R, Mastai Y, Gedanken A (2000) Sonochemical synthesis and characterisation of nanocrystalline paramelaconite in polyaniline matrix. Chem Mater 12:3892–3895

    Google Scholar 

  85. Mahdi C, Oualid H, Fatiha A, Christian P (2010) Study on ultrasonically assisted emulsification and recovery of copper(II) from wastewater using an emulsion liquid membrane process. Ultrason Sonochem 17(2):318–325

    Google Scholar 

  86. Entezari Mohammad H, Christian P, Pierre D (2003) Degradation of azo dyes by hybrid ultrasound-Fenton reagent. Ultrason Sonochem 10(2):103–108

    CAS  Google Scholar 

  87. Lv W, Luo Z, Yang H, Liu B, Weng W, Liu J (2010) Effect of processing conditions on sonochemical synthesis of nanosized copper aluminate powders. Ultrason Sonochem 17(2):344–351

    CAS  Google Scholar 

  88. Francony A, Petrier C (1996) Sonochemical degradation of carbon tetrachloride in aqueous solution at two frequencies: 20 kHz and 500 kHz. Ultrason Sonochem 3(2):S77

    CAS  Google Scholar 

  89. Hobson RA, Mulvaney P, Grieser F (1994) Formation of Q-state CdS colloids using ultrasound. J Chem Soc Chem Commun 7:823–824

    Google Scholar 

  90. Swayambunathan V, Hayes D, Schmidt KH, Liao YX, Meisel D (1990) Thiol surface complexation on growing cadmium sulfide clusters. J Am Chem Soc 112:3831–3837

    CAS  Google Scholar 

  91. Yadav Raghvendra S, Priya M, Rupali M, Kumar M, Pandey Avinash C (2010) Growth mechanism and optical property of CdS nanoparticles synthesized using amino-acid histidine as chelating agent under sonochemical process. Ultrason Sonochem 17(1):116–122

    CAS  Google Scholar 

  92. Misik V, Riesz P (1997) Effect of Cd2+ on the •H atom yield in the sonolysis of water. Evidence against the formation of hydrated electrons. J Phys Chem A 101(8):1441–1444

    CAS  Google Scholar 

  93. Mastai Y, Polsky R, Koltypin Yu, Gedanklen A, Hodes G (1999) Pulsed electrochemical synthesis of cadmium selenide nanoparticles. J Am Chem Soc 121:10047–10052

    CAS  Google Scholar 

  94. Zhu Junjie Lu, Zhonghua AST, Doron A, Aharon G (2000) Sonochemical synthesis of SnO2 nanoparticles and their preliminary study as Li insertion electrodes. Chem Mater 12:2557–2566

    Google Scholar 

  95. Wang H, Song Y, Wang Z, Medforth Craig J, James ME, Lindsay E, Peng L, John SA (2008) Silica-Metal core-shells and metal shells synthesized by porphyrin-assisted photocatalysis. Chem Mater 20:7434–7439

    CAS  Google Scholar 

  96. Li H, Liu J, Tusi DY (1998) Guangzhaushi Erginggongye Yanjiuso, 21(ch) 17(3): 1–4

    Google Scholar 

  97. Swamy KM, Sukla LB, Narayana KL, Kar KN, Panchanadikar VV (1995) Use of ultrasound in microbial leaching of nickel from laterites. Ultrason Sonochem 2(1):S5–S9

    CAS  Google Scholar 

  98. Srivastava DN, Perkas N, Seisen Bueva GA, Koltypin Y, Kessler VP, Gedanken A (2003) Preparation of porous cobalt and nickel oxides from corresponding alkoxides using a sonochemical technique and its application as a catalyst in the oxidation of hydrocarbons. Ultrason Sonochem 10(1):1–9

    CAS  Google Scholar 

  99. Ramesh S, Yuri K, Ruslan P, Aharon G (1997) Sonochemical deposition and characterisation of nanophasic amorphous nickel on silica microspheres. Chem Mater 9:546–551

