Skip to main content

Water Deficit and Nitrogen Nutrition of Crops

  • Chapter
  • First Online:
Sustainable Agriculture Volume 2

Abstract

Among the environmental factors that can be modified by farmers, water and nitrogen are the main ones controlling plant growth. Irrigation and fertilizer application overcome this effect, if adequately used. Agriculture thus consumes about 85% of the total fresh water used worldwide. While only 18% of the world’s cultivated areas are devoted to irrigated agriculture, this total surface represents more than 45% of total agricultural production. These data highlight the importance of irrigated agriculture in a framework where the growing population demands greater food production. In addition, tighter water restrictions and competition with other sectors of society is increasing pressure to diminish the share of fresh water for irrigation, thus resulting in the decrease in water diverted for agriculture.The effect of water and nutrient application on yield has led to the overuse of these practices in the last decades. This misuse of irrigation and fertilizers is no longer sustainable, given the economic and environmental costs. Sustainable agriculture requires a correct balance between the agronomic, economic and environmental aspects of nutrient management. The major advances shown in this review are the following: (1) the measurement of the intensity of drought and N deficiency is a prerequisite for quantitative assessment of crop needs and management of both irrigation and fertilizer application. The N concentration of leaves exposed to direct irradiance allows both a reliable and high-resolution measurement of the status and the assessment of N nutrition at the plant level. (2) Two experiments on sunflower and on tall fescue are used to relate the changes in time and irrigation intensity to the crop N status, and to introduce the complex relationships between N demand and supply in crops. (3) Effects of water deficits on N demand are reviewed, pointing out the high sensitivity of N-rich organs versus the relative lesser sensitivity of organs that are poorer in N compounds. (4) The generally equal sensitivities of nitrifying and denitrifying microbes are likely to explain many conflicting results on the impact of water deficits on soil mineral N availability for crops. (5) The transpiration stream largely determines the availability of mineral N in the rhizosphere. This makes our poor estimate of root densities a major obstacle to any precise assessment of N availability in fertilized crops. (6) The mineral N fluxes in the xylem are generally reduced under water deficit and assimilation is generally known to be more sensitive to water scarcity. (7) High osmotic pressures are maintained during grain filling, which enables the plant to recycle large amounts of previously assimilated N. Its part in the total grain N yield is therefore generally higher under water deficits. (8) Most crop models currently used in agronomy use N and water efficiently but exhibit different views on their interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Addiscott T.M., Withmore A.P., Powlson D.S. (1991) Farming, fertilisers and the nitrate problem, CAB International, Wallingford, UK.

    Google Scholar 

  • Akmal M., Janssens M.J.J. (2004) Productivity and light use efficiency of perennial ryegrass with contrasting water and nitrogen supplies, Field Crop. Res. 88, 143–155.

    Google Scholar 

  • Alvarez de Toro J. (1987) Respueta del girasol (Helianthus annuus L.) a un suministro variable de agua de reigo y de nitrogeno, University of Cordoba.

    Google Scholar 

  • Andrews M. (1986) The partitioning of nitrate assimilation betwen root and shoot of higher plants, Plant Cell Environ. 9, 511–519.

    CAS  Google Scholar 

  • Angus J.F., Mancur M.W. (1985) Models of growth and development of wheat in relation to plant nitrogen, Aust. J. Agr. Res. 36, 537–544.

    Google Scholar 

  • Arora A., Singh V.P., Mohan. J. (2001) Effect of nitrogen and water stress on photosynthesis and nitrogen content in wheat, Biol. Plantarum 44, 153–155.

    Google Scholar 

  • Asseng S., Cao W., Zhang W., Ludwig F. (2009) Crop physiology, Modelling and Climate Change: Impact and Adaptation Strategies, in: Sadras V.O., Calderini D.F. (Eds.), Crop Physiology, Academic Press, Amsterdam, pp. 511–545.

    Google Scholar 

  • Aulakh M.S., Malhi S.S. (2005) Interactions of Nitrogen with Other Nutrients and Water: Effect on Crop Yield and Quality, Nutrient Use Efficiency, Carbon Sequestration, and Environmental Pollution, in: Sparks D.L. (Ed.), Advances in Agronomy, pp. 341–409.

    Google Scholar 

  • Austin A.T., Yahdjian L., Stark J.M., Belnap J., Porporato A., Norton U., Ravetta D.A., Schaffer S.M. (2004) Water pulses and biogeochemical cycles in arid and semiarid ecosystems, Oecologia 141, 221–235.

    PubMed  Google Scholar 

  • Azedo-Silva J., Osório J., Fonseca F., Correia M.J. (2004) Effects of soil drying and subsequent re-watering on the activity of nitrate reductase in roots and leaves of Helianthus annuus, Funct. Plant Biol. 31, 611–621.

    CAS  Google Scholar 

  • Bahrun A., Jensen C.R., Asch F., Mogensen V.O. (2002) Drought-induced changes in xylem pH, ionic composition, and ABA concentration act as early signals in field-grown maize (Zea mays L.), J. Exp. Bot. 53, 251–263.

    PubMed  CAS  Google Scholar 

  • Barber S.A. (1974) Influence of the plant root on ion movement in soils, in: Carson E.W. (Ed.), The Plant Root and its Environment, University Press of Virginia, Chalottesville, pp. 525–564.

    Google Scholar 

  • Barbottin A., Lecomte C., Bouchard C., Jeuffroy M.H (2005) Nitrogen Remobilization during Grain Filling in Wheat: Genotypic and Environmental Effects, Crop Sci. 45, 1141–1150.

