Skip to main content

The Evolution of Genomic Imprinting – A Marsupial Perspective

  • Chapter
  • First Online:

Abstract

Genomic imprinting is a medically significant epigenetic trait in which genes are expressed from only one of the two alleles, according to their parent of origin. Among vertebrates, imprinted gene expression has been found only in the live-bearing therian mammals – eutherians (placental mammals) and marsupials. Because marsupials are so distantly related to eutherians, comparisons of imprinting between the two mammalian infraclasses are particularly valuable. However, the popular mammalian model organisms (humans, mice and domestic mammals) are all eutherian, so imprinting in marsupials has not received the attention it deserves. Research gathered over some years shows that marsupial orthologues of many imprinted domains in eutherians, such as the well characterised IGF2/H19 and PEG10 domains, comprise fewer imprinted genes. Other eutherian imprinted domains, such as the X-inactivation centre, Callipyge and Prader-Willi/Angleman syndrome domains, are either completely absent in marsupials or are not imprinted. The occurrence of imprinting in marsupials (with some imprinted genes) and eutherians (with many imprinted genes) contrasts with the likely absence of imprinting in egg-laying vertebrates (monotreme mammals, birds and reptiles). The acquisition of imprinting by therian mammals correlates with increased dependence on placentation for early development and coincides with the acquisition of a unique repeat content within the genome and germline expression of BORIS. Analysis of the evolutionary trajectory of these traits offers us insights into how and why genomic imprinting evolved in mammals.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ager E, Suzuki S, Pask AJ, et al. (2007) Insulin is imprinted in the placenta of the marsupial, Macropus eugenii. Dev Biol 309:317–328.

    Article  PubMed  CAS  Google Scholar 

  • Ager EI, Pask AJ, Gehring HM, Shaw G, Renfree MB (2008a). Evolution of the CDKN1C-KCNQ1 imprinted domain. BMC Evol Biol 8:163.

    Article  PubMed  CAS  Google Scholar 

  • Ager EI, Pask AJ, Shaw G, Renfree MB (2008b). Expression and protein localisation of IGF2 in the marsupial placenta. BMC Dev Biol 8:17.

    Article  PubMed  CAS  Google Scholar 

  • Angiolini E, Fowden A, Coan P, et al. (2006) Regulation of placental efficiency for nutrient transport by imprinted genes. Placenta 27(Suppl A):S98–S102.

    Article  PubMed  CAS  Google Scholar 

  • Barlow DP (1993) Methylation and imprinting: from host defense to gene regulation? Science 260:309–310.

    Article  PubMed  CAS  Google Scholar 

  • Bartolomei MS, Zemel S, Tilghman SM (1991) Parental imprinting of the mouse H19 gene. Nature 351:153–155.

    Article  PubMed  CAS  Google Scholar 

  • Bell AC, Felsenfeld G (2000) Methylation of a CTCF-dependent boundary controls imprinted expression of the Igf2 gene. Nature 405:482–485.

    Article  PubMed  CAS  Google Scholar 

  • Bininda-Emonds OR, Cardillo M, Jones KE, et al. (2007) The delayed rise of present-day mammals. Nature 446:507–512.

    Article  PubMed  CAS  Google Scholar 

  • Bourc’his D, Xu GL, Lin CS, Bollman B, Bestor TH (2001) Dnmt3L and the establishment of maternal genomic imprints. Science 294:2536–2539.

    Article  PubMed  Google Scholar 

  • Burke LJ, Hollemann T, Pieler T, Renkawitz R (2002) Molecular cloning and expression of the chromatin insulator protein CTCF in Xenopus laevis. Mech Dev 113:95–98.

    Article  PubMed  CAS  Google Scholar 

  • Cai X, Cullen BR (2007) The imprinted H19 noncoding RNA is a primary microRNA precursor. RNA 13:313–316.

    Article  PubMed  CAS  Google Scholar 

  • Cavaille J, Seitz H, Paulsen M, Ferguson-Smith AC, Bachellerie JP (2002) Identification of tandemly-repeated C/D snoRNA genes at the imprinted human 14q32 domain reminiscent of those at the Prader-Willi/Angelman syndrome region. Hum Mol Genet 11:1527–1538.

    Article  PubMed  CAS  Google Scholar 

  • Chabowski A, Coort SLM, Calles-Escandon J, et al. (2004) Insulin stimulates fatty acid transport by regulating expression of FAT/CD36 but not FABPpm. Am J Physiol Endocrinol Metab 287:781–789.