    CAS  Google Scholar 

  100. Shafi KVPM, Yuri K, Aharon G, Raslan P, Balogh LJ, Israel F (1997) Sonochemical preparation of nanosized amorphous NiFe2O4 particles. J Phys Chem B 101:6409–6414

    CAS  Google Scholar 

  101. Zhong Z, Yitzhak M, Yuri K, Yanming Z, Aharon G (1999) Sonochemical coating of nanosized nickel on alumina submicrospheres and interaction between the nickel and nickel oxide with substrate. Chem Mater 11:2350–2359

    CAS  Google Scholar 

  102. Koltypin Y, Fernandez A, Rojas CT, Campora J, Palma P, Prozorov R, Gedanken A (1999) Encapsulation of nickel nanoparticles in carbon obtained by the sonochemical decomposition of Ni(C8H12)2. Chem Mater 11:1331–1335

    CAS  Google Scholar 

  103. Jeevanandam P, Koltypin Yu, Gedanken A (2006) Synthesis of nanosized α-Nickel hydroxide by sonochemical method. J Mater Sci 41:5598–5601

    Google Scholar 

  104. Gandhi KS (1995) Analysis of ultrasonically enhanced hydrogen evolution for Zn–NiCl2 system. Chem Eng Sci 50(15):2409

    Google Scholar 

  105. Doche M-L, Hihn J-Y, Touyeras F, Lorimer JP, Mason TJ, Plattes M (2001) Electrochemical behaviour of zinc in 20 kHz sonicated NaOH electrolytes. Ultrason Sonochem 8(3):291–298

    CAS  Google Scholar 

  106. Ligier V, Hihn JY, Wery M, Tachez M (2001) The effect of 20 kHz and 500 kHz ultrasound on the corrosion of zinc precoated steel in [Cl] [SO 2−4 ] [HCO 3 ] [H2O2] electrolytes. J Appl Electrochem 31:213–322

    CAS  Google Scholar 

  107. Suslick KS, Doktyez SJ (1989) The sonochemistry of Zn powder. Am Chem Soc 111: 2342–2344. Prfozorov T, Prozorov R, Suslick KS (2004) High velocity interparticle collisions driven by ultrasound. J Am Chem Soc 126: 13890–13891

    Google Scholar 

  108. Dhas Arul N, Zaban A, Gedanken A (1999) Surface synthesis of zinc sulphide nanoparticles in silica microspheres: sonochemical preparation, characterisation and optical properties. Chem Mater 11:806–813

    Google Scholar 

  109. Kumar RR, Zhang Lizhi Yu, Jimmy C, Yitzhak M, Aharon G (2003) Mesoporous structures from supramolecular assembly of in situ generated ZnS nanoparticles. Langmuir 19:5904–5911

    Google Scholar 

  110. Zho JJ, Yuri K, Gedanken A (2000) General sonochemical method for the preparation of nanophasic selenide: synthesis of ZnSe nanoparticles. Chem Mater 12:73–78

    Google Scholar 

  111. Jung Seung-Ho, Eugene Oh, Hanna L, Dae-Seob S, Seungho C, Kun-Hong L, Soo-Hwan J (2009) Shape selective fabrication of zinc phosphate hexagonal bipyramids via a disodium phosphate-assisted sonochemical route. Cryst Growth Des 9(8):3544–3547

    CAS  Google Scholar 

  112. Baranchikiv AE, Ivanov VK, Oleinikov NN, Tretyakov DYu (2004) Microstructural evaluation of Fe2O3 and ZnFe2O4 during sonochemical synthesis of zinc ferrite. Inorg Mater 40(10):1091–1094

    Google Scholar 

  113. Baranchikiv AE, Ivanov VK, Muraveva GP, Oleinikov NN, Tretyakov Yu D (2004) Kinetics of the formation of zinc ferrite in an ultrasonic field. Dokl Chem 397(Part I):146–148