    Google Scholar 

  • BassiriRad H., Tremmel D.C., Virginia R.A., Reynolds J.F., Soyza A.G.d., Brunell M.H. (1999) Short-term patterns in water and nitrogen acquisition by two desert shrubs following a simulated summer rain, Plant Ecol. 145, 27–36.

    Google Scholar 

  • Bélanger G., Walsh J.R., Richards J.E., Milburn P.H., Ziadi. N. (2001) Critical nitrogen curve and nitrogen nutrition index for potato in eastern Canada, Am. J. Potato Res. 78, 355–364.

    Google Scholar 

  • Berni J.A.J., Zarco-Tejada P.J., Sepulcre-Cantó G., Fereres E., Villalobos F. (2009) Mapping canopy conductance and CWSI in olive orchards using high resolution thermal remote sensing imagery, Remote Sens. Environ. (to be published).

    Google Scholar 

  • Bhat K.K.S. (1982) Nutrient inflows into apple roots. II. - Nitrate uptake rates measured on intact roots of mature trees under field conditions, Plant Cell Environ. 5, 461–469.

    CAS  Google Scholar 

  • Bloom A.J., Sukrapanna S.S., Warner R.L. (1992) Root respiration associated with ammonium and nitrate absorption and assimilation by Barley, Plant Physiol. 99, 1294–1301.

    PubMed  CAS  Google Scholar 

  • Bradford K.J., Hsiao T.C. (1982) Physiological responses to moderate water stress, in: Lange O.L., Nobel P.S., Osmond C.B., Ziegler H. (Eds.), Physiological plant ecology II. Water realtions and carbon assimilation. Springer-Verlag, Berlin, pp. 263–324.

    Google Scholar 

  • Brisson N., Gary C., Justes E., Roche R., Mary B., Ripoche D., Zimmer D., Sierra J., Bertuzzi P., Burger P., Bussière F., Cabidoche Y.M., Cellier P., Debaeke P., Gaudillère J.P., Hénault C., Maraux F., Seguin B., Sinoquet H. (2003) An overview of the crop model STICS, Eur. J. Agron. 18, 309–332.

    Google Scholar 

  • Brisson N., Launay M., Mary B., Beaudoin N. (2009) Conceptual basis, formalisations and parameterization of the STICS crop model, Quae, Versailles.

    Google Scholar 

  • Broadley M.R., A.J. Escobar-Gutierrez, Burns A., Burns I.G. (2001) Nitrogen-limited growth of lettuce is associated with lower stomatal conductance, New Phytol. 152, 97–106.

    Google Scholar 

  • Buljovcic Z., Engels C. (2001) Nitrate uptake ability by maize roots during and after drought stress, Plant Soil 229, 125–135.

    CAS  Google Scholar 

  • Cantero-Martinez C., Villar J.M., Romagosa I., Fereres E. (1995) Nitrogen fertilization of barley under semi-arid rainfed conditions, Eur. J. Agron. 4, 309–316.

    Google Scholar 

  • Cartelat A., Cerovic Z.G., Goulas Y., Meyer S., Lelarge C., Prioul J.L., Barbottin A., Jeuffroy M.H., Gate P., Agati G., Moya I. (2005) Optically assessed contents of leaf polyphenolics and chlorophyll as indicators of nitrogen deficiency in wheat (Triticum aestivum L.), Field Crop. Res. 91, 35–49.

    Google Scholar 

  • Cassman K.G., (2001) Science research to assure food security, in: Nösberger J., Geiger H.H., Struik P.C. (Eds.), Crop Science and Prospect, CABI Publishing, pp. 33–42.

    Google Scholar 

  • Celette F., Wery J., Chantelot E., Celette J., Gary C. (2005) Belowground interactions in a vine (Vitis vinifera L.)-tall fescue (Festuca arundinacea Shreb.) intercropping system: Water relations and growth, Plant Soil 276, 205–217.

    CAS  Google Scholar 

  • Ciompi S., Gentili E., Guidi L., Soldatini G.F. (1996) The effect of nitrogen deficiency on leaf gas exchange and chlorophyll fluorescence parameters in sunflower, Plant Sci. 118, 177–184.

    CAS  Google Scholar 

  • Colnenne C., Meynard J.M., Reau R., Justes E., Merrien A. (1998) Determination of a critical nitrogen dilution curve for winter oilseed rape, Ann. Bot. 81, 311–317.

    CAS  Google Scholar 

  • Correia M.J., Fonseca F., Azedo-Silva J., Dias C., David M.M., Barrote I., Osório M.L., Osório J., (2005) Effects of water deficit on the activity of nitrate reductase and content of sugars, nitrate and free amino acids in the leaves and roots of sunflower and white lupin plants growing under two nutrient supply regimes, Physiol. Plantarum 124, 61–70.

    CAS  Google Scholar 

  • Cowan I.R., (1982) Economics of carbon fixation in higher plants, in: Givnish T.J. (Ed.), On the economy of plant form and function, Cambridge University Press, Cambridge, pp. 133–171.

    Google Scholar 

  • De Wit C.T., Van Keulen H. (1972) Simulation of transport processes in soils, Centre for Agricultural Publishing and Documentation Wageningen, Wageningen, Netherlands.

    Google Scholar 

  • Devienne-Barret F., Justes E., Machet J.M., Mary B. (2000) Integrated control of nitrate uptake by crop growth rate and soil nitrate availability under field conditions, Ann. Bot. 86, 995–1005.

