Skip to main content

Methamphetamine-Associated Psychosis: A Model for Biomarker Discovery in Schizophrenia

  • Chapter
  • First Online:
Handbook of Schizophrenia Spectrum Disorders, Volume I

Abstract

Methamphetamine-associated psychosis (MAP) has been considered a pharmacological or environmental pathogen model of schizophrenia (SCZ) due in part to similarities in clinical presentation (i.e. paranoia, hallucinations, disorganized speech, and negative symptoms), response to treatment (e.g. neuroleptics), and pathologic mechanisms (e.g. central dopaminergic neurotransmission) of both conditions. In this chapter, we will provide an introduction to the typical clinical features and course of MAP as well as a review and discussion of the current putative genetic biomarkers for MAP. We will conclude with a discussion of the future directions and application of the MAP model with specific focus on how it may serve to elucidate further the complex neuromechanisms and discovery of viable biomarkers of SCZ.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AMP:

Amphetamine psychosis

DSM:

Diagnostic statistical manual of mental disorders

ICD:

International classification of diseases

MAP:

Methamphetamine-associated psychosis

METH:

Methamphetamine

MRS:

Magnetic resonance spectroscopy

PCP:

Phencyclidine

PET:

Positron emission tomography

SCZ:

Schizophrenia

SNP:

Single nucleotide polymorphism

VNTR:

Variable number tandem repeat

References

  1. Saha S, Chant D, McGrath J (2008) Meta-analyses of the incidence and prevalence of schizophrenia: conceptual and methodological issues. Int J Methods Psychiatr Res 17(1):55–61

    PubMed  Google Scholar 

  2. Bearden CE, Reus VI, Freimer NB (2004) Why genetic investigation of psychiatric disorders is so difficult. Curr Opin Genet Dev 14(3):280–286

    CAS  PubMed  Google Scholar 

  3. Bell DS (1965) Comparison of amphetamine psychosis and schizophrenia. Br J Psychiatry 111:701–707

    CAS  PubMed  Google Scholar 

  4. Snyder SH (1973) Amphetamine psychosis: a “model” schizophrenia mediated by catecholamines. Am J Psychiatry 130(1):61–67

    CAS  PubMed  Google Scholar 

  5. Yui K, Ikemoto S, Ishiguro T, Goto K (2000) Studies of amphetamine or methamphetamine psychosis in japan: relation of methamphetamine psychosis to schizophrenia. Ann N Y Acad Sci 914:1–12

    CAS  PubMed  Google Scholar 

  6. Brady KT, Lydiard RB, Malcolm R, Ballenger JC (1991) Cocaine-induced psychosis. J Clin Psychiatry 52(12):509–512

    CAS  PubMed  Google Scholar 

  7. Javitt DC, Zukin SR (1991) Recent advances in the phencyclidine model of schizophrenia. Am J Psychiatry 148(10):1301–1308

    CAS  PubMed  Google Scholar 

  8. Bubenikova-Valesova V, Horacek J, Vrajova M, Hoschl C (2008) Models of schizophrenia in humans and animals based on inhibition of NMDA receptors. Neurosci Biobehav Rev 32(5):1014–1023

    CAS  PubMed  Google Scholar 

  9. Thirthalli J, Benegal V (2006) Psychosis among substance users. Curr Opin Psychiatry 19(3):239–245

    PubMed  Google Scholar 

  10. Goldbloom D, Chouinard G (1985) Schizophreniform psychosis associated with chronic industrial toluene exposure: case report. J Clin Psychiatry 46(8):350–351

    CAS  PubMed  Google Scholar 

  11. Srisurapanont M, Ali R, Marsden J, Sunga A, Wada K, Monteiro M (2003) Psychotic symptoms in methamphetamine psychotic in-patients. Int J Neuropsychopharmacol 6(4):347–352

    PubMed  Google Scholar 

  12. Smith MJ, Thirthalli J, Abdallah AB, Murray RM, Cottler LB (2009) Prevalence of psychotic symptoms in substance users: a comparison across substances. Compr Psychiatry 50(3):245–250