    Google Scholar 

  114. Vogel AI (1961) Quantitative inorganic analysis, 3rd edn. ELBS, London, 900

    Google Scholar 

  115. Peter C, Suslick KS (2000) Ultrasound-enhanced reactivity of calcium in the reduction of aromatic hydrocarbons. Ultrason Sonochem 7:53–61

    Google Scholar 

  116. Khasanov OL, Hahn SR, Dvilis ES, Han MS, Lim SS, Sokolov VM, Milovanova (2001) Proc. Korus 2001, The Korean–Russia international symposium on science and technology 2:251–254

    Google Scholar 

  117. Gutierrez M, Henglein A, Moeckel H (1995) Observations on the role of MgCl2 in the Weissler reaction. Ultrason Sonochem 2(2):S111–S113

    CAS  Google Scholar 

  118. Shafi KVPM, Felner I, Mastai Y, Gedanken A (1999) Ólympic ring formation from newly prepared barium hexaferrite nanoparticle suspension. J Phys Chem B 103:3358–3360

    CAS  Google Scholar 

  119. Perelshtein I, Perkas N, Magdassi Sh, Zioni T, Royz M, Maor Z, Gedanken A (2008) Últrasound assisted dispersion of SrFe12O19 nanoparticles in organic solvents and the use of the dispersion as magnetic cosmetics. J Nanopart Res 10:191–195

    CAS  Google Scholar 

  120. YeungAu S, Hobson RA, Biggs S, Grieser F (1994) 8th international conference on surface and colloid science, Adelaide, South Australia

    Google Scholar 

  121. Okitsu K, Mizukoshi Y, Bandow H, Maeda Y, Yamamoto T, Nagata Y (1996) Formation of noble metal particles by ultrasonic irradiation. Ultrason Sonochem 3:S249–S251

    CAS  Google Scholar 

  122. Mizukoshi Y, Takagi E, Okuno H, Oshima R, Maeda Y, Nagata Y (2001) Preparation of platinum nanoparticles by sonochemical reduction of the Pt(IV) ions: role of surfactants. Ultrason Sonochem 8(1):1–6

    CAS  Google Scholar 

  123. Yoshiteru M, Yoji M, Shuto Tatsuya Hu, Jinwei TA, Sayoko S, Shuji T (2007) Immobilization of noble metal nanoparticles on the surface of TiO2 by the sonochemical method: photocatalytic production of hydrogen from an aqueous solution of ethanol. Ultrason Sonochem 14(3):387–392

    Google Scholar 

  124. Torok B, Karoly F, Gerda S, Mihaly B (1997) Sonochemical enantioselective hydrogenation of ethyl pyruvate over platinum catalysts. Ultrason Sonochem 4(4):301–304

    CAS  Google Scholar 

  125. Torok B, Gyorgy S, Katalin B, Karoly F, Istvan K, Mihaly B (1999) Ultrasonics in heterogeneous metal catalysis: sonochemical chemo- and enantioselective hydrogenations over supported platinum catalysts. Ultrason Sonochem 6(1–2):97–103

    CAS  Google Scholar 

  126. Gyorgy S, Istvan K, Bela T, Mihaly B (2000) Ultrasonics in chemoselective heterogeneous metal catalysis. Sonochemical hydrogenation of unsaturated carbonyl compounds over platinum catalysts. Ultrason Sonochem 7(4):173–176

    Google Scholar 

  127. Sivakumar M, Atsuya T, Kyuichi Y, Toru T, Teruyuki K, Yasuo I (2010) Dependence of sonochemical parameters on the platinization of rutile titania – an observation of a pronounced increase in photocatalytic efficiencies. Ultrason Sonochem 17(3):621–627

    CAS  Google Scholar 

  128. Neppolian B, Doronila A, Grieser F, Ashokkumar M (2009) Simple and efficient sonochemical method for the oxidation of arsenic (III) to arsenic (V). Environ Sci Technol 43:6793–6798

    CAS  Google Scholar 

  129. Pankaj, Manju C (2006) pH independent precipitation of arsenic as sulphide under ultrasonic field. J Ind Council Chem 23(1):41–43

