Skip to main content

Changes in Gene Expression in Subjects with Schizophrenia Associated with Disease Progression

  • Chapter
  • First Online:
Book cover Handbook of Schizophrenia Spectrum Disorders, Volume I

Abstract

Schizophrenia is increasingly recognised as a progressive disorder because the central nervous system (CNS) structure, symptom profile and drug requirements vary with the duration of illness. Changes in gene expression and subsequent levels of CNS protein are likely to underlie the progressive changes in CNS function in schizophrenia. This chapter will review evidence that supports the notion that differential changes in gene expression with duration of illness does occur in the CNS of subjects with schizophrenia. Moreover, the temporal nature of these changes suggests that they may contribute to changes in drug treatment that occurs in the middle years of the disorder. It will be argued that some of the changes in gene expression in the CNS of subjects with schizophrenia may be associated with a differential aging/maturation processes and, that there are fewer differences in gene expression in subjects with schizophrenia of long duration compared to age-sex matched controls than are apparent between subjects with schizophrenia of short duration and their age-sex matched controls. Schizophrenia is a complex disorder and a further understanding of how temporal changes in gene expression contribute to the pathophysiology of the illness is likely to underpin a better understanding of the changes in CNS structure, symptom profile and treatment regimes that have been associated with the disorder.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BA:

Brodmann’s area

CDC42BPB:

Cell division cycle 42 binding protein kinase β (DMPK-like)

CNS:

Central nervous system

DLPFC:

Dorsolateral prefrontal cortex

DSC2:

Desmocollin 2

LRP:

Low density lipoprotein receptor-related protein

MBNL1:

Muscleblind protein 1

NCAM1:

Neural cell adhesion molecule 1

PCDH17:

Protocadherin 17

PTPRE:

Protein tyrosine phosphatase receptor type E

RFDD:

Restrictive fragment differential display

RGS4:

Regulator of G protein signaling 4

References

  1. DeLisi LE (1997) Is schizophrenia a lifetime disorder of brain plasticity, growth and aging? Schizophr Res 23:119–129

    Article  CAS  PubMed  Google Scholar 

  2. Puri BK (2010) Progressive structural brain changes in schizophrenia. Expert Rev Neurother 10:33–42

    Article  PubMed  Google Scholar 

  3. Tsuang MT, Stone WS, Faraone SV (2001) Genes, environment and schizophrenia. Br J Psychiatry Suppl 40:s18–s24

    Article  CAS  PubMed  Google Scholar 

  4. Dean B, Keriakous D, Scarr E et al (2007) Gene expression profiling in Brodmann’s area 46 from subjects with schizophrenia. Aust NZ J Psychiatry 41:308–320

    Article  Google Scholar 

  5. Mirnics K, Levitt P, Lewis DA (2006) Critical appraisal of DNA microarrays in psychiatric genomics. Biol Psychiatry 60:163–176

    Article  CAS  PubMed  Google Scholar 

  6. Weinberger DR (1987) Implications of normal brain development for the pathogenesis of schizophrenia. Arch Gen Psychiatry 44:660–669

    CAS  PubMed  Google Scholar 

  7. Gur RE, Petty RG, Turetsky BI et al (1996) Schizophrenia throughout life: sex differences in severity and profile of symptoms. Schizophr Res 21:1–12

    Article  CAS  PubMed  Google Scholar 

  8. Moberg PJ, Doty RL, Turetsky BI et al (1997) Olfactory identification deficits in schizophrenia: correlation with duration of illness. Am J Psychiatry 154:1016–1018

    CAS  PubMed  Google Scholar 

  9. Kosmidis MH, Bozikas VP, Vlahou CH et al (2005) Verbal fluency in institutionalized patients with schizophrenia: age-related performance decline. Psychiatry Res 134:233–240

    Article  PubMed  Google Scholar 

  10. Mitelman SA, Canfield EL, Newmark RE et al (2009) Longitudinal assessment of gray and white matter in chronic schizophrenia: a combined diffusion-tensor and structural magnetic resonance imaging study. Open Neuroimag J 3:31–47