    PubMed  Google Scholar 

  13. Tsuang JW, Irwin MR, Smith TL, Schuckit MA (1994) Characteristics of men with alcoholic hallucinosis. Addiction 89(1):73–78

    CAS  PubMed  Google Scholar 

  14. Sewell RA, Ranganathan M, D’Souza DC (2009) Cannabinoids and psychosis. Int Rev Psychiatry 21(2):152–162

    PubMed  Google Scholar 

  15. United Nations Office on Drugs and Crime (2004) World Drug Report 2004. Vienna: UN Office on Drugs and Crime

    Google Scholar 

  16. Anglin MD, Burke C, Perrochet B, Stamper E, Dawud-Noursi S (2000) History of the methamphetamine problem. J Psychoactive Drugs 32(2):137–141

    CAS  PubMed  Google Scholar 

  17. Cantrell FL, Breckenridge HM, Jost P (2006) Transrectal methamphetamine use: a novel route of exposure. Ann Int Med 145(1):78–79

    PubMed  Google Scholar 

  18. Lu L, Fang Y, Wang X (2008) Drug abuse in china: past, present and future. Cell Mol Neurobiol 28(4):479–490

    PubMed  Google Scholar 

  19. Miura H, Fujiki M, Shibata A, Ishikawa K (2006) Prevalence and profile of methamphetamine users in adolescents at a juvenile classification home. Psychiatry Clin Neurosci 60(3):352–357

    PubMed  Google Scholar 

  20. Kulsudjarit K (2004) Drug problem in southeast and southwest asia. Ann N Y Acad Sci 1025:446–457

    PubMed  Google Scholar 

  21. Kapp C (2008) Crystal meth boom adds to south africa’s health challenges. Lancet 371(9608):193–194

    PubMed  Google Scholar 

  22. Maxwell JC, Rutkowski BA (2008) The prevalence of methamphetamine and amphetamine abuse in north america: a review of the indicators, 1992–2007. Drug Alcohol Rev 27(3):229–235

    PubMed  Google Scholar 

  23. National Drug Intelligence Center (2006) National methamphetamine threat assessment 2007. Johnstown, PA, US Department of Justice, National Drug Intelligence Center: 23. Available from: http://purl.access.gpo.gov/GPO/LPS83728

  24. Darke S, Kaye S, McKetin R, Duflou J (2008) Major physical and psychological harms of methamphetamine use. Drug Alcohol Rev 27(3):253–262

    PubMed  Google Scholar 

  25. McKetin R, McLaren J, Lubman DI, Hides L (2006) The prevalence of psychotic symptoms among methamphetamine users. Addiction 101(10):1473–1478

    PubMed  Google Scholar 

  26. Zweben JE, Cohen JB, Christian D et al (2004) Psychiatric symptoms in methamphetamine users. Am J Addict 13(2):181–190

    PubMed  Google Scholar 

  27. Curran C, Byrappa N, McBride A (2004) Stimulant psychosis: Systematic review. Br J Psychiatry 185:196–204

    PubMed  Google Scholar 

  28. Hall W, Hando J, Darke S, Ross J (1996) Psychological morbidity and route of administration among amphetamine users in sydney, australia. Addiction 91(1):81–87

    CAS  PubMed  Google Scholar 

  29. Sato M (1992) A lasting vulnerability to psychosis in patients with previous methamphetamine psychosis. Ann N Y Acad Sci 654:160–170

    CAS  PubMed  Google Scholar 

  30. Connell PH (1958) Amphetamine psychosis, vol 5. publisher for the Institute of Psychiatry by Chapman & Hall, London

    Google Scholar 

  31. Harris D, Batki SL (2000) Stimulant psychosis: Symptom profile and acute clinical course. Am J Addict 9(1):28–37

    CAS  PubMed  Google Scholar 

  32. Dore G, Sweeting M (2006) Drug-induced psychosis associated with crystalline methamphetamine. Aust Psychiatry 14(1):86–89