    CAS  Google Scholar 

  130. Breitbach M, Bathen D (2001) Influence of ultrasound on adsorption processes. Ultrason Sonochem 8(3):277–283

    CAS  Google Scholar 

  131. Margulis MA (1985) Sonoluminescence from non-aqueous liquids. Ultrasonics 23:157

    CAS  Google Scholar 

  132. Wang H, Jun-Jie J, Jian-Min Z (2002) Sonochemical method for the preparation of bismuth sulfide nanorods, J Phys Chem B 106(15):3848–3854

    CAS  Google Scholar 

  133. Nowak M, Szperlich P, Bober L, Szala J, Moskal G, Stroz D (2008) Sonochemical preparation of SbSI gel. Ultrason Sonochem 15(5):709–716

    CAS  Google Scholar 

  134. Nowak M, Szperlich P, Tilak E, Szala J, Rzychon T, Stroz D, Nowrot A, Solecka B (2010) Sonochemical preparation of antimony subiodide. Ultrason Sonochem 17(1):219–227

    CAS  Google Scholar 

  135. Nowak M, Kauch B, Szperlich P, Stroz D, Szala J, Rzychon T, Bober L, Toron B, Nowrot A (2010) Sonochemical preparation of SbS1−x Se x I nanowires. Ultrason Sonochem 17(2):487–493

    CAS  Google Scholar 

  136. Wang H, Yi-Nong Lu, Jun-Jie J, Hong-Yuan C (2003) Sonochemical fabrication and characterization of stibnite nanorods. Inorg Chem 42:6404–6411

    CAS  Google Scholar 

  137. De Morais NLPA, Brett CMA (2002) Influence of power ultrasound on the corrosion of aluminium and high speed steel. J Appl Electrochem 32:653–660

    Google Scholar 

  138. Sweet JD, Casadonte DJ Jr (1994) Sonochemical formation of intermetallic coatings. Chem Mater 6(11):2113–2117

    CAS  Google Scholar 

  139. Watanabe T, Sato S (1993) Jpn. Kokai Tokkyo Koho JP 05 69, 120

    Google Scholar 

  140. Kim HC, Ahn TH, So CH, Ma Y, Zhao X, Langdon TG (1992) A 1st report on the use of nondestructive technique to investigate cavitation in a superplastic alluminium-alloy. Scr Metall Mater 26(3):423–428

    CAS  Google Scholar 

  141. Amara N, Ratsimba B, Marie A, Wilhelm, Delmas Henri (2001) Crystallization of potash alum: effect of power ultrasound. Ultrason Sonochem 8(3):265–270

    CAS  Google Scholar 

  142. Iwasaki H, Mabuchi M, Higashi K, Langdon TG (1996) The development of cavitation in superplastic aluminum composites reinforced with Si3N4. Mater Sci Eng A 208(1):116–121

    Google Scholar 

  143. Naka M, Maeda M (1991) Application on ultrasound on joining of ceramics to metals. Eng Fract Mech 40(4–5):951–956

    Google Scholar 

  144. Gutierrez M, Henglein A, Dohrmann JK (1987) Hydrogen atom reactions in the sonolysis of aqueous solutions. J Phys Chem 91:6687

    CAS  Google Scholar 

  145. Yeung S Au, Hobson R, Biggs S and Grieser F (1993) Formation of gold sols using ultrasound. J Chem Soc Chem Commun 4:378–379

    Google Scholar 

  146. Reed Justin A, Andrew C, Halaas HJ, Paul P, Alex R, Thomas MJ, Grieser F (2003) The effects of microgravity on nanoparticle size distributions generated by the ultrasonic reduction of an aqueous gold-chloride solution. Ultrason Sonochem 10(4–5):285–289

    CAS  Google Scholar 

  147. Okitsu K, Ashokkumar M, Grieser F (2005) Sonochemical synthesis of gold nanoparticles: effect of ultrasound frequency. J Phys Chem B 109:20673–20675