    CAS  Google Scholar 

  • Diouf O., Brou Y.C., Diouf M., Sarr B., Eyletters M., Roy-Macauley H., Delhaye J.P. (2004) Response of pearl millet to nitrogen as affected by water deficit, Agronomie 24, 77–84.

    Google Scholar 

  • Dixon H.H., Joly J. (1895) On the ascent of sap, Philos. T. Roy. Soc. 186, 563–576.

    Google Scholar 

  • Doussan C., Pagés L., Pierret A. (2003) Soil exploration and resource acquisition by plant roots: An architectural and modelling point of view, Agronomie 23, 419–431.

    Google Scholar 

  • Dreccer M.F. (2005) Nitrogen use at the leaf and canopy level: a framework to improve crop N use efficiency, J. Crop Improv. 15, 97–125.

    CAS  Google Scholar 

  • Durand J.L. (1994) Response of morphogenesis to water deficits and competition, in: Sinoquet H., Cruz P. (Eds.), Ecophysiology of tropical intercropping, INRA, Paris, pp. 257–274.

    Google Scholar 

  • Durand J.L., Lemaire G., Gosse G., Chartier M. (1989) Analyse de la conversion de l’énergie solaire en maitère sèche par un peuplement de luzene (Medicago sativa L.) soumis à un déficit hydrique, Agronomie 9, 599–607.

    Google Scholar 

  • Durand J.L., Onillon B., Schnyder H., Rademacher I. (1995) Drought effects on cellular and spatial parameters of leaf growth in tall fescue, J. Exp. Bot. 46, 1147–1155.

    CAS  Google Scholar 

  • Durand J.L., Varlet-Grancher C., Lemaire G., Gastal F., Moulia B. (1991) Carbon partitioning in forage crops, Acta Biotheor. 39, 213–224.

    Google Scholar 

  • Duru M. (2004) Simplified nitrogen assessment of orchardgrass swards, Agron. J. 96, 1598–1605.

    Google Scholar 

  • Easterling D.R., Meehl G.A., Parmesan C., Changnon S.A, Karl T.R., Mearns L.O. (2000) Climate extremes: Observations, Modeling, and Impacts, Science 289, 2068–2074.

    CAS  Google Scholar 

  • Egli D.B. (2004) Seed-fill duration and yield of grain crops, Adv. Agron. 83, 243–279.

    Google Scholar 

  • Engels C., Mollenkopf M., Marschner H. (1994) Effect of drying and rewetting the topsoil on root growth of maize and rape in different soil types, Z. Pflanzenernähr. Bodenk. 157, 139–144.

    Google Scholar 

  • Evans J.R. (1989) Photosynthesis and nitrogen relationships in leaves of C3 plants, Oecologia 78, 9–19.

    Google Scholar 

  • Fan X.L., Li Y.K. (2001) Effect of drought stress and drought tolerancec heredity on nitrogen efficiency of winter wheat, in: Horst W.W.J., Schenk M.K., Burkert A., Claasen N., Flessa H., Frommer W.B., Goldbach H.E., Olfs H.-W., Romheld W., Sattelmacher B., Schmidhalter U., Schubert S., von Wiren N., Wittenmayer L. (Eds.), Plant Nutrition: Food Security and Sustainability of Agro-Ecosystems, American Society of Agronomy, Madison, USA, pp. 62–63.

    Google Scholar 

  • Farruggia A., Gastal F., Scholefield D. (2004) Assessment of the nitrogen status of grassland, Grass Forage Sci. 59, 113–120.

    CAS  Google Scholar 

  • Field, C., Mooney H.A. (1986) The photosynthesis-nitrogen relationship in wild plants, in: Givnish T.J. (Ed.), On the economy of plant form and function, Cambridge University Press, Cambridge, pp. 25–55.

    Google Scholar 

  • Fierer N., Schimel J.P. (2002) Effects of drying-rewetting frequency on soil carbon and nitrogen transformations, Soil Biol. Biochem. 34, 777–787.

    CAS  Google Scholar 

  • Fischer R.A., Hagan R.M. (1965) Plant water relations, irrigation management and crop yield, Exp. Agr. 1, 161–177.

    Google Scholar 

  • Gajri P.R., Prihar S.S., Arora V.K. (1993) Interdependence of nitrogen and irrigation effects on growth and input-use efficiencies in wheat, Field Crop. Res. 31, 71–86.

    Google Scholar 

  • Galloway J.N., Townsend A.R., Erisman J.W., Bekunda M., Cai Z., Freney J.R., Martinelli L.A., Seitzinger S.P., Sutton M.A. (2008) Transformation of the Nitrogen Cycle: Recent Trends, Questions, and Potential Solutions, Science 320, 889–892.

    CAS  Google Scholar 

  • Gamon J.A., Peñuelas J., Field C.B. (1992) A narrow-wave band spectral index that track diurnal changes in photosynthetic efficiency, Remote Sens. Environ. 41, 35–44.

    Google Scholar 

  • Gardner W.R. (1960) Dynamic aspects of water availability to plants, Soil Sci. 89, 63–73.

    Google Scholar 

  • Garwood E.A., Tyson K.C., Sinclair J. (1979) Use of water by six grass species. 1. Dry-matter yields and response to irrigation, J. Agr. Sci. 93, 13–24.

    Google Scholar 

  • Garwood E.A., Williams T.E. (1967) Growth, water use and nutrient uptake from the subsoil by grass swards, J. Agr. Sci. 69, 125–130.

    CAS  Google Scholar 

  • Gastal F., Lemaire G. (2002) N uptake and distribution in crops: an agronomical and ecophysiological perspective, J. Exp. Bot. 53, 789–799.