    Google Scholar 

  33. Sato M, Chen CC, Akiyama K, Otsuki S (1983) Acute exacerbation of paranoid psychotic state after long-term abstinence in patients with previous methamphetamine psychosis. Biol Psychiatry 18(4):429–440

    CAS  PubMed  Google Scholar 

  34. Chen CK, Lin SK, Sham PC et al (2003) Pre-morbid characteristics and co-morbidity of methamphetamine users with and without psychosis. Psychol Med 33(8):1407–1414

    CAS  PubMed  Google Scholar 

  35. Hermens DF, Lubman DI, Ward PB, Naismith SL, Hickie IB (2009) Amphetamine psychosis: a model for studying the onset and course of psychosis. Med J Aust 190(4 Suppl):S22–5

    PubMed  Google Scholar 

  36. Sato M, Numachi Y, Hamamura T (1992) Relapse of paranoid psychotic state in methamphetamine model of schizophrenia. Schizophr Bull 18(1):115–122

    CAS  PubMed  Google Scholar 

  37. Ujike H, Harano M, Inada T et al (2003) Nine- or fewer repeat alleles in VNTR polymorphism of the dopamine transporter gene is a strong risk factor for prolonged methamphetamine psychosis. Pharmacogenomics J 3(4):242–247

    CAS  PubMed  Google Scholar 

  38. Ujike H, Sato M (2004) Clinical features of sensitization to methamphetamine observed in patients with methamphetamine dependence and psychosis. Ann N Y Acad Sci 1025:279–287

    CAS  PubMed  Google Scholar 

  39. Yui K, Ishiguro T, Goto K, Ikemoto S (1998) Factors affecting the development of spontaneous recurrence of methamphetamine psychosis. Acta Psychiatr Scand 97(3):220–227

    CAS  PubMed  Google Scholar 

  40. Tohrj K, Fujimori H (1991) Methamphetamine psychosis over the last 10 years examined from admitted cases to a psychiatric emergency ward. Clin Psychiatry 33:101

    Google Scholar 

  41. Yui K, Goto K, Ikemoto S, Nishijima K, Yoshino T, Ishiguro T (2001) Susceptibility to subsequent episodes of spontaneous recurrence of methamphetamine psychosis. Drug Alcohol Depend 64(2):133–142

    CAS  PubMed  Google Scholar 

  42. Yui K, Ishiguro T, Goto K, Ikemoto S (1997) Precipitating factors in spontaneous recurrence of methamphetamine psychosis. Psychopharmacology (Berl) 134(3):303–308

    CAS  Google Scholar 

  43. Yui K, Goto K, Ishiguro T, Ikemoto S (1997) Noradrenergic activity and spontaneous recurrence of methamphetamine psychosis. Drug Alcohol Depend 44(2–3):183–187

    CAS  PubMed  Google Scholar 

  44. Yui K, Goto K, Ikemoto S, Ishiguro T (1997) Methamphetamine psychosis: spontaneous recurrence of paranoid-hallucinatory states and monoamine neurotransmitter function. J Clin Psychopharmacol 17(1):34–43

    CAS  PubMed  Google Scholar 

  45. Yui K, Ishiguro T, Goto K, Ikemoto S, Kamata Y (1999) Spontaneous recurrence of methampetamine psychosis: Increased sensitivity to stress associated with noradrenergic hyperactivity and dopaminergic change. Eur Arch Psychiatry Clin Neurosci 249(2):103–111

    CAS  PubMed  Google Scholar 

  46. Norman RM, Malla AK (1993) Stressful life events and schizophrenia. I: a review of the research. Br J Psychiatry 162:161–166

    CAS  PubMed  Google Scholar 

  47. Yui K, Goto K, Ikemoto S et al (1999) Neurobiological basis of relapse prediction in stimulant-induced psychosis and schizophrenia: the role of sensitization. Mol Psychiatry 4(6):512–523