    Article  PubMed  Google Scholar 

  11. Premkumar P, Fannon D, Kuipers E et al (2008) Association between a longer duration of illness, age and lower frontal lobe grey matter volume in schizophrenia. Behav Brain Res 193:132–139

    Article  PubMed  Google Scholar 

  12. Lehrmann E, Hyde TM, Vawter MP et al (2003) The use of microarrays to characterize neuropsychiatric disorders: postmortem studies of substance abuse and schizophrenia. Curr Mol Med 3:437–446

    Article  CAS  PubMed  Google Scholar 

  13. Narayan S, Tang B, Head SR et al (2008) Molecular profiles of schizophrenia in the CNS at different stages of illness. Brain Res 1239:235–248

    Article  CAS  PubMed  Google Scholar 

  14. Convit A, Wolf OT, de Leon MJ et al (2001) Volumetric analysis of the pre-frontal regions: findings in aging and schizophrenia. Psychiatry Res 107:61–73

    Article  CAS  PubMed  Google Scholar 

  15. Zhu YX, Benn S, Li ZH et al (2004) The SH3-SAM adaptor HACS1 is up-regulated in B cell activation signaling cascades. J Exp Med 200:737–747

    Article  CAS  PubMed  Google Scholar 

  16. Wang D, Stewart AK, Zhuang L et al (2010) Enhanced adaptive immunity in mice lacking the immunoinhibitory adaptor Hacs1. FASEB J 24:947–956

    Article  CAS  PubMed  Google Scholar 

  17. Chen XQ, Tan I, Leung T et al (1999) The myotonic dystrophy kinase-related Cdc42-binding kinase is involved in the regulation of neurite outgrowth in PC12 cells. J Biol Chem 274:19901–19905

    Article  CAS  PubMed  Google Scholar 

  18. Greenwood MD, Marsden MD, Cowley CM et al (1997) Exon-intron organization of the human type 2 desmocollin gene (DSC2): desmocollin gene structure is closer to “classical” cadherins than to desmogleins. Genomics 44:330–335

    Article  CAS  PubMed  Google Scholar 

  19. Okubo K, Aida K (2003) Gonadotropin-releasing hormone gene products downregulate the expression of their neighboring genes that encode protein tyrosine phosphatases alpha and ɛ. Biochem Biophys Res Commun 312:531–536

    Article  CAS  PubMed  Google Scholar 

  20. Coulibaly I, Page GP (2008) Bioinformatic tools for inferring functional information from plant microarray data II: analysis beyond single gene. Int J Plant Genomics 2008:893941

    PubMed  Google Scholar 

  21. Uchida H, Suzuki T, Mamo DC et al (2008) Effects of age and age of onset on prescribed antipsychotic dose in schizophrenia spectrum disorders: a survey of 1,418 patients in Japan. Am J Geriatr Psychiatry 16:584–593

    Article  PubMed  Google Scholar 

  22. Kurtz MM (2005) Neurocognitive impairment across the lifespan in schizophrenia: an update. Schizophr Res 74:15–26

    Article  PubMed  Google Scholar 

  23. Harrison PJ (2007) Schizophrenia susceptibility genes and their neurodevelopmental implications: focus on neuregulin 1. Novartis Found Symp 288:246–255

    Article  PubMed  Google Scholar 

  24. Tang B, Chang WL, Lanigan CM et al (2009) Normal human aging and early-stage schizophrenia share common molecular profiles. Aging Cell 8:339–342

    Article  CAS  PubMed  Google Scholar 

  25. Kirkpatrick B, Messias E, Harvey PD et al (2008) Is schizophrenia a syndrome of accelerated aging? Schizophr Bull 34:1024–1032

    Article  PubMed  Google Scholar 

  26. Dean B, Keriakous D, Scarr E et al (2005) Understanding the pathology of schizophrenia: the impact of high-throughput screening of the genome and proteome in postmortem CNS. Curr Opin Psych Rev 1:1–9