    PubMed  CAS  Google Scholar 

  • Gastal F., Saugier B. (1989) Relationships between nitrogen uptake and carbon assimilation in whole plants of tall fescue, Plant Cell Environ. 12, 407–418.

    Google Scholar 

  • Ghashghaie J., Saugier B. (1989) Effects of nitrogen deficiency on leaf photosynthetic response of tall fescue to water deficit, Plant Cell Environ. 12, 261–271.

    CAS  Google Scholar 

  • Giorgi F., Bi X. (2005) Regional changes in surface climate interannual variability for the 21th century from ensembles of global model simulations, Geophys. Res. Lett. 32.

    Google Scholar 

  • Glass A.D.M., Britto D.T., Kaiser B.N., Kinghorn J.R., Kronzucker H.J., Kumar A., Okamoto M., Rawat S., Siddiqi M.Y., Unkles S.E., Vidmar J.J. (2002) The regulation of nitrate and ammonium transport systems in plants, J. Exp. Bot. 53, 855–864.

    PubMed  CAS  Google Scholar 

  • Gojon A., Passard C., Bussi C. (1994) Root/shoot distribution of NO3 assimilation in herbaceous and woody species, in: Roy R., Garnier E. (Eds.), A whole plant perspective on carbon-nitrogen interactions, SPB Academic Publishing, The Hague.

    Google Scholar 

  • Gollan T., Schurr U., Schulze E.D. (1992) Stomatal response to drying soil in relation to changes in the xylem sap composition of Helianthus annuus I. The concentration of cations anions, amino acids in, and pH of, the xylem sap, Plant Cell Environ. 15, 551–559.

    CAS  Google Scholar 

  • Gonzalez-Dugo V. (2006) Effet du déficit hydrique sur l’état de nutrition azotée chez les graminées fourragères, University of Poitiers, France, 189.

    Google Scholar 

  • Gonzalez-Dugo V., Durand J.L., Gastal F., Picon-Cochard C. (2005) Short-term response of the nitrogen nutrition status of tall fescue and Italian ryegrass swards under water deficit, Aust. J. Agr. Res. 56, 1269–1276.

    CAS  Google Scholar 

  • Gorissen A., Tietema A., Joosten N.N., Estiarte M., Peñuelas J., Sowerby A., Emmett B.A., Beier C. (2004) Climate change affects carbon allocation to the soil in shrublands, Ecosystems 7, 650–661.

    CAS  Google Scholar 

  • Gosse G., Chartier M., Varlet-Granchet C., Bonhomme R. (1982) Interception du rayonnement utile à la photosynthèse chez la luzerne : Variations et modélisation, Agronomie 2, 583–588.

    Google Scholar 

  • Greenwood D.J., Lemaire G., Gosse G., Cruz P., Draycott A., Neeteson J.J. (1990) Decline in percentage N of C3 and C4 crops with increasing plant mass, Ann. Bot. 66, 425–436.

    CAS  Google Scholar 

  • Grubb P.J. (1977) Control of forest growth and distribution on wet tropical mountains: with special reference to mineral nutrition, Ann. Rev. Ecol. Syst. 8, 83–107.

    CAS  Google Scholar 

  • Hardwick R.C. (1987) The nitrogen content of plants and the self-thinning rule of plant ecology: A test of the core-skin hypothesis, Ann. Bot. 60, 439–446.

    Google Scholar 

  • Herdel K., Schmidt P., Feil R., Mohr A., Schurr U. (2001) Dynamics of concentrations and nutrient fluxes in the xylem of Ricinus cummunis-diurnal course, impact of nutrient availability and nutrient uptake, Plant Cell Environ. 24, 41–52.

    CAS  Google Scholar 

  • Hikosaka K., Terashima I., Katoh S. (1994) Effects of leaf age, nitrogen nutrition and photon flux density on the distribution of nitrogen among leaves of a vine (Ipomoea tricolor Cav.) grown horizontally to avoid mutual shading of leaves, Oecologia 97, 451–457.

    Google Scholar 

  • Hirose T., Werger M.J.A. (1987) Maximizing daily canopy photosynthesis with respect to the leaf nitrogen allocation pattern in the canopy, Oecologia 72, 520–526.

    Google Scholar 

  • Hopmans J.W., Bristow K.L. (2002) Current capabilities and future needs of root water and nutrient uptake modeling, Adv. Agron. 77, 103–183.

    Google Scholar 

  • Huang B., Gao H. (2000) Root physiological characteristics associated with drought resistance in tall fescue cultivars, Crop Sci. 40, 196–203.

    Google Scholar 

  • Hunt L.A., Pararajasingham S. (1995) CROPSIM - WHEAT: A model describing the growth and development of wheat, Can. J. Plant Sci. 75 619–632.

    Google Scholar 

  • Idso S., Jackson R., Pinter P.J.J., Reginato R., Hatfield J. (1981) Normalizing the stressdegree-day parameter for environmental variability, Agr. Meteorol. 24, 45–55.

    Google Scholar 

  • Ingram K.T., Bueno F.D., Namuco O.S., Yambao E.B., Beyrouty C.A. (1994) Rice root traits for drought resistance and their genetic variation, Rice Roots: Nutrient and Water Use, 67–77.

    Google Scholar 

  • Jackson R., Idso S., Reginato R., Pinter P.J. (1981) Canopy temperature as a crop water stress indicator, Water Resour. Res. 17, 1133–1138.

