Skip to main content

Brief Description of the Histological, Cytological and Functional Aspects of the Ovary

  • Chapter
  • First Online:
Cell Death in Mammalian Ovary

Abstract

The ovary is formed by three main compartments: superficial epithelium, cortex and medulla. The superficial epithelium is constituted by one layer of cubic cells. The cortex is a wide peripheral zone containing the follicles, the functional and structural unit of the ovary, and a stroma formed by compact connective tissue. Every follicle is formed by one oocyte surrounded by follicular cells, also called granulosa cells, and a basal lamina surrounding them. The medulla is the central region of the ovary formed by connective tissue with numerous blood vessels. As the follicles develop they change their size, morphology and physiology. Primordial follicles are formed by the oocyte surrounded by flat follicular cells. Primary ­follicles are characterized by the initiation of follicular growth. Secondary follicles are characterized by two or more layers of granulosa cells and no antrum. The early antral follicles are characterized by the formation and progressive growth of a cavity, due to the accumulation of a fluid. Once the antrum is formed the follicle goes through several stages: (a) basal growth, (b) selection and (c) dominance. The process of follicular growth is controlled by extra-ovarian and intra-ovarian factors and the importance of each of these factors depends on the stage of follicle development. Extra-ovarian factors regulate growth of antral and preovulatory follicles, while intra-ovarian factors regulate growth of preantral and early antral follicles. The ovary is not only involved in sexual reproduction, but also has great influence on the entire hormonal functioning during development of the organism. The ovary is the site of the highest synthesis and secretion of progesterone and estrogen in mammals and gives rise to cyclical fluctuations in the levels of these hormones in the blood. Before ovulation, granulosa cells mature to form the corpus luteum, which is responsible for the secretion of progesterone and estrogen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

LH:

Luteinizing hormone

FSH:

Follicle stimulant hormone

TGFβ:

Transforming growth factor beta

EGF:

Epidermal growth factor

References

  • Adhikari D, Liu K (2009) Molecular mechanisms underlying the activation of mammalian primordial follicles. Endocr Rev 30:438–464

    Article  PubMed  CAS  Google Scholar 

  • Albertini DF, Combelles CM, Benecchi E, Carabatsos MJ (2001) Cellular basis for paracrine regulation of ovarian follicle development. Reproduction 121:647–653

    Article  PubMed  CAS  Google Scholar 

  • Armstrong DT, Goff AK, Dorrington JH (1979) Regulation of follicular estrogen biosynthesis. In: Midgley AR Jr, Sadler WA Jr (eds) Ovarian Follicular Development and Function. Raven, New York

    Google Scholar 

  • Attisano L, Wrana JL (1998) Mads and Smads in TGF beta signalling. Curr Opin Cell Biol 10:188–194

    Article  PubMed  CAS  Google Scholar 

  • Bassett DL (1943) The changes in the vascular pattern of the ovary of the albino rat during the estrous cycle. Am J Anat 73:252–292

    Article  Google Scholar 

  • Bergh C, Olsson JH, Selleskog U, Hillens ST (1993) Steroid production in cultured thecal cell obtained from human ovarian follicles. Hum Reprod 8:519–524

    PubMed  CAS  Google Scholar 

  • Bomsel H, Gougeon A, Thebault A et al (1979) Healthy and atretic human follicles in the preovulatory phase: differences in evolution of follicular morphology and steroid content of the follicular fluid. J Clin Endocrinol Metab 48:686–694

    Google Scholar 

  • Brand T, Schneider MD (1996) Transforming growth factor-b signal transduction. Circ Res 78:173–179

    PubMed  CAS  Google Scholar 

  • Campbell BK, Scaramuzzi RJ, Webb R (1995) Control of follicle development and selection in sheep and cattle. J Reprod Fertil Suppl 49:335–350

    PubMed  CAS  Google Scholar 

  • Cate RL, Mattaliano RJ, Hession C et al (1986) Isolation of the bovine and human genes for Müllerian inhibiting substance and expression of the human gene in animal cells. Cell 45:685–698