    Article  Google Scholar 

  • Chaillet JR (1994) Genomic imprinting: lessons from mouse transgenes. Mutat Res 307:441–449.

    Article  PubMed  CAS  Google Scholar 

  • Charlier C, Segers K, Wagenaar D, et al. (2001) Human-ovine comparative sequencing of a 250-kb imprinted domain encompassing the callipyge (clpg) locus and identification of six imprinted transcripts: DLK1, DAT, GTL2, PEG11, antiPEG11, and MEG8. Genome Res 11:850–862.

    Article  PubMed  CAS  Google Scholar 

  • Cockburn A (1997) Living slow and dying young: senescence in marsupials. In: Saunders N, Hinds L (eds) Marsupial Biology: Recent Research, New Perspectives. University of New South Wales Press, Sydney.

    Google Scholar 

  • Cockett NE, Jackson SP, Shay TL, et al. (1996) Polar overdominance at the ovine callipyge locus. Science 273:236–238.

    Article  PubMed  CAS  Google Scholar 

  • Colosi DC, Martin D, More K, Lalande M (2006) Genomic organization and allelic expression of UBE3A in chicken. Gene 383:93–98.

    Article  PubMed  CAS  Google Scholar 

  • Constancia M, Hemberger M, Hughes J, et al. (2002) Placental-specific IGF-II is a major modulator of placental and fetal growth. Nature 417:945–948.

    Article  PubMed  CAS  Google Scholar 

  • Cooper DW, VandeBerg JL, Sharman GB, Poole WE (1971) Phosphoglycerate kinase polymorphism in kangaroos provides further evidence for paternal X inactivation. Nat New Biol 230:155–157.

    Article  PubMed  CAS  Google Scholar 

  • Curley JP, Barton S, Surani A, Keverne EB (2004) Coadaptation in mother and infant regulated by a paternally expressed imprinted gene. Proc Biol Sci 271:1303–1309.

    Article  PubMed  Google Scholar 

  • da Rocha ST, Edwards CA, Ito M, Ogata T, Ferguson-Smith AC (2008) Genomic imprinting at the mammalian Dlk1-Dio3 domain. Trends Genet 24:306–316.

    Article  PubMed  CAS  Google Scholar 

  • Davidow LS, Breen M, Duke SE, et al. (2007) The search for a marsupial XIC reveals a break with vertebrate synteny. Chromosome Res 15:137–146.

    Article  PubMed  CAS  Google Scholar 

  • Davis E, Caiment F, Tordoir X, et al. (2005) RNAi-mediated allelic trans-interaction at the imprinted Rtl1/Peg11 locus. Curr Biol 15:743–749.

    Article  PubMed  CAS  Google Scholar 

  • Day T, Bonduriansky R (2004) Intralocus sexual conflict can drive the evolution of genomic imprinting. Genetics 167:1537–1546.

    Article  PubMed  Google Scholar 

  • Deakin JE, Hore TA, Koina E, Graves JAM (2008) The status of dosage compensation in the multiple X chromosomes of the platypus. PLoS Genet 4:e1000140.

    Article  PubMed  CAS  Google Scholar 

  • DeChiara TM, Robertson EJ, Efstratiadis A (1991) Parental imprinting of the mouse insulin-like growth factor II gene. Cell 64:849–859.

    Article  PubMed  CAS  Google Scholar 

  • Deltour L, Montagutelli X, Guenet JL, Jami J, Paldi A (1995) Tissue- and developmental stage-specific imprinting of the mouse proinsulin gene, Ins2. Dev Biol 168:686–688.

    Article  PubMed  CAS  Google Scholar 

  • Dindot SV, Farin PW, Farin CE, et al. (2004) Epigenetic and genomic imprinting analysis in nuclear transfer derived Bos gaurus/Bos taurus hybrid fetuses. Biol Reprod 71:470–478.

    Article  PubMed  CAS  Google Scholar 

  • Dunzinger U, Nanda I, Schmid M, Haaf T, Zechner U (2005) Chicken orthologues of mammalian imprinted genes are clustered on macrochromosomes and replicate asynchronously. Trends Genet 21:488–492.

    Article  PubMed  CAS  Google Scholar 

  • Duret L, Chureau C, Samain S, Weissenbach J, Avner P (2006) The Xist RNA gene evolved in eutherians by pseudogenization of a protein-coding gene. Science 312:1653–1655.

    Article  PubMed  CAS  Google Scholar 

  • Edwards CA, Mungall AJ, Matthews L, et al. (2008) The evolution of the DLK1-DIO3 imprinted domain in mammals. PLoS Biol 6:e135.