    Google Scholar 

  • Jacob J., Udayakumar M., Prasad T.G. (1995) Mesophyll conductance was inhibited more than stomatal conductance in nitrogen deficient plants, Plant Physiol. Bioch. 17, 55–61.

    Google Scholar 

  • Jeuffroy M.H., Ney B., Ourry A. (2002) Integrated physiological and agronomic modelling of N capture and use within the plant, J. Exp. Bot. 53, 809–823.

    PubMed  CAS  Google Scholar 

  • Jones C.A., Kiriny R. (1986) CERES-Maize: A Simulation Model of Maize Growth and Development, Texas A & M University Press, College Station.

    Google Scholar 

  • Jury W.A., Vaux J.H. (2005) The role of science in solving the world’s emerging water problems, PNAS 102, 15715–15720.

    PubMed  CAS  Google Scholar 

  • Justes E., Mary B., Meynard J.M., Machet J.M., Thelier-Huche L. (1994) Determination of a critical nitrogen dilution curve for winter wheat crops, Ann. Bot. 74, 397–407.

    CAS  Google Scholar 

  • Keller M. (2005) Deficit irrigation and vine mineral nutrition, Am. J. Enol. Viticult. 56, 267–283.

    CAS  Google Scholar 

  • Kelliher F.M., Ross D.J., Law B.E., Baldocchi D.D., Rodda N.J. (2004) Limitations to carbon mineralization in litter and mineral soil of young and old ponderosa pine forests, Forest Ecol. Manag. 191, 201–213.

    Google Scholar 

  • Klepper B., Rickman R.W. (1990) Modeling crop growth and function, Adv. Agron. 44, 113–132.

    Google Scholar 

  • Kovács G.J. (2005) Modelling of adaptation processes of crops to water and nitrogen stress, Phys. Chem. Earth 30, 209–216.

    Google Scholar 

  • Larsson M. (1992) Translocation of nitrogen in osmotically stressed wheat seedlings, Plant Cell Environ. 15, 447–453.

    CAS  Google Scholar 

  • Larsson M., Larsson C.M., Whitford P.N., Clarkson D.T. (1989) Influence of osmotic stress on nitrate reductase activity in wheat (Triticum aestivum L.) and the role of abscisic acid, J. Exp. Bot. 40, 1265–1271.

    CAS  Google Scholar 

  • Lawlor D.W., Cornic G. (2002) Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants, Plant Cell Environ. 25, 275–294.

    PubMed  CAS  Google Scholar 

  • Lawlor D.W., Young A.T., Keys A.J., Kendall A.C. (1987) Nitrate nutrition and temperature effects on wheat: photosynthesis and photorespiration of leaves, J. Exp. Bot. 38, 378–392.

    Google Scholar 

  • Lemaire G., Denoix A. (1987) Croissance estivale en matière sèche de peuplements de fétuque élevée (Festuca arundinacea Schreb.) et de dactyle (Dactylis glomerata L.) dans l’Ouest de la France. II. Interaction entre les niveaux d’alimentation hydrique et de nutrition azotée, Agronomie 7, 381–389.

    Google Scholar 

  • Lemaire G., Gastal F. (1997) N uptake and distribution in plant canopies, in: Lemaire G. (Ed.), Diagnosis on the nitrogen status in crops, Springer-Verlag, Heidelberg, pp. 3–43.

    Google Scholar 

  • Lemaire G., Gastal F. (2009) Quantifying Crop Responses to Nitrogen Deficiency anbd Avenues to improve Nitrogen Use Efficiency, in: Sadras V.O., Calderini D.F. (Eds.), Crop Physiology, Academic Press, Amsterdam, pp. 171–212.

    Google Scholar 

  • Lemaire G., Meynard J.M. (1997) Use of the nitrogen nutrition index for the analysis of agronomical data, Diagnosis of the Nitrogen Status in Crops, 45–55.

    Google Scholar 

  • Lemaire G., Salette J. (1984) Rélation entre dynamique de croissance et dynamique de prélèvement d’azote pour un peuplement de graminées fourragères. I. Étude de l’effet du milieu, Agronomie 4, 423–430.

    Google Scholar 

  • Lemaire G., Recous S., Mary B. (2004) Managing residues and nitrogen in intensive cropping systems. New understanding for efficient recovery by crops, in:. Fischer T., Turner N.C., Angus J.F., McIntyre L., Robertson M.J., Borrell A., Lloyd D. (Eds.), 4th International Crop Science Congress, The Regional Institute Ltd, Gosford, Brisbane (Australia), http://www.cropscience.org.au/icsc2004.

  • Li S.X., Wang Z.H., Hu T.T., Gao Y.J., Stewart B.A. (2009) Chapter 3. Nitrogen in Dryland Soils of China and Its Management, in: Sparks D.L. (Ed.), Advances in Agronomy, pp. 123–181.

    Google Scholar 

  • Luxmoore R.J., Millington R.J. (1971) Growth of perennial ryegrass (Lolium perenne L.) in relation to water, nitrogen, and light intensity - II. Effects on dry weight production, transpiration and nitrogen uptake, Plant Soil 34, 561–574.

    Google Scholar 

  • Macduff J.H., Jarvis S.C., Mosquera A. (1989) Nitrate nutrition of grasses from steady-state supplies in flowing solution culture following nitrate deprivation and/or defoliation. II. Assimilation of NO3 - and short-term effects on NO3 - uptake, J. Exp. Bot. 40, 977–984.