    CAS  Google Scholar 

  148. Park Jong Eun, Mahito A, Toshio F (2006) Synthesis of multiple shapes of gold nanoparticles with controlled sizes in aqueous solution using ultrasound. Ultrason Sonochem 13(3):237–241

    CAS  Google Scholar 

  149. Pradhan A, Jones Robin C, Daniela C, O’Connor Charles J, Tarr Matthew A (2008) Gold-magnetite nanocomposite materials formed via sonochemical methods. Ultrason Sonochem 15(5):891–897

    CAS  Google Scholar 

  150. Preece CM (1979) In: Preece CM (ed) Treatise on material advances and technology: erosion, vol 16. Academic, New York, p 249

    Google Scholar 

  151. Karimi A, Martin JL (1986) Cavitation erosion of material. Int Met Rev 31:1–26

    CAS  Google Scholar 

  152. Doktycz SJ, Suslick KS (1990) Interparticle collisions driven by ultrasound. Science 247:1067–1069

    CAS  Google Scholar 

  153. Prosperetti A (1984) Bubble phenomena in sound fields: part two. Ultrasonics 22:115

    Google Scholar 

  154. Gasgnier M (2000) Ultrasound effects on metallic (Fe and Cr); iron sesquioxide (α-, γ-Fe2O3): calcite; copper, lead and manganese oxides as powders. Ultrason Sonochem 7:25–39

    CAS  Google Scholar 

  155. Alex CCT, Goh NN, Chia LS (1995) Effects of particle size morphology on ultrasound induced cavitational mechanism in heterogeneous systems. J Chem Soc Chem Commun 2:201–201

    Google Scholar 

  156. Heard SM, Grieser F, Barraclough CG, Sanders JV (1983) The characterization of Ag sols by electron microscopy, optical absorption and electrophoresis. J Colloid Interface Sci 93(2):545–555

    CAS  Google Scholar 

  157. Pankaj DS, Manju C (2006) Sonochemical removal of hardness and sterilization of underground potable water. J Ind Council Chem 23(1):38–40

    CAS  Google Scholar 

  158. Kruger O, Schulz Th L, Peters D (1999) Sonochemical treatment of natural ground water at different high frequencies: preliminary results. Ultrason Sonochem 6(1):123–128

    CAS  Google Scholar 

  159. Phull SS, Newman AP, Lorimer JP, Pollet B, Mason TJ (1997) The development and evaluation of ultrasound in the biocidal treatment of water. Ultrason Sonochem 4(2):157–164

    CAS  Google Scholar 

  160. Nagata Y, Nakagawa M, Okuno H, Mizukoshi Y, Yim B, Maeda Y (2000) Sonochemical degradation of chlorophenols in water. Ultrason Sonochem 7:115–120

    CAS  Google Scholar 

  161. (i) Carvajal JJ, Aznar A, Sole R, Gavalda J, Massons J, Solans X, Aguilo M, Diaz F (2003) Growth and structural characterization of Rb2Ti1.01Er0.99(PO4)3. Chem Mater 15: 204–211. (ii) Leite, ER, Vila C, Bettini J, Longo E (2006) Synthesis of niobia nanocrystals with controlled morphology. J Phys Chem B 110: 18088–18090. (iii) Sankar R, Raghvan CM, Jayavel R (2007) Bulk growth and characterization of semi-organic nonlinear optical bis thiourea bismuth chloride single crystals. Cryst Growth Des 7(3): 501–505. (iv) Vijayan N, Rajasekaran S, Bhagvannarayana G, Babu RR, Gopalkrishnan R, Palanichamy M, Ramasamy P (2006) Growth and characterization of nonlinear optical amino acid single crystal: l-alanine. Cryst Growth Des 6(11): 2441–2445. (v) Wu D, Ugurlu O, Chumbley LS, Kramer MJ, Lograsso TA (2006) Synthesis and characterization of hexagonal Cd51Yb14 single crystals. Philos Mag 86(3–5): 381–387. (vi) Nitsch K, Nikl M, Ganschow S, Reiche P, Uecker R (1996) Growth of lead tungstate single crystal scintillators. J Cryst Growth 165: 163–165. (vii) Barre M, Crosnier-Lopez MP, Le Berre F, Emery J, Suard E, Fourquet J-L (2005) Room temperature crystal structure of La1/3Zr2(PO4)3, NASICON-type compound. Chem Mater 17: 6605–6610. (viii) Arora SK, Chudasama B (2007) Flux growth and optoelectronic study of PbWO4 single crystals, Cryst Growth Des 7(2): 296–299. (viii) Prabukanthan P, Dhanasekaran R (2007) Growth of CuGaS2 single crystals by chemical vapor transport and characterization. Cryst Growth Des 7(4): 618–623. (ix) Parreu I, Carvajal JJ, Solans X, Diaz F, Aguilo, M (2006) Crystal structure and optical characterization of pure and Nd-substituted type III KGd(PO3)4, Chem Mater 18: 221–228