    Article  PubMed  CAS  Google Scholar 

  • Elisaphenko EA, Kolesnikov NN, Shevchenko AI, et al. (2008) A dual origin of the Xist gene from a protein-coding gene and a set of transposable elements. PLoS ONE 3:e2521.

    Article  PubMed  CAS  Google Scholar 

  • Fehlmann M, Le Cam A, Freychet P (1979) Insulin and glucagon stimulation of amino acid transport in isolated rat hepatocytes. Synthesis of a high affinity component of transport. J Biol Chem 254:10431–10437.

    PubMed  CAS  Google Scholar 

  • Filippova GN (2008) Genetics and epigenetics of the multifunctional protein CTCF. Curr Top Dev Biol 80:337–360.

    Article  PubMed  CAS  Google Scholar 

  • Fisher DO, Double MC, Blomberg SP, Jennions MD, Cockburn A (2006) Post-mating sexual selection increases lifetime fitness of polyandrous females in the wild. Nature 444:89–92.

    Article  PubMed  CAS  Google Scholar 

  • Freeman SJ (1990) Functions of extraembryonic membranes. In: Postimplantation Mammalian Embryos: A Practical Approach. Oxford University Press, New York.

    Google Scholar 

  • Genevieve D, Sanlaville D, Faivre L, et al. (2005) Paternal deletion of the GNAS imprinted locus (including Gnasxl) in two girls presenting with severe pre- and post-natal growth retardation and intractable feeding difficulties. Eur J Hum Genet 13:1033–1039.

    Article  PubMed  CAS  Google Scholar 

  • Giddings SJ, King CD, Harman KW, Flood JF, Carnaghi LR (1994) Allele specific inactivation of insulin 1 and 2, in the mouse yolk sac, indicates imprinting. Nat Genet 6:310–313.

    Article  PubMed  CAS  Google Scholar 

  • Goll MG, Bestor TH (2005) Eukaryotic cytosine methyltransferases. Annu Rev Biochem 74:481–514.

    Article  PubMed  CAS  Google Scholar 

  • Graves JAM (1996) Mammals that break the rules: genetics of marsupials and monotremes. Annu Rev Genet 30:233–260.

    Article  PubMed  CAS  Google Scholar 

  • Gray TA, Saitoh S, Nicholls RD (1999a). An imprinted, mammalian bicistronic transcript encodes two independent proteins. Proc Natl Acad Sci USA 96:5616–5621.

    Article  PubMed  CAS  Google Scholar 

  • Gray TA, Smithwick MJ, Schaldach MA, et al. (1999b). Concerted regulation and molecular evolution of the duplicated SNRPB’/B and SNRPN loci. Nucleic Acids Res 27:4577–4584.

    Article  PubMed  CAS  Google Scholar 

  • Gray TA, Hernandez L, Carey AH, et al. (2000) The ancient source of a distinct gene family encoding proteins featuring RING and C(3)H zinc-finger motifs with abundant expression in developing brain and nervous system. Genomics 66:76–86.

    Article  PubMed  CAS  Google Scholar 

  • Gulbis B, Jauniaux E, Cotton F, Stordeur P (1998) Protein and enzyme patterns in the fluid cavities of the first trimester gestational sac: relevance to the absorptive role of secondary yolk sac. Mol Hum Reprod 4:857–862.

    Article  PubMed  CAS  Google Scholar 

  • Haig D, Westoby M (1989) Parent-specific gene-expression and the triploid endosperm. American Naturalist 134:147–155.

    Article  Google Scholar 

  • Haig D (2000) The kinship theory of genomic imprinting. Ann Rev Ecol Syst 31:9–32.

    Article  Google Scholar 

  • Haig D, Wharton R (2003) Prader-Willi syndrome and the evolution of human childhood. Am J Hum Biol 15:320–329.

    Article  PubMed  Google Scholar 

  • Haig D (2004) Genomic imprinting and kinship: how good is the evidence? Annu Rev Genet 38:553–585.

    Article  PubMed  CAS  Google Scholar 

  • Han L, Lee DH, Szabo PE (2008) CTCF is the master organizer of domain-wide allele-specific chromatin at the H19/Igf2 imprinted region. Mol Cell Biol 28:1124–1135.

    Article  PubMed  CAS  Google Scholar 

  • Happle R (1985) Lyonization and the lines of Blaschko. Hum Genet 70:200–206.