    Google Scholar 

  • Malagoli P., Laine P., Rossato L., Ourry. A. (2005) Dynamics of nitrogen uptake and mobilization in field-grown winter oilseed rape (Brassica napus) from stem extension to harvest: I. Global N flows between vegetative and reproductive tissues in relation to leaf fall and their residual N, Ann. Bot. 95, 853–861.

    PubMed  CAS  Google Scholar 

  • Mambani B., Lal R. (1983) Response of upland rice varieties to drought stress - II. Screening rice varieties by means of variable moisture regimes along a toposequence, Plant Soil 73, 73–94.

    Google Scholar 

  • Matzner S.L., Richards J.H. (1996) Sagebrush (Artemisia tridentata Nutt.) roots maintain nutrient uptake capacity under water stress, J. Exp. Bot. 47, 1045–1056.

    CAS  Google Scholar 

  • Mazzarino M.J., Bertiller M.B., Sain C., Satti P., Coronato F. (1998) Soil nitrogen dynamics in northeastern Patagonia steppe under different precipitation regimes, Plant Soil 202, 125–131.

    CAS  Google Scholar 

  • Mistele B., Schmidhalter U. (2008) Estimating the nitrogen nutrition index using spectral anatomy reflectance measurements, Eur. J. Agron. 29, 184–190.

    CAS  Google Scholar 

  • Morgan J.A. (1984) Interaction of water supply and nitrogen in wheat, Plant Physiol. 76, 112–117.

    PubMed  CAS  Google Scholar 

  • Ney B., Doré T., Sagan M. (1997) The nitrogen requirement of major agricultural crops: Grain legumes, Diagnosis of the Nitrogen Status in Crops, 107–118.

    Google Scholar 

  • Nicolas M.E., Simpson R.J., Lambers H., Dalling M.J. (1985) Effects of drought on partitioning of nitrogen in two wheat varieties differing in drought tolerance, Ann. Bot. 55, 743–754.

    Google Scholar 

  • Nielsen D.C., Halvorson A.D. (1991) Nitrogen fertility influence on water stress and yield of winter wheat, Agron. J. 83, 1065–1070.

    Google Scholar 

  • O’Leary G.J., Connor D.J. (1996) A simulation model of the wheat crop in response to water and nitrogen supply: I. Model construction, Agr. Syst. 52, 1–29.

    Google Scholar 

  • O’Toole J.C. (1982) Adaptation of rice to drought-prone environments. Drought resistance in crops with the emphasis on rice, IRRI, Manila, pp. 71–82.

    Google Scholar 

  • Onillon B. (1993) Effets d’une contrainte hydrique édaphique sur la croissance de la fétuque élevée soumise à différents niveaux de nutrition azotée. Étude à l’echelle foliaire et à celle du couvert végétal, University of Poitiers.

    Google Scholar 

  • Onillon B., Durand J.L., Gastal F., Tournebize R. (1995) Drought effects on growth and carbon partitioning in a tall fescue sward grown at different rates of nitrogen fertilization, Eur. J. Agron. 4, 91–99.

    Google Scholar 

  • Overman A.R., Robinson D., Wilkinson S.R. (1995) Coupling of dry matter and nitrogen accumulation in ryegrass, Fertil. Res. 40, 105–108.

    Google Scholar 

  • Palta J.A., Kobata T., Turner N.C., Fillery I.R. (1994) Remobilization of Carbon and Nitrogen in Wheat as Influenced by Postanthesis Water Deficits, Crop Sci. 34, 118–124.

    Google Scholar 

  • Passioura J. (1963) A mathematical model for the uptake of ions from the soil solution, Plant Soil 18, 225–238.

    Google Scholar 

  • Pastor J., Post W.M. (1985) Development of a linked forest productivity-soil process model, Oak Ridge National Laboratory.

    Google Scholar 

  • Peuke A.D., Rokitta M., Zimmermann U., Schreiber L., Haase A. (2001) Simultaneous measurement of water flow velocity and solute transport in xilem and phloem of adult plants of Ricinus communis over a daily time course by nuclear magnetic resonance spectrometry, Plant, Cell Environ. 24, 491–503.

    CAS  Google Scholar 

  • Phillip J.R. (1966) Plant water relations: some physical aspects, Annu. Rev. Plant Phys. 17, 245–268.

    Google Scholar 

  • Pierret A., Doussan C., Capowiez Y., Bastardie F., Pagès L. (2007) Root functional architecture: A framework for modeling the interplay between roots and soil, Vadose Zone Journal 6, 269–281.

    Google Scholar 

  • Pierret A., Moran C.J., Doussan C. (2005) Conventional detection methodology is limiting our ability to understand the roles and functions of fine roots, New Phytol. 166, 967–980.

    PubMed  Google Scholar 

  • Pirmoradian N., Sepaskhah A.R., Maftoun M. (2004) Deficit irrigation and nitrogen effects on nitrogen-use efficiency and grain protein of rice, Agronomie 24, 143–153.

    Google Scholar 

  • Plénet D., Lemaire G. (1999) Relationships between dynamics of nitrogen uptake and dry matter accumulation in maize crops, Determination of critical N concentration, Plant Soil 216, 65–82.

    Google Scholar 

  • Porporato A., D’Odorico P., Laio F., Rodriguez-Iturbe I. (2003) Hydrologic controls on soil carbon and nitrogen cycles I. Modeling scheme, Adv. Water Resour. 26, 45–58.

    CAS  Google Scholar 

  • Porter J.R. (1993) AFRCWHEAT2: a model of the growth and development of wheat incorporating responses to water and nitrogen, Eur. J. Agron. 2, 69–82.