    CAS  PubMed  Google Scholar 

  48. American Psychiatric Association (1994) Diagnostic Criteria from DSM-IV. The Association, Washington, DC

    Google Scholar 

  49. World Health Organization (1992) ICD-10: International Statistical Classification of Diseases and Related Health Problems. 10th Revision. World Health Organization, Geneva

    Google Scholar 

  50. Mathias S, Lubman DI, Hides L (2008) Substance-induced psychosis: a diagnostic conundrum. J Clin Psychiatry 69(3):358–367

    PubMed  Google Scholar 

  51. Sajatovic M, Ramirez LF (2006) Rating scales in mental health, 2nd rev edn. Lexi-Comp, Hudson, OH

    Google Scholar 

  52. Biomarkers Definitions Working Group (2001) Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther 69(3):89–95

    Google Scholar 

  53. Quinones MP, Kaddurah-Daouk R (2009) Metabolomics tools for identifying biomarkers for neuropsychiatric diseases. Neurobiol Dis

    Google Scholar 

  54. Bousman CA, Chana G, Tatro ET, Glatt SJ, Tsuang MT, Everall IP (2009) Biomarker discovery in major psychiatric disorders: approaches, limitations, and future directions. In: Urbano KV (ed) Advances in Genetic Research, Volume 3. Nova Science Publishers, Inc ISBN: 978-1-61668-543-0

    Google Scholar 

  55. Bousman CA, Glatt SJ, Everall IP, Tsuang MT (2009) Genetic association studies of methamphetamine use disorders: a systematic review and synthesis. Am J Med Genet B Neuropsychiatr Genet 150:1025–1049

    Google Scholar 

  56. Kishimoto M, Ujike H, Motohashi Y et al (2008) The dysbindin gene (DTNBP1) is associated with methamphetamine psychosis. Biol Psychiatry 63(2):191–196

    CAS  PubMed  Google Scholar 

  57. Ide S, Kobayashi H, Ujike H et al (2006) Linkage disequilibrium and association with methamphetamine dependence/psychosis of mu-opioid receptor gene polymorphisms. Pharmacogenomics J 6(3):179–188

    CAS  PubMed  Google Scholar 

  58. Kobayashi H, Ide S, Hasegawa J et al (2004) Study of association between alpha-synuclein gene polymorphism and methamphetamine psychosis/dependence. Ann N Y Acad Sci 1025:325–334

    CAS  PubMed  Google Scholar 

  59. Nakamura K, Chen CK, Sekine Y et al (2006) Association analysis of SOD2 variants with methamphetamine psychosis in japanese and taiwanese populations. Hum Genet 120(2):243–252

    CAS  PubMed  Google Scholar 

  60. Ikeda M, Ozaki N, Suzuki T et al (2007) Possible association of beta-arrestin 2 gene with methamphetamine use disorder, but not schizophrenia. Genes Brain Behav 6(1):107–112

    CAS  PubMed  Google Scholar 

  61. Kotaka T, Ujike H, Okahisa Y et al (2009) G72 gene is associated with susceptibility to methamphetamine psychosis. Prog Neuropsychopharmacol Biol Psychiatry 33(6): 1046–1049

    CAS  PubMed  Google Scholar 

  62. Ujike H, Katsu T, Okahisa Y et al (2009) Genetic variants of D2 but not D3 or D4 dopamine receptor gene are associated with rapid onset and poor prognosis of methamphetamine psychosis. Prog Neuropsychopharmacol Biol Psychiatry 15, 33(4):625–629

    CAS  Google Scholar 

  63. Kishi T, Ikeda M, Kitajima T et al (2009) A functional polymorphism in estrogen receptor alpha gene is associated with japanese methamphetamine induced psychosis. Prog Neuropsychopharmacol Biol Psychiatry 33(5):895–898

    CAS  PubMed  Google Scholar 

  64. Kishimoto M, Ujike H, Okahisa Y et al (2008) The frizzled 3 gene is associated with methamphetamine psychosis in the japanese population. Behav Brain Funct 4:37