    Article  PubMed  CAS  Google Scholar 

  • Hark AT, Schoenherr CJ, Katz DJ, et al. (2000) CTCF mediates methylation-sensitive enhancer-blocking activity at the H19/Igf2 locus. Nature 405:486–489.

    Article  PubMed  CAS  Google Scholar 

  • Hata K, Okano M, Lei H, Li E (2002) Dnmt3L cooperates with the Dnmt3 family of de novo DNA methyltransferases to establish maternal imprints in mice. Development 129:1983–1993.

    PubMed  CAS  Google Scholar 

  • Heard E, Chaumeil J, Masui O, Okamoto I (2004) Mammalian X-chromosome inactivation: an epigenetics paradigm. Cold Spring Harb Symp Quant Biol 69:89–102.

    Article  PubMed  CAS  Google Scholar 

  • Hernandez-Sanchez C, Mansilla A, de la Rosa EJ, de Pablo F (2006) Proinsulin in development: new roles for an ancient prohormone. Diabetologia 49:1142–1150.

    Article  PubMed  CAS  Google Scholar 

  • Holleley CE, Dickman CR, Crowther MS, Oldroyd BP (2006) Size breeds success: multiple paternity, multivariate selection and male semelparity in a small marsupial, Antechinus stuartii. Mol Ecol 15:3439–3448.

    Article  PubMed  CAS  Google Scholar 

  • Hore TA, Koina E, Wakefield MJ, Graves JAM (2007a). The region homologous to the X-chromosome inactivation centre has been disrupted in marsupial and monotreme mammals. Chromosome Res 15:147–161.

    Article  PubMed  CAS  Google Scholar 

  • Hore TA, Rapkins RW, Graves JAM (2007b). Construction and evolution of imprinted loci in mammals. Trends Genet 23:440–448.

    Article  PubMed  CAS  Google Scholar 

  • Hore TA (2008) The Evolution of Genomic Imprinting and X-Chromosome Inactivation in Mammals. PhD thesis, Research School of Biological Sciences, Canberra.

    Google Scholar 

  • Hore TA, Deakin JE, Graves JAM (2008) The evolution of epigenetic regulators CTCF and BORIS/CTCFL in amniotes. PLoS Genet 4:e1000169.

    Article  PubMed  CAS  Google Scholar 

  • Jelinic P, Stehle JC, Shaw P (2006) The testis-specific factor CTCFL cooperates with the protein methyltransferase PRMT7 in H19 imprinting control region methylation. PLoS Biol 4:e355.

    Article  PubMed  CAS  Google Scholar 

  • Jia D, Jurkowska RZ, Zhang X, Jeltsch A, Cheng X (2007) Structure of Dnmt3a bound to Dnmt3L suggests a model for de novo DNA methylation. Nature 449:248–251.

    Article  PubMed  CAS  Google Scholar 

  • Jones CJ, Jauniaux E (1995) Ultrastructure of the materno-embryonic interface in the first trimester of pregnancy. Micron 26:145–173.

    Article  PubMed  CAS  Google Scholar 

  • Kaneda M, Okano M, Hata K, et al. (2004) Essential role for de novo DNA methyltransferase Dnmt3a in paternal and maternal imprinting. Nature 429:900–903.

    Article  PubMed  CAS  Google Scholar 

  • Kaneko-Ishino T, Kohda T, Ishino F (2003) The regulation and biological significance of genomic imprinting in mammals. J Biochem 133:699–711.

    Article  PubMed  CAS  Google Scholar 

  • Kawahara M, Wu Q, Takahashi N, et al. (2007) High-frequency generation of viable mice from engineered bi-maternal embryos. Nat Biotechnol 25:1045–1050.

    Article  PubMed  CAS  Google Scholar 

  • Keverne EB, Curley JP (2008) Epigenetics, brain evolution and behaviour. Front Neuroendocrinol 29:398–412.

    Article  PubMed  CAS  Google Scholar 

  • Kholmanskikh O, Loriot A, Brasseur F, De Plaen E, De Smet C (2008) Expression of BORIS in melanoma: lack of association with MAGE-A1 activation. Int J Cancer 122:777–784.

    Article  PubMed  CAS  Google Scholar 

  • Killian JK, Byrd JC, Jirtle JV, et al. (2000) M6P/IGF2R imprinting evolution in mammals. Mol Cell 5:707–716.

    Article  PubMed  CAS  Google Scholar 

  • Killian JK, Nolan CM, Wylie AA, et al. (2001a). Divergent evolution in M6P/IGF2R imprinting from the Jurassic to the Quaternary. Hum Mol Genet 10:1721–1728.