    Google Scholar 

  • Pulleman M., Tietema A. (1999) Microbial C and N transformations during drying and rewetting of coniferous forest floor material, Soil Biol. Biochem. 31, 275–285.

    CAS  Google Scholar 

  • Radin J.W., Parker L.L. (1979) Water relations of cotton plants under nitrogen deficiency. II. Environmental interactions on stomata, Plant Physiol. 64, 499–501.

    PubMed  CAS  Google Scholar 

  • Rao K.P., Rains D.W. (1976) Nitrate absorption by barley. I. Kinetics and energetics, Plant Physiol. 57, 55–58.

    PubMed  CAS  Google Scholar 

  • Raven J.A. (1985) Regulation of pH and generation of osmolarity in vascular plants: a cost-benefit analysis in relation to efficiency of use of energy, nitrogen and water, New Phytol. 101, 25–77.

    CAS  Google Scholar 

  • Raynaud X. (2004) Interactions compétitives spatialisées dans le sols : une approche par modélisation des interactions entre les plantes et les micro-organismes du sol, Université de Paris-Sud.

    Google Scholar 

  • Rodriguez D., Robson A.J., Belford R. (2009) Dynamic and functional monitoring technologies for applications in crop management, in: Sadras V.O., Calderini D.F. (Eds.), Crop Physiology, Academic Press, Amsterdam, pp. 489–510.

    Google Scholar 

  • Saab I.N., Sharp R.E., Pritchard J., Voetberg G.S. (1990) Increased endogenous abscisic acid maintains primary root growth and inhibits shoot growth of maize seedlings at low water potentials, Plant Physiol. 93, 1329–1336.

    PubMed  CAS  Google Scholar 

  • Sadras V.O. (2005) A quantitative top-down view of interactions between stresses: theory and analysis of nitrogen-water co-limitation in Mediterranean agro-ecosystems, Aust. J. Agr. Res. 56, 1151–1157.

    Google Scholar 

  • Scheurwater I., Koren M., Lambers H., Atkin O.K. (2002) The contribution of roots and shoots to whole plant nitrate reduction in fast-and slow-growing grass species, J. Exp. Bot. 53, 1635–1642.

    PubMed  CAS  Google Scholar 

  • Schimel J.P., Gulledge J.M., Clein-Curley J.S., Lindstrom J.E., Braddock J.F. (1999) Moisture effects on microbial activity and community structure in decomposing birch litter in the Alaskan taiga, Soil Biol. Biochem. 31, 831–838.

    CAS  Google Scholar 

  • Schnyder H. (1993) The role of carbohydrate storage and redistribution in the source - sink relations of wheat and barley during grain filling - a review, New Phytol. 123, 233–245.

    Google Scholar 

  • Scholes M.C., Martin R., Scholes R.J., Parsons D., Winstead E. (1997) NO and N2O emissions from savanna soils following the first simulated rains of the season, Nutr. Cycl. Agroecosys. 48, 115–122.

    CAS  Google Scholar 

  • Schulze E.D., Bloom A.J. (1984) Relationship between mineral nitrogen influx and transpiration in radish and tomato, Plant Physiol. 76, 827–828.

    PubMed  CAS  Google Scholar 

  • Schurr U., Schulze E.D. (1996) Effects of drought on nutrient and ABA transport in Ricinus communis, Plant Cell Environ. 19, 665–674.

    CAS  Google Scholar 

  • Sharp R.E., Silk W.K., Hsiao T.C. (1988) Growth of the primary root at low water potentials, Plant Physiol. 87, 50–57.

    PubMed  CAS  Google Scholar 

  • Sheehy J. (2001) Will yield barriers limit future rice production? in: Nösberger J., Geiger H.H., Struik P.C. (Eds.), Crop Science and Prospect, CABI Publishing, pp. 281–306.

    Google Scholar 

  • Siddiqi M.Y., Glass A.D.M., Ruth T.J., Rufti J.T.W. (1990) Studies of the uptake of nitrate in Barley, Plant Physiol. 93, 1426–1432.

    PubMed  CAS  Google Scholar 

  • Sinclair T.R. (1986) Water and nitrogen limitations in soybean grain production. I. Model development, Field Crop. Res. 15, 125–141.

    Google Scholar 

  • Singh A.K., Tripathy R., Chopra U.K. (2008) Evaluation of CERES-Wheat and CropSyst models for water-nitrogen interactions in wheat crop, Agr. Water Manage. 95, 776–786.

    Google Scholar 

  • Smolander A., Barnette L., Kitunen V., Lumme I. (2005) N and C transformations in long-term N-fertilized forest soils in response to seasonal drought, Appl. Soil Ecol. 29, 225–235.

    Google Scholar 

  • Stevens C.J., Dise N.B., Mountford J.O., Gowing D.J. (2004) Impact of Nitrogen Deposition on the Species Richness of Grasslands, Science 303, 1876–1879.

    PubMed  CAS  Google Scholar 

  • Stöckle C.O., Donatelli M., Nelson R. (2003) CropSyst, a cropping systems simulation model, Eur. J. Agron. 18, 289–307.

    Google Scholar 

  • Stöckle C.O., Martin S.A., Campbell G.S. (1994) CropSyst, a cropping system simulation model: water/nitrogen budgets and crop yield, Agr. Syst. 46, 335–359.

    Google Scholar 

  • Streeter J.G. (2003) Effects of drought on nitrogen fixation in soybean root nodules, Plant Cell Environ. 26, 1199–1204.