    Article  CAS  Google Scholar 

  27. Chen X, Sun C, Chen Q et al (2009) Apoptotic engulfment pathway and schizophrenia. PLoS One 4:e6875–e6879

    Article  PubMed  Google Scholar 

  28. Catts VS, Catts SV, McGrath JJ et al (2006) Apoptosis and schizophrenia: a pilot study based on dermal fibroblast cell lines. Schizophr Res 84:20–28

    Article  PubMed  Google Scholar 

  29. Goldman-Rakic PS, Selemon LD (1997) Functional and anatomical aspects of prefrontal pathology in schizophrenia. Schizophr Bull 23:437–458

    CAS  PubMed  Google Scholar 

  30. Beckmann H, Lauer M (1997) The human striatum in schizophrenia. II. Increased number of striatal neurons in schizophrenics. Psychiatry Res 68:99–109

    Article  CAS  PubMed  Google Scholar 

  31. Nishioka N, Arnold SE (2004) Evidence for oxidative DNA damage in the hippocampus of elderly patients with chronic schizophrenia. Am J Geriatr Psychiatry 12:167–175

    PubMed  Google Scholar 

  32. Young J, McKinney SB, Ross BM et al (2007) Biomarkers of oxidative stress in schizophrenic and control subjects. Prostaglandins Leukot Essent Fatty Acids 76:73–85

    Article  CAS  PubMed  Google Scholar 

  33. Psimadas D, Messini-Nikolaki N, Zafiropoulou M et al (2004) DNA damage and repair efficiency in lymphocytes from schizophrenic patients. Cancer Lett 204:33–40

    Article  CAS  PubMed  Google Scholar 

  34. Mirnics K, Middleton FA, Stanwood GD et al (2001) Disease-specific changes in regulator of G-protein signaling 4 (RGS4) expression in schizophrenia. Mol Psychiatry 6:293–301

    Article  CAS  PubMed  Google Scholar 

  35. Chowdari KV, Mirnics K, Semwal P et al (2002) Association and linkage analyses of RGS4 polymorphisms in schizophrenia. Hum Mol Genet 11:1373–1380

    Article  CAS  PubMed  Google Scholar 

  36. Morris DW, Rodgers A, McGhee KA et al (2004) Confirming RGS4 as a susceptibility gene for schizophrenia. Am J Med Genet B Neuropsychiatr Genet 125B:50–53

    Article  PubMed  Google Scholar 

  37. Williams NM, Preece A, Spurlock G et al (2004) Support for RGS4 as a susceptibility gene for schizophrenia. Biol Psychiatry 55:192–195

    Article  CAS  PubMed  Google Scholar 

  38. Bowden NA, Scott RJ, Tooney PA (2007) Altered expression of regulator of G-protein signalling 4 (RGS4) mRNA in the superior temporal gyrus in schizophrenia. Schizophr Res 89:165–168

    Article  PubMed  Google Scholar 

  39. Erdely HA, Tamminga CA, Roberts RC et al (2006) Regional alterations in RGS4 protein in schizophrenia. Synapse 59:472–479

    Article  CAS  PubMed  Google Scholar 

  40. Gibbons AS, Scarr E, McOmish CE et al (2008) Regulator of G-protein signalling 4 expression is not altered in the prefrontal cortex in schizophrenia. Aust NZ J Psychiatry 42:740–745

    Article  Google Scholar 

  41. Lipska BK, Mitkus S, Caruso M et al (2006) RGS4 mRNA expression in postmortem human cortex is associated with COMT Val158Met genotype and COMT enzyme activity. Hum Mol Genet 15:2804–2812

    Article  CAS  PubMed  Google Scholar 

  42. Vilella E, Costas J, Sanjuan J et al (2008) Association of schizophrenia with DTNBP1 but not with DAO, DAOA, NRG1 and RGS4 nor their genetic interaction. J Psychiatr Res 42:278–288

    Article  PubMed  Google Scholar 

  43. Ishiguro H, Horiuchi Y, Koga M et al (2007) RGS4 is not a susceptibility gene for schizophrenia in Japanese: association study in a large case-control population. Schizophr Res 89:161–164