    Article  PubMed  CAS  Google Scholar 

  • Killian JK, Nolan CM, Stewart N, et al. (2001b). Monotreme IGF2 expression and ancestral origin of genomic imprinting. J Exp Zool 291:205–212.

    Article  PubMed  CAS  Google Scholar 

  • Klenova EM, Nicolas RH, Paterson HF, et al. (1993) CTCF, a conserved nuclear factor required for optimal transcriptional activity of the chicken c-myc gene, is an 11-Zn-finger protein differentially expressed in multiple forms. Mol Cell Biol 13:7612–7624.

    PubMed  CAS  Google Scholar 

  • Klenova EM, Fagerlie S, Filippova GN, et al. (1998) Characterization of the chicken CTCF genomic locus, and initial study of the cell cycle-regulated promoter of the gene. J Biol Chem 273:26571–26579.

    Article  PubMed  CAS  Google Scholar 

  • Kono T, Obata Y, Wu Q, et al. (2004) Birth of parthenogenetic mice that can develop to adulthood. Nature 428:860–864.

    Article  PubMed  CAS  Google Scholar 

  • Kornfeld S (1992) Structure and function of the mannose 6-phosphate/insulinlike growth factor II receptors. Annu Rev Biochem 61:307–330.

    Article  PubMed  CAS  Google Scholar 

  • Lawton BR, Sevigny L, Obergfell C, et al. (2005) Allelic expression of IGF2 in live-bearing, matrotrophic fishes. Dev Genes Evol 215:207–212.

    Article  PubMed  CAS  Google Scholar 

  • Lawton BR, Carone BR, Obergfell CJ, et al. (2008) Genomic imprinting of IGF2 in marsupials is methylation dependent. BMC Genomics 9:205.

    Article  PubMed  CAS  Google Scholar 

  • Li L, Keverne EB, Aparicio SA, et al. (1999) Regulation of maternal behavior and offspring growth by paternally expressed Peg3. Science 284:330–333.

    Article  PubMed  CAS  Google Scholar 

  • Livesey G, Williams KE (1981) Rates of pinocytic capture of simple proteins by rat yolk sacs incubated in vitro. Biochem J 198:581–586.

    PubMed  CAS  Google Scholar 

  • Loukinov DI, Pugacheva E, Vatolin S, et al. (2002) BORIS, a novel male germ-line-specific protein associated with epigenetic reprogramming events, shares the same 11-zinc-finger domain with CTCF, the insulator protein involved in reading imprinting marks in the soma. Proc Natl Acad Sci USA 99:6806–6811.

    Article  PubMed  CAS  Google Scholar 

  • Luo ZX, Ji Q, Wible JR, Yuan CX (2003) An Early Cretaceous tribosphenic mammal and metatherian evolution. Science 302:1934–1940.

    Article  PubMed  CAS  Google Scholar 

  • Lyle R, Watanabe D, Vruchte D, et al. (2000) The imprinted antisense RNA at the Igf2r locus overlaps but does not imprint Mas1. Nat Genet 25:19–21.

    Article  PubMed  CAS  Google Scholar 

  • Lyon MF (1961) Gene action in the X-chromosome of the mouse (Mus musculus L). Nature 190:372–373.

    Article  PubMed  CAS  Google Scholar 

  • Mann JR, Lovell-Badge RH (1984) Inviability of parthenogenones is determined by pronuclei, not egg cytoplasm. Nature 310:66–67.

    Article  PubMed  CAS  Google Scholar 

  • Matsuoka S, Thompson JS, Edwards MC, et al. (1996) Imprinting of the gene encoding a human cyclin-dependent kinase inhibitor, p57KIP2, on chromosome 11p15. Proc Natl Acad Sci USA 93:3026–3030.

    Article  PubMed  CAS  Google Scholar 

  • McGrath J, Solter D (1984) Completion of mouse embryogenesis requires both the maternal and paternal genomes. Cell 37:179–183.

    Article  PubMed  CAS  Google Scholar 

  • McGrath KE, Palis J (2005) Hematopoiesis in the yolk sac:more than meets the eye. Exp Hematol 33:1021–1028.

    Article  PubMed  Google Scholar 

  • Migeon BR, Wolf SF, Axelman J, Kaslow DC, Schmidt M (1985) Incomplete X chromosome dosage compensation in chorionic villi of human placenta. Proc Natl Acad Sci USA 82:3390–3394.