    CAS  Google Scholar 

  • Suárez L., Zarco-Tejada P.J., Berni J.A.J., Gonzalez-Dugo V., Fereres E. (2009) Modelling PRI for water stress detection using radiative transfer models, Remote Sens. Environ. 113, 730–744.

    Google Scholar 

  • Talouizite A., Champigny M.L. (1988) Response of wheat seedlings to short-term drought stress with particular respect to nitrate utilisation, Plant Cell Environ. 11, 149–155.

    Google Scholar 

  • Tanner W., Beevers H. (2001) Transpiration, a prerequisite for long-distance transport of minerals in plants? PNAS 98, 9443–9447.

    PubMed  CAS  Google Scholar 

  • Thomas M., Robertson M.J., Fukai S., Peoples M.B. (2004) The effect of timing and severity of water deficit on growth, development, yield accumulation and nitrogen fixation of mungbean, Field Crop. Res. 86, 67–80.

    Google Scholar 

  • Tischner R. (2000) Nitrate uptake and reduction in higher and lower plants. Plant Cell Environ. 23, 1005–1024.

    CAS  Google Scholar 

  • Triboi-Blondel A.-M. (1978) Effets de différents régimes d’alimentation hydrique sur l’activité in vivo de la nitrate-reductase, C.R. Acad. Sci. Paris 286, 1795–1798.

    CAS  Google Scholar 

  • Triboi-Blondel A.-M. (1979) Dynamique comparée de l’absorption des nitrates et de l’eau par des plantules de blé, C.R. Acad. Sci. Paris 288, 1545–1548.

    CAS  Google Scholar 

  • Tyree M.T., Cochard H. (2003) Vessel contents of leaves after excision: a test of the scholander assumption, J. Exp. Bot. 54, 2133–2139.

    PubMed  CAS  Google Scholar 

  • Uhart S.A., Andrade F.H. (1995) Nitrogen Defeciency in Maize: I. Effects on Crop Growth, Development, Dry Matter Partitioning, and Kernel Set, Crop Sci. 35, 1376–1383.

    Google Scholar 

  • Valé M., Mary B., Justes E. (2007) Irrigation practices may affect denitrification more than nitrogen mineralization in warm climatic conditions, Biol. Fert. Soils 43, 641–651.

    Google Scholar 

  • Van Der Honert T.H. (1948) Water transport as a catenary process, Discuss. Faraday Soc. 3, 146–153.

    Google Scholar 

  • Van Dobben W.H. (1962) Influence of temperature and light conditions on dry-matter distribution, develoment rate and yield in arable crops, Neth. J. Agr. Sci. 10, 377–389.

    Google Scholar 

  • Van Ittersum M.K., Leffelaar P.A., Van Keulen H., Kropff M.J., Bastiaans L., Goudriaan J. (2003) On approaches and applications of the Wageningen crop models, Eur. J. Agron. 18, 201–234.

    Google Scholar 

  • Van Keulen H. (1981) Modelling the interaction of water and nitrogen, Plant Soil 58, 205–229.

    Google Scholar 

  • Van Keulen H., Seligman N.G. (1987) Simulation of water use, nitrogen nutrition and growth of a spring wheat crop, Pudoc, Wageningen.

    Google Scholar 

  • Wei C., Steudle E., Tyree M.T. (1999) Water ascent in plants: Do ongoing controversies have a sound basis? Trends Plant Sci. 4, 372–375.

    PubMed  Google Scholar 

  • Westerman R.L., Tucker T.C. (1978) Denitrification in desert soils, Nitrogen in Desert Ecosystems, 75–106.

    Google Scholar 

  • White C.S., Moore D.I., Craig J.A. (2004) Regional-scale drought increases potential soil fertility in semiarid grasslands, Biol. Fert. Soils 40, 73–78.

    Google Scholar 

  • Williams M., Yanai R.D. (1996) Multi-dimensional sensitivity analysis and ecological implications of a nutrient uptake model, Plant Soil 180, 311–324.

    CAS  Google Scholar 

  • Wu Y., Sharp R.E., Durachko D.M., Cosgrove D.J. (1996) Growth Maintenance of the Maize Primary Root at Low Water Potentials Involves Increases in Cell-Wall Extension Properties, Expansin Activity, and Wall Susceptibility to Expansins, Plant Physiol. 111, 765–772.

    CAS  Google Scholar 

  • Yamauchi A., Paradales Jr J.R., Kono Y. (1996) Root system structure and its relation to stress tolerance, in: Ito O., Katayama K., Johansen J.V.D.K., Kumar Rao J.J. (Eds.), Root and nitrogen in cropping systems of the semiarid tropics, Cultio Corporation, Tsukuba, Japan, pp. 211–233.

    Google Scholar 

  • Zwieniecki M.A., Melcher P.J., Holbrook. N.M. (2001) Hidrogel control of xilem hydraulic resistance in plants, Science 291, 1059–1062.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Elías Fereres Castiel for his collaboration in the compilation of this paper. We also thank Dr. Jorge Alvarez de Toro. The anonymous reviewers are also acknowledged for their helpful comments that have improved this work. This research was supported by INRA, the Poitou-Charentes Region and the CNRS “ECosphère COntinentale” program, N#03CV114.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victoria Gonzalez-Dugo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Gonzalez-Dugo, V., Durand, JL., Gastal, F. (2011). Water Deficit and Nitrogen Nutrition of Crops. In: Lichtfouse, E., Hamelin, M., Navarrete, M., Debaeke, P. (eds) Sustainable Agriculture Volume 2. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0394-0_25

Download citation

Publish with us

Policies and ethics