    Article  CAS  PubMed  Google Scholar 

  44. Li D, He L (2006) Association study of the G-protein signaling 4 (RGS4) and proline dehydrogenase (PRODH) genes with schizophrenia: a meta-analysis. Eur J Hum Genet 14:1130–1135

    Article  CAS  PubMed  Google Scholar 

  45. Torkamani A, Dean B, Schork NJ et al (2010) Coexpression network analysis of neural tissue reveals perturbations in developmental processes in schizophrenia. Genome Res 20:403–412

    Article  CAS  PubMed  Google Scholar 

  46. Pennington K, Dicker P, Dunn MJ et al (2008) Proteomic analysis reveals protein changes within layer 2 of the insular cortex in schizophrenia. Proteomics 8:5097–5107

    Article  CAS  PubMed  Google Scholar 

  47. Miyoshi K, Honda A, Baba K et al (2003) Disrupted-in-schizophrenia 1, a candidate gene for schizophrenia, participates in neurite outgrowth. Mol Psychiatry 8:685–694

    Article  CAS  PubMed  Google Scholar 

  48. Carlsson A (1977) Does dopamine play a role in schizophrenia? Psychol Med 7:583–597

    Article  CAS  PubMed  Google Scholar 

  49. Bjorklund A, Dunnett SB (2007) Dopamine neuron systems in the brain: an update. Trends Neurosci 30:194–202

    Article  PubMed  Google Scholar 

  50. Moller HJ, Bottlender R, Wegner U et al (2000) Long-term course of schizophrenic, affective and schizoaffective psychosis: focus on negative symptoms and their impact on global indicators of outcome. Acta Psychiatr Scand 102(Suppl 407):54–57

    Article  Google Scholar 

  51. Colantuoni C, Hyde TM, Mitkus S et al (2008) Age-related changes in the expression of schizophrenia susceptibility genes in the human prefrontal cortex. Brain Struct Funct 213:255–271

    Article  PubMed  Google Scholar 

  52. Siegmund KD, Connor CM, Campan M et al (2007) DNA methylation in the human cerebral cortex is dynamically regulated throughout the life span and involves differentiated neurons. PLoS One doi:10.1371/journal.pone.0012002

    Google Scholar 

  53. Handel AE, Ebers GC, Ramagopalan SV (2010) Epigenetics: molecular mechanisms and implications for disease. Trends Mol Med 16:7–16

    Article  CAS  PubMed  Google Scholar 

  54. Gibbons AS, Thomas EA, Dean B (2009) Regional and duration of illness differences in the alteration of NCAM-180 mRNA expression within the cortex of subjects with schizophrenia. Schizophr Res 112:65–71

    Article  CAS  PubMed  Google Scholar 

  55. Ni Dhuill CM, Fox GB, Pittock SJ et al (1999) Polysialylated neural cell adhesion molecule expression in the dentate gyrus of the human hippocampal formation from infancy to old age. J Neurosci Res 55:99–106

    Article  CAS  PubMed  Google Scholar 

  56. Rutishauser U (2008) Polysialic acid in the plasticity of the developing and adult vertebrate nervous system. Nat Rev Neurosci 9:26–35

    Article  CAS  PubMed  Google Scholar 

  57. Gray LJ, Dean B, Kronsbein HC et al (2010) Region and diagnosis-specific changes in synaptic proteins in schizophrenia and bipolar I disorder. Psychiatry Res 178(2):374–380

    Article  CAS  PubMed  Google Scholar 

  58. Sytnyk V, Leshchyns’ka I, Nikonenko AG et al (2006) NCAM promotes assembly and activity-dependent remodeling of the postsynaptic signaling complex. J Cell Biol 174:1071–1085

    Article  CAS  PubMed  Google Scholar 

  59. Kowal RC, Herz J, Weisgraber KH et al (1990) Opposing effects of apolipoproteins E and C on lipoprotein binding to low density lipoprotein receptor-related protein. J Biol Chem 265:10771–10779

    CAS  PubMed  Google Scholar 

  60. Schneider WJ, Nimpf J (2003) LDL receptor relatives at the crossroad of endocytosis and signaling. Cell Mol Life Sci 60:892–903