    Article  PubMed  CAS  Google Scholar 

  • Monk M, Hitchins M, Hawes S (2008) Differential expression of the embryo/cancer gene ECSA(DPPA2), the cancer/testis gene BORIS and the pluripotency structural gene OCT4, in human preimplantation development. Mol Hum Reprod 14:347–355.

    Article  PubMed  CAS  Google Scholar 

  • Moon H, Filippova G, Loukinov D, et al. (2005) CTCF is conserved from Drosophila to humans and confers enhancer blocking of the Fab-8 insulator. EMBO Rep 6:165–170.

    Article  PubMed  CAS  Google Scholar 

  • Moore GE, Abu-Amero SN, Bell G, et al. (2001) Evidence that insulin is imprinted in the human yolk sac. Diabetes 50:199–203.

    Article  PubMed  CAS  Google Scholar 

  • Moore T, Haig D (1991) Genomic imprinting in mammalian development: a parental tug-of-war. Trends Genet 7:45–49.

    PubMed  CAS  Google Scholar 

  • Morison IM, Ramsay JP, Spencer HG (2005) A census of mammalian imprinting. Trends Genet 21:457–465.

    Article  PubMed  CAS  Google Scholar 

  • Nahkuri S, Taft RJ, Korbie DJ, Mattick JS (2008) Molecular Evolution of the HBII-52 snoRNA Cluster. J Mol Biol 381:810–815.

    Article  PubMed  CAS  Google Scholar 

  • Nicholls RD, Knepper JL (2001) Genome organization, function, and imprinting in Prader-Willi and Angelman syndromes. Annu Rev Genomics Hum Genet 2:153–175.

    Article  PubMed  CAS  Google Scholar 

  • Nolan CM, Killian JK, Petitte JN, Jirtle RL (2001) Imprint status of M6P/IGF2R and IGF2 in chickens. Dev Genes Evol 211:179–183.

    Article  PubMed  CAS  Google Scholar 

  • O’Neill MJ, Ingram RS, Vrana PB, Tilghman SM (2000) Allelic expression of IGF2 in marsupials and birds. Dev Genes Evol 210:18–20.

    Article  PubMed  Google Scholar 

  • O’Neill MJ, Lawton BR, Mateos M, et al. (2007) Ancient and continuing Darwinian selection on insulin-like growth factor II in placental fishes. Proc Natl Acad Sci USA 104:12404–12409.

    Article  PubMed  CAS  Google Scholar 

  • O’Sullivan FM, Murphy SK, Simel LR, et al. (2007) Imprinted expression of the canine IGF2R, in the absence of an anti-sense transcript or promoter methylation. Evol Dev 9:579–589.

    Article  PubMed  Google Scholar 

  • Ogawa O, Eccles MR, Szeto J, et al. (1993) Relaxation of insulin-like growth factor II gene imprinting implicated in Wilms’ tumour. Nature 362:749–751.

    Article  PubMed  CAS  Google Scholar 

  • Ono R, Kobayashi S, Wagatsuma H, et al. (2001) A retrotransposon-derived gene, PEG10, is a novel imprinted gene located on human chromosome 7q21. Genomics 73:232–237.

    Article  PubMed  CAS  Google Scholar 

  • Ooi SK, Qiu C, Bernstein E, et al. (2007) DNMT3L connects unmethylated lysine 4 of histone H3 to de novo methylation of DNA. Nature 448:714–717.

    Article  PubMed  CAS  Google Scholar 

  • Otto SP, Goldstein DB (1992) Recombination and the evolution of diploidy. Genetics 131:745–751.

    PubMed  CAS  Google Scholar 

  • Oudejans CB, Westerman B, Wouters D, et al. (2001) Allelic IGF2R repression does not correlate with expression of antisense RNA in human extraembryonic tissues. Genomics 73:331–337.

    Article  PubMed  CAS  Google Scholar 

  • Pask AJ, Papenfuss AT, Ager EI, et al. (2009) Analysis of the platypus genome suggests a transposon origin for mammalian imprinting. Genome Biol 10:R1.

    Article  PubMed  CAS  Google Scholar 

  • Payer B, Lee JT (2008) X chromosome dosage compensation: how mammals keep the balance. Annu Rev Genet 42:733–772.

    Article  PubMed  CAS  Google Scholar 

  • Plagge A, Gordon E, Dean W, et al. (2004) The imprinted signaling protein XL alpha s is required for postnatal adaptation to feeding. Nat Genet 36:818–826.