    PubMed  Google Scholar 

  65. Morita Y, Ujike H, Tanaka Y et al (2008) The glycine transporter 1 gene (GLYT1) is associated with methamphetamine-use disorder. Am J Med Genet B Neuropsychiatr Genet 147B(1):54–58

    CAS  PubMed  Google Scholar 

  66. Hashimoto T, Hashimoto K, Miyatake R et al (2008) Association study between polymorphisms in glutathione-related genes and methamphetamine use disorder in a japanese population. Am J Med Genet B Neuropsychiatr Genet 147B(7):1040–1046

    CAS  PubMed  Google Scholar 

  67. Kishi T, Tsunoka T, Ikeda M et al (2010) Serotonin 1A receptor gene is associated with japanese methamphetamine-induced psychosis patients. Neuropharmacology 58(2): 452–456

    Google Scholar 

  68. Detera-Wadleigh SD, McMahon FJ (2006) G72/G30 in schizophrenia and bipolar disorder: review and meta-analysis. Biol Psychiatry 60(2):106–114

    CAS  PubMed  Google Scholar 

  69. Shi J, Badner JA, Gershon ES, Liu C (2008) Allelic association of G72/G30 with schizophrenia and bipolar disorder: a comprehensive meta-analysis. Schizophr Res 98(1–3):89–97

    PubMed  Google Scholar 

  70. Mossner R, Schuhmacher A, Wagner M et al (2009) DAOA/G72 predicts the progression of prodromal syndromes to first episode psychosis. Eur Arch Psychiatry Clin Neurosci 260(3):209–215

    PubMed  Google Scholar 

  71. Benson MA, Newey SE, Martin-Rendon E, Hawkes R, Blake DJ (2001) Dysbindin, a novel coiled-coil-containing protein that interacts with the dystrobrevins in muscle and brain. J Biol Chem 276(26):24232–24241

    CAS  PubMed  Google Scholar 

  72. Talbot K, Eidem WL, Tinsley CL et al (2004) Dysbindin-1 is reduced in intrinsic, glutamatergic terminals of the hippocampal formation in schizophrenia. J Clin Invest 113(9):1353–1363

    CAS  PubMed  Google Scholar 

  73. Schwab SG, Wildenauer DB (2009) Update on key previously proposed candidate genes for schizophrenia. Curr Opin Psychiatry 22(2):147–153

    PubMed  Google Scholar 

  74. Allen NC, Bagade S, McQueen MB et al (2008) Systematic meta-analyses and field synopsis of genetic association studies in schizophrenia: the SzGene database. Nat Genet 40(7):827–834

    CAS  PubMed  Google Scholar 

  75. Kishi T, Tsunoka T, Ikeda M et al (2009) Serotonin 1A receptor gene is associated with japanese methamphetamine-induced psychosis patients. Neuropharmacology 185(1–2):20–26

    Google Scholar 

  76. Nakamura K, Sekine Y, Takei N et al (2009) An association study of monoamine oxidase a (MAOA) gene polymorphism in methamphetamine psychosis. Neurosci Lett 455(2):120–123

    CAS  PubMed  Google Scholar 

  77. Suzuki A, Nakamura K, Sekine Y et al (2006) An association study between catechol-O-methyl transferase gene polymorphism and methamphetamine psychotic disorder. Psychiatr Genet 16(4):133–138

    PubMed  Google Scholar 

  78. Matsuzawa D, Hashimoto K, Miyatake R et al (2007) Identification of functional polymorphisms in the promoter region of the human PICK1 gene and their association with methamphetamine psychosis. Am J Psychiatry 164(7):1105–1114

    PubMed  Google Scholar 

  79. Ezaki N, Nakamura K, Sekine Y et al (2008) Short allele of 5-HTTLPR as a risk factor for the development of psychosis in japanese methamphetamine abusers. Ann N Y Acad Sci 1139:49–56