    Article  CAS  PubMed  Google Scholar 

  61. Dean B, Laws SM, Hone E et al (2003) Increased levels of apolipoprotein E in the frontal cortex of subjects with schizophrenia. Biol Psychiatry 54:616–622

    Article  CAS  PubMed  Google Scholar 

  62. Digney A, Keriakous D, Scarr E et al (2005) Differential changes in apolipoprotein E in schizophrenia and bipolar I disorder. Biol Psychiatry 57:711–715

    Article  CAS  PubMed  Google Scholar 

  63. Impagnatiello F, Guidotti AR, Pesold C et al (1998) A decrease of reelin expression as a putative vulnerability factor in schizophrenia. Proc Natl Acad Sci USA 95:15718–15723

    Article  CAS  PubMed  Google Scholar 

  64. Gibbons AS, Thomas EA, Scarr E et al (2010) Low-density lipoprotein receptor-related protein and apolipoprotein E expression is altered in schizophrenia. Front Psychiatry doi:10.3389/fpsyt.2010.00019

    Google Scholar 

  65. Sugiyama T, Kumagai H, Morikawa Y et al (2000) A novel low-density lipoprotein receptor-related protein mediating cellular uptake of apolipoprotein E-enriched beta-VLDL in vitro. Biochemistry 39:15817–15825

    Article  CAS  PubMed  Google Scholar 

  66. Siest G, Pillot T, Regis-Bailly A et al (1995) Apolipoprotein E: an important gene and protein to follow in laboratory medicine. Clin Chem 41:1068–1086

    CAS  PubMed  Google Scholar 

  67. Dumanis SB, Tesoriero JA, Babus LW et al (2009) ApoE4 decreases spine density and dendritic complexity in cortical neurons in vivo. J Neurosci 29:15317–15322

    Article  CAS  PubMed  Google Scholar 

  68. Brans RG, van Haren NE, van Baal GC et al (2008) Longitudinal MRI study in schizophrenia patients and their healthy siblings. Br J Psychiatry 193:422–423

    Article  PubMed  Google Scholar 

  69. Farrow TF, Whitford TJ, Williams LM et al (2005) Diagnosis-related regional gray matter loss over two years in first episode schizophrenia and bipolar disorder. Biol Psychiatry 58:713–723

    Article  PubMed  Google Scholar 

  70. Whitford TJ, Grieve SM, Farrow TF et al (2007) Volumetric white matter abnormalities in first-episode schizophrenia: a longitudinal, tensor-based morphometry study. Am J Psychiatry 164:1082–1089

    Article  PubMed  Google Scholar 

  71. DeLisi LE, Sakuma M, Maurizio AM et al (2004) Cerebral ventricular change over the first 10 years after the onset of schizophrenia. Psychiatry Res 130:57–70

    Article  PubMed  Google Scholar 

  72. Ho BC, Andreasen NC, Nopoulos P et al (2003) Progressive structural brain abnormalities and their relationship to clinical outcome: a longitudinal magnetic resonance imaging study early in schizophrenia. Arch Gen Psychiatry 60:585–594

    Article  PubMed  Google Scholar 

  73. Mathalon DH, Sullivan EV, Lim KO et al (2001) Progressive brain volume changes and the clinical course of schizophrenia in men: a longitudinal magnetic resonance imaging study. Arch Gen Psychiatry 58:148–157

    Article  CAS  PubMed  Google Scholar 

  74. Maier M, Ron MA (1996) Hippocampal age-related changes in schizophrenia: a proton magnetic resonance spectroscopy study. Schizophr Res 22:5–17

    Article  CAS  PubMed  Google Scholar 

  75. Pantelis C, Velakoulis D, McGorry PD et al (2003) Neuroanatomical abnormalities before and after onset of psychosis: a cross-sectional and longitudinal MRI comparison. Lancet 361:281–288

    Article  PubMed  Google Scholar 

  76. Wang L, Mamah D, Harms MP et al (2008) Progressive deformation of deep brain nuclei and hippocampal-amygdala formation in schizophrenia. Biol Psychiatry 64:1060–1068