    Article  PubMed  CAS  Google Scholar 

  • Chang H, Brown CW, Matzuk MM (2002) Genetic analysis of the mammalian transforming growth factor-β superfamily. Endocr Rev 23:787–823

    Article  PubMed  CAS  Google Scholar 

  • Conneely OM, Mulac-Jericevic B, Lydon JP (2003) Progesterone-dependent regulation of female reproductive activity by two distinct progesterone receptor isoforms. Steroids 68:771–778

    Article  PubMed  CAS  Google Scholar 

  • Dennefors BL, Hamberger L, Nilsson L (1983) Influence of human chorionic gonadotropin in vivo on steroid formation and gonadotropin responsiveness of isolated human preovulatory follicular cells. Fertil Sterll 39:56–61

    CAS  Google Scholar 

  • Driancourt MA, Reynaud K, Cortvrindt R, Smitz J (2000) Roles of Kit and Kit Ligand in ovarian function. Rev Reprod 5:143–152

    Article  PubMed  CAS  Google Scholar 

  • Drummond AE, Dyson M, Le Tan M et al (2003) Ovarian follicle populations of the rat express TGF-ß signaling pathways. Mol Cell Endocrinol 202:53–57

    PubMed  CAS  Google Scholar 

  • Dube JL, Wang P, Elvin J et al (1998) The bone morphogenic protein 15 gene is X-linked and expressed in oocytes. Mol Endocrinol 12:1809–1917

    Article  PubMed  CAS  Google Scholar 

  • Durlinger A, Kramer P, Karels B et al (1999) Control of primordial follicle recruitment by anti-Müllerian hormone in the mouse ovary. Endocrinol 140:5789–5796

    Google Scholar 

  • Fair T, Hulshof SCJ, Hyttel P et al (1997a) Oocyte ultrastructure in bovine primordial to early tertiary follicles. Anat Embryol 195:327–336

    Article  PubMed  CAS  Google Scholar 

  • Fair T, Hulshof SCJ, Hyttel P et al (1997b) Nucleus ultrastructure and transcriptional activity of bovine oocytes in preantral and early antral follicles. Mol Reprod Dev 46:208–215

    Article  PubMed  CAS  Google Scholar 

  • Findlay JK (1993) An updata on the roles of inhibin, activin, and follistatin as local regulators of folliculogenesis. Boi Reprod 48:15–23

    Article  CAS  Google Scholar 

  • Franchi LL (1960) Electron microscopy of oocyte-follicle relationships in the rat ovary. J Biophys Biochem Cytol 7:397–398

    Article  PubMed  CAS  Google Scholar 

  • Garrido C, Saule S, Gospodarowicz D (1993) Transcriptional regulation of vascular endothelial growth factor gene expression in bovine granulosa cells. Growth Factors 8:109–117

    Article  PubMed  CAS  Google Scholar 

  • Goddard I, Hendrick JC, Bnahmed M, Morera AM (1995) Transforming growth factor b receptor expression in cultured porcine granulosa cells. Mol Cell Endocrinol 115:207–213

    Article  PubMed  CAS  Google Scholar 

  • Gougeon A (1984) Influence of cyclic variations in gonadotrophin and steroid hormones on ­follicular growth in the human ovary. In: de Brux I. Gautrav JP (eds) Clinical Pathology of the Endocrine Ovary. MTP Press, Lancaster

    Google Scholar 

  • Graham JD, Clarke CL (1997) Physiological action of progesterone in target tissues. Endocr Rev 18(4):502–19

    Article  PubMed  CAS  Google Scholar 

  • Harlow ChR, Davidson L, Burns KH et al (2002) FSH and TGF-b supefamily members regulate granulosa cell connective tissue growth factor gene expression in vitro and in vivo. Endocrinology 143(9):3316–3325