    Article  PubMed  CAS  Google Scholar 

  • Pugacheva EM, Kwon YW, Hukriede NA, et al. (2006) Cloning and characterization of zebrafish CTCF: developmental expression patterns, regulation of the promoter region, and evolutionary aspects of gene organization. Gene 375:26–36.

    Article  PubMed  CAS  Google Scholar 

  • Pugliese A, Zeller M, Fernandez A Jr., et al. (1997) The insulin gene is transcribed in the human thymus and transcription levels correlated with allelic variation at the INS VNTR-IDDM2 susceptibility locus for type 1 diabetes. Nat Genet 15:293–297.

    Article  PubMed  CAS  Google Scholar 

  • Rainier S, Johnson LA, Dobry CJ, et al. (1993) Relaxation of imprinted genes in human cancer. Nature 362:747–749.

    Article  PubMed  CAS  Google Scholar 

  • Rapkins RW, Hore T, Smithwick M, et al. (2006) Recent assembly of an imprinted domain from non-imprinted components. PLoS Genet 2:e182.

    Article  PubMed  CAS  Google Scholar 

  • Reik W, Dean W, Walter J (2001) Epigenetic reprogramming in mammalian development. Science 293:1089–1093.

    Article  PubMed  CAS  Google Scholar 

  • Reik W, Constancia M, Fowden A, et al. (2003) Regulation of supply and demand for maternal nutrients in mammals by imprinted genes. J Physiol 547:35–44.

    Article  PubMed  CAS  Google Scholar 

  • Renfree MB (1972) Influence of the embryo on the marsupial uterus. Nature 240:475–477.

    Article  PubMed  CAS  Google Scholar 

  • Renfree MB (1982) Implantation and placentation. Reprod Mamm 2:26–69.

    Google Scholar 

  • Renfree MB, Ager EI, Shaw G, Pask AJ (2008) Genomic imprinting in marsupial placentation. Reproduction 136:523–531.

    Article  PubMed  CAS  Google Scholar 

  • Renfree MB, Hore TA, Shaw G, Marshall Graves JAM, Pask AJ (2009) Evolution of genomic imprinting: insights from marsupials and monotremes. Annu Rev Genomics Hum Genet. 10:241–262.

    Article  PubMed  CAS  Google Scholar 

  • Richardson BJ, Czuppon AB, Sharman GB (1971) Inheritance of glucose-6-phosphate dehydrogenase variation in kangaroos. Nat New Biol 230:154–155.

    PubMed  CAS  Google Scholar 

  • Runte M, Huttenhofer A, Gross S, et al. (2001) The IC-SNURF-SNRPN transcript serves as a host for multiple small nucleolar RNA species and as an antisense RNA for UBE3A. Hum Mol Genet 10:2687–2700.

    Article  PubMed  CAS  Google Scholar 

  • Runte M, Kroisel PM, Gillessen-Kaesbach G, et al. (2004) SNURF-SNRPN and UBE3A transcript levels in patients with Angelman syndrome. Hum Genet 114:553–561.

    Article  PubMed  CAS  Google Scholar 

  • Russo VEA, Martienssen RA, Riggs AD (1996) Epigenetic Mechanisms of Gene Regulation. Cold Spring Harbor Laboratory Press, Plainview.

    Google Scholar 

  • Scott RJ, Spielman M (2006) Genomic imprinting in plants and mammals: how life history constrains convergence. Cytogenet Genome Res 113:53–67.

    Article  PubMed  CAS  Google Scholar 

  • Seitz H, Royo H, Bortolin ML, et al. (2004) A large imprinted microRNA gene cluster at the mouse Dlk1-Gtl2 domain. Genome Res 14:1741–1748.

    Article  PubMed  CAS  Google Scholar 

  • Shevchenko AI, Zakharova IS, Elisaphenko EA, et al. (2007) Genes flanking Xist in mouse and human are separated on the X chromosome in American marsupials. Chromosome Res 15:127–136.

    Article  PubMed  CAS  Google Scholar 

  • Sleutels F, Zwart R, Barlow DP (2002) The non-coding Air RNA is required for silencing autosomal imprinted genes. Nature 415:810–813.

    Article  PubMed  CAS  Google Scholar 

  • Smits G, Mungall AJ, Griffiths-Jones S, et al. (2008) Conservation of the H19 noncoding RNA and H19-IGF2 imprinting mechanism in therians. Nat Genet 40:971–976.

    Article  PubMed  CAS  Google Scholar 

  • Surani MA, Barton SC, Norris ML (1984) Development of reconstituted mouse eggs suggests imprinting of the genome during gametogenesis. Nature 308:548–550.