    Google Scholar 

  162. Suslick KS, Price GJ (1999) Applications of ultrasound to material chemistry. Annu Rev Mater Sci 29:295–326

    CAS  Google Scholar 

  163. Cains PW, Martin PD, Price CJ (1998) The use of ultrasound in industrial chemical synthesis and crystallization. Part1. Applications to synthetic chemistry. Org Process Res Dev 2:34

    CAS  Google Scholar 

  164. Zhu L, Liu X, Meng J, Cao X (2007) Facile sonochemical synthesis of single-crystalline europium fluorine with novel nanostructure. Cryst Growth Des 7(12):2505–2511

    CAS  Google Scholar 

  165. McCausland LJ, Cains PW (2002) Sonocrystallization – ultrasonically promoted crystallization for the optimal Isolation of drug actives, Drug Delivery Systems & Sciences 2(2):47

    Google Scholar 

  166. Lieber CM (1998) One-dimensional nanostructures: chemistry, physics and applications. Solid State Commun 107:607

    CAS  Google Scholar 

  167. Alivisatos AP (1996) Semiconductor clusters, nanocrystals, and quantum dots. Science 271:933–937

    CAS  Google Scholar 

  168. Sharma KCV (2002) Crystal engineering – where do we go from here? Cryst Growth Des 2(6):465–474

    CAS  Google Scholar 

  169. Jung S-H, Oh E, Lee K-H, Park CG, Park W, Jeong S-H (2008) Sonochemical preparation of shape-selective ZnO nanostructures. Cryst Growth Des 8(1):265–269

    CAS  Google Scholar 

  170. Lindley J (1992) Sonochemical effects on syntheses involving solid and supported catalysts. Ultrasonics 30(3):163–167

    CAS  Google Scholar 

  171. Plesset MS, Chapman RB (1971) Collapse of an initially spherical vapor cavity in the neighborhood of a solid boundary. J Fluid Mech 47:283–290

    Google Scholar 

  172. Crum LA (1982) Acoustic cavitation. Proc Ultrason Symp 1:1–11

    Google Scholar 

  173. Suslick KS, Doktycz SJ (1990) In: TJ Mason (ed) Advances in sonochemistry, vol 1, JAI Press, London, pp 204

    Google Scholar 

  174. Neppirass EA (1980) Acoustic cavitation. Phy Rep 61:159–251

    Google Scholar 

Download references

Acknowledgements

Author is grateful to DST, AICTE, BRNS-DAE and SAP-UGC research grants for this work. A very special thanks to Dr. Sonu Dubey and Dr. Manju Chauhan for the experimental work, carried out in our laboratory and reported in this monograph and to Mr. Mayank Verma (JRF-UGC) and Ms. Shikha Goyal (JRF-CSIR) for their referral assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pankaj .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Pankaj (2010). Aqueous Inorganic Sonochemistry. In: Ashokkumar, M. (eds) Theoretical and Experimental Sonochemistry Involving Inorganic Systems. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3887-6_9

Download citation

Publish with us

Policies and ethics