    Article  PubMed  CAS  Google Scholar 

  • Hayashi M, McGee EA, Min G et al (1999) Recombinant growth differentiation factor-9 (GDF9) enhances growth and differentiation of cultured early ovarian follicles. Endocrinology 140:1236–1244

    Article  PubMed  CAS  Google Scholar 

  • Hirshfield AN (1991) Development of follicles in the mammalian ovary. Int Rev Cytol 124:43–101

    Article  PubMed  CAS  Google Scholar 

  • Huang EJ, Manova K, Packer AI et al (1993) The murine Steel Panda mutation affects kit ligand expression and growth of early ovarian follicles. Develop Biol 157:100–109

    Article  PubMed  CAS  Google Scholar 

  • Ingraham HA, Hirokawa Y, Roberts LM et al (2000) Autocrine and paracrine hormone signaling in reproduction. Recent Prog Horm Res 55:30–38

    Google Scholar 

  • Ireland JJ, Martin TL, Ireland JLH, Aulerich RJ (1992) Immunoneutralization of inhibin suppress reproduction in female mink. Biol Reprod 47:746–750

    Article  PubMed  CAS  Google Scholar 

  • Jaatinen TA, Penttila TL, Kaipia A et al (1994) Expression of inhibin a, bA y bB Messenger ribonucleic acids in the normal ovary and in polycystic ovarian syndrome. J Endocrin 143:127–137

    Article  CAS  Google Scholar 

  • Jordan AW III, Caffrey JL, Niswender GD (1978) Catecholamine induced stimulation of progesterone and adenosine 39, 59-monophosphate production by dispersed ovine luteal cells. Endocrinology 103:385–392

    Article  PubMed  CAS  Google Scholar 

  • Katz D, Niederberger C, Slaughter GR, Cooney AJ (1997) Characterization of germ cell-specific expression of the orphan nuclear receptor, germ cell nuclear factor. Endocrinology 138:4364–4372

    Article  PubMed  CAS  Google Scholar 

  • Keri RA, Nilson JH (1996) A steroidogenic factor-1 binding site is required for activity of the luteinizing hormone b subunit promoter in gonadotropes of transgenic mice. J Biol Chem 271:10782–10785

    Article  PubMed  CAS  Google Scholar 

  • Klinger FG, De Felici M (2002) In vitro development of growing oocytes from fetal mouse oocytes: stage-specific regulation by stem cell factor and granulosa cells. Develop Biol 244:85–95

    Article  PubMed  CAS  Google Scholar 

  • Knight PG, Glister C (2003) Local roles of TGFbeta superfamily members in the control of ovarian follicle development. Anim Reprod Sci 78:15–183

    Article  Google Scholar 

  • Levallet J, Koskimies P, Rahman N, Huhtaniemi I (2001) The promoter of murine follicle-stimulating hormone receptor: functional characterization and regulation by transcription factor steroidogenic factor 1. Mol Endocrinol 15:80–92

    Article  PubMed  CAS  Google Scholar 

  • Lydon JP, DeMayo FJ, Funk CR et al (1995) Mice lacking progesterone receptor exhibit pleiotropic reproductive abnormalities. Genes Dev 9:2266–2278

    Article  PubMed  CAS  Google Scholar 

  • Magoffin DA (2005) Ovarian theca cell. Int J Biochem Cel Biol 37:1344–1349

    Article  CAS  Google Scholar 

  • Manova K, Nocka K, Besmer P, Bachvarova RF (1990) Gonadal expression of c-kit encoded at the W locus of the mouse. Development 110:1057–1069

    PubMed  CAS  Google Scholar 

  • Massague J (1992) Receptors for the TGF-b family. Cell 69:1067–1070

    Article  PubMed  CAS  Google Scholar 

  • Massague J, Chen YG (2000) Controling TGF-b signaling. Genes Dev 14:627–644

    PubMed  CAS  Google Scholar 

  • Massague J, Attisano L, Wrana JL (1994) The TGF-b family and its composite receptors. Trends Cell Biol 4:172–178