    CAS  PubMed  Google Scholar 

  80. Snyder S (1976) The dopamine hypothesis of schizophrenia: focus on the dopamine receptor. Am J Psychiatry 133(2):197–202

    CAS  PubMed  Google Scholar 

  81. Glatt SJ, Jonsson EG (2006) The cys allele of the DRD2 Ser311Cys polymorphism has a dominant effect on risk for schizophrenia: Evidence from fixed- and random-effects meta-analyses. Am J Med Genet B Neuropsychiatr Genet 141B(2):149–154

    PubMed  Google Scholar 

  82. Golimbet VE, Aksenova MG, Nosikov VV, Orlova VA, Kaleda VG (2003) Analysis of the linkage of the Taq1A and Taq1B loci of the dopamine D2 receptor gene with schizophrenia in patients and their siblings. Neurosci Behav Physiol 33(3):223–225

    CAS  PubMed  Google Scholar 

  83. Numakawa T, Yagasaki Y, Ishimoto T et al (2004) Evidence of novel neuronal functions of dysbindin, a susceptibility gene for schizophrenia. Hum Mol Genet 13(21):2699–2708

    CAS  PubMed  Google Scholar 

  84. Straub RE, Jiang Y, MacLean CJ et al (2002) Genetic variation in the 6p22.3 gene DTNBP1, the human ortholog of the mouse dysbindin gene, is associated with schizophrenia. Am J Hum Genet 71(2):337–348

    CAS  PubMed  Google Scholar 

  85. Malhotra AK, Kestler LJ, Mazzanti C, Bates JA, Goldberg T, Goldman D (2002) A functional polymorphism in the COMT gene and performance on a test of prefrontal cognition. Am J Psychiatry 159(4):652–654

    PubMed  Google Scholar 

  86. Rosa A, Peralta V, Cuesta MJ et al (2004) New evidence of association between COMT gene and prefrontal neurocognitive function in healthy individuals from sibling pairs discordant for psychosis. Am J Psychiatry 161(6):1110–1112

    PubMed  Google Scholar 

  87. Bruder GE, Keilp JG, Xu H et al (2005) Catechol-O-methyltransferase (COMT) genotypes and working memory: Associations with differing cognitive operations. Biol Psychiatry 58(11):901–907

    CAS  PubMed  Google Scholar 

  88. Golimbet VE, Alfimova MV, Gritsenko IK, Ebstein RP (2007) Relationship between dopamine system genes and extraversion and novelty seeking. Neurosci Behav Physiol 37(6):601–606

    CAS  PubMed  Google Scholar 

  89. Hosak L, Libiger J, Cizek J, Beranek M, Cermakova E (2006) The COMT vol158met polymorphism is associated with novelty seeking in czech methamphetamine abusers: preliminary results. Neuro Endocrinol Lett 27(6):799–802

    CAS  PubMed  Google Scholar 

  90. Mattay VS, Goldberg TE, Fera F et al (2003) Catechol O-methyltransferase val158-met genotype and individual variation in the brain response to amphetamine. Proc Natl Acad Sci USA 100(10):6186–6191

    CAS  PubMed  Google Scholar 

  91. Egan MF, Goldberg TE, Kolachana BS et al (2001) Effect of COMT Val108/158 met genotype on frontal lobe function and risk for schizophrenia. Proc Natl Acad Sci USA 98(12):6917–6922

    CAS  PubMed  Google Scholar 

  92. Karayiorgou M, Altemus M, Galke BL et al (1997) Genotype determining low catechol-O-methyltransferase activity as a risk factor for obsessive-compulsive disorder. Proc Natl Acad Sci USA 94(9):4572–4575

    CAS  PubMed  Google Scholar 

  93. Qian Q, Wang Y, Zhou R et al (2003) Family-based and case-control association studies of catechol-O-methyltransferase in attention deficit hyperactivity disorder suggest genetic sexual dimorphism. Am J Med Genet B Neuropsychiatr Genet 118(1):103–109