    Article  PubMed  Google Scholar 

  77. Chakos MH, Schobel SA, Gu H et al (2005) Duration of illness and treatment effects on hippocampal volume in male patients with schizophrenia. Br J Psychiatry 186:26–31

    Article  PubMed  Google Scholar 

  78. Sporn AL, Greenstein DK, Gogtay N et al (2003) Progressive brain volume loss during adolescence in childhood-onset schizophrenia. Am J Psychiatry 160:2181–2189

    Article  PubMed  Google Scholar 

  79. Giedd JN, Jeffries NO, Blumenthal J et al (1999) Childhood-onset schizophrenia: progressive brain changes during adolescence. Biol Psychiatry 46:892–898

    Article  CAS  PubMed  Google Scholar 

  80. Salisbury DF, Kuroki N, Kasai K et al (2007) Progressive and interrelated functional and structural evidence of post-onset brain reduction in schizophrenia. Arch Gen Psychiatry 64:521–529

    Article  PubMed  Google Scholar 

  81. Meagher DJ, Quinn JF, Bourke S et al (2004) Longitudinal assessment of psychopathological domains over late-stage schizophrenia in relation to duration of initially untreated psychosis: 3-year prospective study in a long-term inpatient population. Psychiatry Res 126:217–227

    Article  PubMed  Google Scholar 

  82. Fornito A, Yucel M, Dean B et al (2009) Anatomical abnormalities of the anterior cingulate cortex in schizophrenia: bridging the gap between neuroimaging and neuropathology. Schizophr Bull 35:973–993

    Article  PubMed  Google Scholar 

  83. Jaaro-Peled H, Ayhan Y, Pletnikov MV et al (2010) Review of pathological hallmarks of schizophrenia: comparison of genetic models with patients and nongenetic models. Schizophr Bull 36:301–313

    Article  PubMed  Google Scholar 

  84. Perez-Costas E, Melendez-Ferro M, Roberts RC (2010) Basal ganglia pathology in schizophrenia: dopamine connections and anomalies. J Neurochem 113:287–302

    Article  CAS  PubMed  Google Scholar 

  85. Wang Y, Stricker HM, Gou D et al (2007) MicroRNA: past and present. Front Biosci 12:2316–2329

    Article  CAS  PubMed  Google Scholar 

  86. Dean B, Pavey G, Smith I (2008) Using differential solubilization and 2-D gel electrophoresis to visualize increased numbers of proteins in the human cortex and caudate nucleus and putamen. Proteomics – Clin Appl 2:1281–1289

    Article  CAS  PubMed  Google Scholar 

  87. Tamminga CA (2008) Accelerating new knowledge in schizophrenia. Am J Psychiatry 165:949–951

    Article  PubMed  Google Scholar 

  88. Scarr E, Cowie TF, Kanellakis S et al (2009) Decreased cortical muscarinic receptors define a subgroup of subjects with schizophrenia. Mol Psychiatry 14:1017–1023

    Article  CAS  PubMed  Google Scholar 

  89. Maheswaran S, Barjat H, Rueckert D et al (2009) Longitudinal regional brain volume changes quantified in normal aging and Alzheimer’s APP x PS1 mice using MRI. Brain Res 1270:19–32

    Article  CAS  PubMed  Google Scholar 

  90. Scheff SW, Price DA, Sparks DL (2001) Quantitative assessment of possible age-related change in synaptic numbers in the human frontal cortex. Neurobiol Aging 22:355–365

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

BD is an NH&MRC Senior Research Fellow (# 400016) and ES is the ARHRF Royce Abbey Post-Doctoral Fellow. Much of the data reviewed in was generated from research funded by MH069696-01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian Dean .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Dean, B., Gibbons, A., Scarr, E., Thomas, E.A. (2011). Changes in Gene Expression in Subjects with Schizophrenia Associated with Disease Progression. In: Ritsner, M. (eds) Handbook of Schizophrenia Spectrum Disorders, Volume I. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0837-2_10

Download citation

Publish with us

Policies and ethics