    Article  PubMed  CAS  Google Scholar 

  • McGee EA, Hsueh AJW (2000) Initial and cyclic recruitment of ovarian follicles. Endocr Rev 21(2):200–214

    Article  PubMed  CAS  Google Scholar 

  • McGrath SA, Esquela AF, Lee SJ (1995) Oocyte specific expression of growth/differentiation factor-9. Mol Endocrinol 9:131–136

    Article  PubMed  CAS  Google Scholar 

  • Miro F, Smyth CD, Whitelaw PF et al (1995) Regulation of 3b-hydroxysteroid dehydrogenase5/4-isomerase and cholesterol side-chain cleavage cytochrome P450 by activin in rat granulosa cells. Endocrinology 136:3247–3252

    Article  PubMed  CAS  Google Scholar 

  • Montro B, Bernstein A (1993) Dynamic changes in ovarian c-kit and Steel expression during the estrous reproductive cycle. Dev Dyn 197:69–79

    Article  Google Scholar 

  • Moore GPM, Lintern-Moore S, Peters H, Faber M (1974) RNA synthesis in the mouse oocyte. J Cell Biol 60:416–422

    Article  PubMed  CAS  Google Scholar 

  • Morita Y, Tilly JL (1999) Oocyte apoptosis: like sand through an hourglass. Dev Biol 213:1–17

    Article  PubMed  CAS  Google Scholar 

  • Motta PM, Makabe S, Naguro T, Correr S (1994) Oocyte follicle cells association during development of human ovarian follicle. A study by high resolution scanning and transmission electron microscopy. Arch Histol Cytol 57:369–394

    Article  PubMed  CAS  Google Scholar 

  • Natraj U, Richards JS (1993) Hormonal regulation, localization, and functional activity of the progesterone receptor in granulosa cells of rat preovulatory follicles. Endocrinology 133:761–769

    Article  PubMed  CAS  Google Scholar 

  • Nilsson EE, Kezele P, Skinner MK (2002) Leukemia inhibitory factor (LIF) promotes the primordial to primary follicle transition in rat ovaries. Mol Cell Endocrinol 188:65–73

    Article  PubMed  CAS  Google Scholar 

  • Norman A, Litwack G (1987) Hormones. Academy Press, Inc., London

    Google Scholar 

  • Otsuka F, Yao Z, Lee T et al (2000) Bone morphogenetic protein-15. Identification of target cells and biological functions. J Biol Chem 275:39523–39528

    Article  PubMed  CAS  Google Scholar 

  • Park JY, Su YQ, Ariga M et al (2004) EGF-like growth factors as mediators of LH action in the ovulatory follicle. Science 303(5658):682–684

    Article  PubMed  CAS  Google Scholar 

  • Picton H, Briggs D, Gosden R (1998) The molecular basis of oocyte growth and development. Mol Cell Endocrinol 145:27–37

    Article  PubMed  CAS  Google Scholar 

  • Rajkovic A, Pangas SA, Ballow D et al (2004) Nobox deficiency disrupts early folliculogenesis and oocyte-specific gene expression. Science 305:1157–1159

    Article  PubMed  CAS  Google Scholar 

  • Rankin T, Familari M, Lee E et al (1996) Mice homozygous for an insertional mutation in the Zp3 gene lack a zona pellucida and are infertile. Development 122:2903–2910

    PubMed  CAS  Google Scholar 

  • Richards JS (1980a) Maturation of ovarian follicles: actions and interactions of pituitary and ­ovarian hormones on follicular cell differentiation. Physiol Rev 60(1):51–89

    PubMed  CAS  Google Scholar 

  • Richards JS (2001) Perspective: the ovarian follicle: a perspective in 2001. Endocrinology 142(6):2184–2193

    Article  PubMed  CAS  Google Scholar 

  • Robertson DM, Klein R, deVos FL et al (1987) The isolation of polypeptides with FSH suppressing activity from bovine follicular fluid which are structurally different to inhibin. Biochem Biophys Res Commun 149:744–749