    Google Scholar 

  94. Glatt SJ, Faraone SV, Tsuang MT (2003) Association between a functional catechol O-methyltransferase gene polymorphism and schizophrenia: meta-analysis of case-control and family-based studies. Am J Psychiatry 160(3):469–476

    PubMed  Google Scholar 

  95. Gottesman II, Gould TD (2003) The endophenotype concept in psychiatry: etymology and strategic intentions. Am J Psychiatry 160(4):636–645

    PubMed  Google Scholar 

  96. Bearden CE, Freimer NB (2006) Endophenotypes for psychiatric disorders: ready for primetime? Trends Genet 22(6):306–313

    CAS  PubMed  Google Scholar 

  97. Cannon TD, Keller MC (2006) Endophenotypes in the genetic analyses of mental disorders. Annu Rev Clin Psychol 2:267–290

    PubMed  Google Scholar 

  98. Scott JC, Woods SP, Matt GE et al (2007) Neurocognitive effects of methamphetamine: a critical review and meta-analysis. Neuropsychol Rev 17(3):275–297

    PubMed  Google Scholar 

  99. Hill SK, Harris MS, Herbener ES, Pavuluri M, Sweeney JA (2008) Neurocognitive allied phenotypes for schizophrenia and bipolar disorder. Schizophr Bull 34(4):743–759

    PubMed  Google Scholar 

  100. Jacobs E, Fujii D, Schiffman J, Bello I (2008) An exploratory analysis of neurocognition in methamphetamine-induced psychotic disorder and paranoid schizophrenia. Cogn Behav Neurol 21(2):98–103

    PubMed  Google Scholar 

  101. Volkow ND, Fowler JS, Wang GJ, Goldstein RZ (2002) Role of dopamine, the frontal cortex and memory circuits in drug addiction: insight from imaging studies. Neurobiol Learn Mem 78(3):610–624

    CAS  PubMed  Google Scholar 

  102. Barr AM, Panenka WJ, MacEwan GW et al (2006) The need for speed: an update on methamphetamine addiction. J Psychiatry Neurosci 31(5):301–313

    PubMed  Google Scholar 

  103. Iyo M, Sekine Y, Mori N (2004) Neuromechanism of developing methamphetamine psychosis: a neuroimaging study. Ann N Y Acad Sci 1025:288–295

    CAS  PubMed  Google Scholar 

  104. Iyo M, Nishio M, Itoh T et al (1993) Dopamine D2 and serotonin S2 receptors in susceptibility to methamphetamine psychosis detected by positron emission tomography. Psychiatry Res 50(4):217–231

    CAS  PubMed  Google Scholar 

  105. Hsiao MC, Lin KJ, Liu CY, Tzen KY, Yen TC (2003) Dopamine transporter change in drug-naive schizophrenia: An imaging study with 99mTc-TRODAT-1. Schizophr Res 65(1):39–46

    PubMed  Google Scholar 

  106. Sekine Y, Minabe Y, Kawai M et al (2002) Metabolite alterations in basal ganglia associated with methamphetamine-related psychiatric symptoms. A proton MRS study. Neuropsychopharmacology 27(3):453–461

    CAS  PubMed  Google Scholar 

  107. Moore CM, Bonello CM, Sherwood AR, Cohen BM, Renshaw PF, Yurgulen-Todd DA (2002) Mesial temporal lobe cho to cr(PCr) ratio asymmetry in chronic schizophrenics. Schizophr Res 57(1):35–42

    PubMed  Google Scholar 

  108. Egan MF, Kojima M, Callicott JH et al (2003) The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell 112(2):257–269

    CAS  PubMed  Google Scholar 

  109. Hariri AR, Goldberg TE, Mattay VS et al (2003) Brain-derived neurotrophic factor val66met polymorphism affects human memory-related hippocampal activity and predicts memory performance. J Neurosci 23(17):6690–6694