    Article  PubMed  CAS  Google Scholar 

  • Suzuki S, Renfree MB, Pask AJ, et al. (2005) Genomic imprinting of IGF2, p57(KIP2) and PEG1/MEST in a marsupial, the tammar wallaby. Mech Dev 122:213–222.

    Article  PubMed  CAS  Google Scholar 

  • Suzuki S, Ono R, Narita T, et al. (2007) Retrotransposon silencing by DNA methylation can drive mammalian genomic imprinting. PLoS Genet 3:e55.

    Article  PubMed  CAS  Google Scholar 

  • Takagi N, Sasaki M (1975) Preferential inactivation of the paternally derived X chromosome in the extraembryonic membranes of the mouse. Nature 256:640–642.

    Article  PubMed  CAS  Google Scholar 

  • Tremblay KD, Duran KL, Bartolomei MS (1997) A 5 2-kilobase-pair region of the imprinted mouse H19 gene exhibits exclusive paternal methylation throughout development. Mol Cell Biol 17:4322–4329.

    PubMed  CAS  Google Scholar 

  • Ubeda F (2008) Evolution of genomic imprinting with biparental care: implications for Prader-Willi and Angelman syndromes. PLoS Biol 6:e208.

    Article  PubMed  CAS  Google Scholar 

  • Vafiadis P, Bennett ST, Todd JA, et al. (1997) Insulin expression in human thymus is modulated by INS VNTR alleles at the IDDM2 locus. Nat Genet 15:289–292.

    Article  PubMed  CAS  Google Scholar 

  • Varmuza S, Mann M (1994) Genomic imprinting–defusing the ovarian time bomb. Trends Genet 10:118–123.

    Article  PubMed  CAS  Google Scholar 

  • Wake N, Takagi N, Sasaki M (1976) Non-random inactivation of X chromosome in the rat yolk sac. Nature 262:580–581.

    Article  PubMed  CAS  Google Scholar 

  • Warren WC, Hillier LW, Graves JAM, et al. (2008) Genome analysis of the platypus reveals unique signatures of evolution. Nature 453:175–183.

    Article  PubMed  CAS  Google Scholar 

  • Webster KE, O’Bryan MK, Fletcher S, et al. (2005) Meiotic and epigenetic defects in Dnmt3L-knockout mouse spermatogenesis. Proc Natl Acad Sci USA 102:4068–4073.

    Article  PubMed  CAS  Google Scholar 

  • Weidman JR, Dolinoy DC, Maloney KA, Cheng JF, Jirtle RL (2006a). Imprinting of Opossum Igf2r in the absence of differential methylation and air. Epigenetics 1:49–54.

    Article  PubMed  Google Scholar 

  • Weidman JR, Maloney KA, Jirtle RL (2006b). Comparative phylogenetic analysis reveals multiple non-imprinted isoforms of opossum Dlk1. Mamm Genome 17:157–167.

    Article  PubMed  CAS  Google Scholar 

  • West JD, Frels WI, Chapman VM, Papaioannou VE (1977) Preferential expression of the maternally derived X chromosome in the mouse yolk sac. Cell 12:873–882.

    Article  PubMed  CAS  Google Scholar 

  • Wilkins JF, Haig D (2003) What good is genomic imprinting: the function of parent-specific gene expression. Nat Rev Genet 4:359–368.

    Article  PubMed  CAS  Google Scholar 

  • Yokomine T, Kuroiwa A, Tanaka K, et al. (2001) Sequence polymorphisms, allelic expression status and chromosome locations of the chicken IGF2 and MPR1 genes. Cytogenet Cell Genet 93:109–113.

    Article  PubMed  CAS  Google Scholar 

  • Yokomine T, Hata K, Tsudzuki M, Sasaki H (2006) Evolution of the vertebrate DNMT3 gene family: a possible link between existence of DNMT3L and genomic imprinting. Cytogenet Genome Res 113:75–80.

    Article  PubMed  CAS  Google Scholar 

  • Yotova IY, Vlatkovic IM, Pauler FM, et al. (2008) Identification of the human homolog of the imprinted mouse Air non-coding RNA. Genomics 92:464–473.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy A. Hore .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Hore, T.A., Renfree, M.B., Pask, A.J., Graves, J.A.M. (2010). The Evolution of Genomic Imprinting – A Marsupial Perspective. In: Deakin, J., Waters, P., Marshall Graves, J. (eds) Marsupial Genetics and Genomics. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9023-2_12

Download citation

Publish with us

Policies and ethics