    CAS  PubMed  Google Scholar 

  110. Weickert CS, Miranda-Angulo AL, Wong J et al (2008) Variants in the estrogen receptor alpha gene and its mRNA contribute to risk for schizophrenia. Hum Mol Genet 17(15):2293–2309

    CAS  PubMed  Google Scholar 

  111. Katsu T, Ujike H, Nakano T et al (2003) The human frizzled-3 (FZD3) gene on chromosome 8p21, a receptor gene for wnt ligands, is associated with the susceptibility to schizophrenia. Neurosci Lett 353(1):53–56

    CAS  PubMed  Google Scholar 

  112. Yang J, Si T, Ling Y et al (2003) Association study of the human FZD3 locus with schizophrenia. Biol Psychiatry 54(11):1298–1301

    CAS  PubMed  Google Scholar 

  113. Tsunoka T, Kishi T, Kitajima T et al (2010) Association analysis of GRM2 and HTR2A with methamphetamine-induced psychosis and schizophrenia in the japanese population. Prog Neuropsychopharmacol Biol Psychiatry 30, 34(4):639–644

    Google Scholar 

  114. Saadat M, Mobayen F, Farrashbandi H (2007) Genetic polymorphism of glutathione S-transferase T1: a candidate genetic modifier of individual susceptibility to schizophrenia. Psychiatry Res 153(1):87–91

    CAS  PubMed  Google Scholar 

  115. Huang YY, Battistuzzi C, Oquendo MA et al (2004) Human 5-HT1A receptor C(-1019)G polymorphism and psychopathology. Int J Neuropsychopharmacol 7(4):441–451

    CAS  PubMed  Google Scholar 

  116. Castulik L, Lochman J, Prikryl R, Sery O (2009) Polymorfizmus genu pro OPRM1 a schizofrenie: nové výsledky asociační studie. Psychiatrie, Praha, TIGIS 2009(Suppl 1):3

    Google Scholar 

  117. Talkowski ME, Kirov G, Bamne M et al (2008) A network of dopaminergic gene variations implicated as risk factors for schizophrenia. Hum Mol Genet 17(5):747–758

    CAS  PubMed  Google Scholar 

  118. Jonsson EG, Norton N, Forslund K et al (2003) Association between a promoter variant in the monoamine oxidase a gene and schizophrenia. Schizophr Res 61(1):31–37

    PubMed  Google Scholar 

  119. Ohgake S, Hashimoto K, Shimizu E et al (2005) Functional polymorphism of the NQO2 gene is associated with methamphetamine psychosis. Addict Biol 10(2):145–148

    CAS  PubMed  Google Scholar 

  120. Harada S, Tachikawa H, Kawanishi Y (2003) A possible association between an insertion/deletion polymorphism of the NQO2 gene and schizophrenia. Psychiatr Genet 13(4):205–209

    PubMed  Google Scholar 

  121. Fujii K, Maeda K, Hikida T et al (2006) Serine racemase binds to PICK1: potential relevance to schizophrenia. Mol Psychiatry 11(2):150–157

    CAS  PubMed  Google Scholar 

  122. Hong CJ, Liao DL, Shih HL, Tsai SJ (2004) Association study of PICK1 rs3952 polymorphism and schizophrenia. Neuroreport 15(12):1965–1967

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by R21MH075027 (M.T.T.) as well as in part by National Institutes of Health grants R01DA012846, R01DA018662, R01MH065562, and R01MH071912 (M.T.T.), R01MH079881, R25MH074508, R25MH081482, and R41MH079728 (I.P.E.), R01MH085521, P50MH081755-020003, and a NARSAD Young Investigator Award (S.J.G.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chad A. Bousman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Bousman, C.A., Glatt, S.J., Everall, I.P., Tsuang, M.T. (2011). Methamphetamine-Associated Psychosis: A Model for Biomarker Discovery in Schizophrenia. In: Ritsner, M. (eds) Handbook of Schizophrenia Spectrum Disorders, Volume I. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0837-2_15

Download citation

Publish with us

Policies and ethics