    Article  PubMed  CAS  Google Scholar 

  • Rugglu M, Speed R, Taggart M et al (1997) The mouse Dazla gene encodes a cytoplasmic protein essential for gametogenesis. Nature 389:73–77

    Article  Google Scholar 

  • Shimasaki S, Moore RK, Otsuka F, Erickson GF (2004) The bone morphogenetic protein system in mammalian reproduction. Endocr Rev 25:72–101

    Article  PubMed  CAS  Google Scholar 

  • Shimonaka M, Inouye S, Shimasaki S, Ling N (1991) Follistatin binds to both activin and inhibin through the common subunit. Endocrinology 128(6):3313–15

    Article  PubMed  CAS  Google Scholar 

  • Sotelo JR, Porter K (1959) An electron microscope study of rat ovum. J Biophys Biochem Cytol 5:327–342

    Article  PubMed  CAS  Google Scholar 

  • Soyal SM, Amleh A, Dean J (2000) Fig α a germ cell-specific transcription factor required for ovarian follicle development. Development 127:4645–4655

    PubMed  CAS  Google Scholar 

  • Symonds D, Tomic D, Borgeest C et al (2003) Smad3 regulates proliferation of the mouse ovarian surface epithelium. Anat Rec 273A:681–686

    Article  CAS  Google Scholar 

  • Teixeira J, He WW, Shah PC et al (1996) Developmental expression of a candidate Müllerian inhibiting substance type II receptor. Endocrinology 137:160–165

    Article  PubMed  CAS  Google Scholar 

  • Tilly JL (2001) Commuting the death sentence: how oocytes strive to survive. Nat Rev Mol Cell Biol 2:838–848

    Article  PubMed  CAS  Google Scholar 

  • Tisdall DJ, Fidler AE, Smith P et al (1999) Stem cell factor and c-kit gene expression and protein localization in the sheep ovary during fetal development. J Reprod Fertil 116:277–291

    Article  PubMed  CAS  Google Scholar 

  • Tomic D, Brodie SG, Deng C et al (2002a) Smad3 may regulate follicular growth in the mouse ovary. Biol Reprod 66:917–923

    Article  PubMed  CAS  Google Scholar 

  • Tomic D, Miller KP, Kenny HA et al (2004a) Ovarian follicle development requires Smad3. Mol Endocrinol 18(9):2224–40

    Article  PubMed  CAS  Google Scholar 

  • Tremblay JJ, Viger RS (2001) GATA factors differentially activate multiple gonadal promoters through conserved GATA regulatory elements. Endocrinology 142:977–986

    Article  PubMed  CAS  Google Scholar 

  • Ueno S, Kuroda T, Maclaughlin DT et al (1989) Müllerian inhibiting substance in the adult rat ovary during various stages of the estrous cycle. Endocrinology 125:1060–1066

    Article  PubMed  CAS  Google Scholar 

  • van den Hurk R, Bevers MM, Dieleman SJ (1999) Folliculogenesis and oocyte development in mammals (livestock animals). In: Joy KP, Krishna A, Haldar C (eds) Comparative endocrinology and reproduction. Narosa Publishing House, New Delhi

    Google Scholar 

  • van den Hurk R, Abir R, Telfer EE, Bevers MM (2000) Primate and bovine immature oocytes and follicles as sources of fertilizable oocytes. Hum Reprod 6:457–474

    Article  Google Scholar 

  • Vitt UA, Hayashi M, Klein C, Hsueh AJ (2000) Growth differentiation factor-9 stimulates proliferation but suppresses the follicle stimulating hormone-induced differentiation of cultured granulosa cells from small antral and preovulatory rat follicles. Biol Reprod 62:370–377

    Article  PubMed  CAS  Google Scholar 

  • Wandji SA, Gadsby JE, Barber JA, Hammond JM (2000) Messenger ribonucleic acids for MAC25 and connective tissue growth factor (CTGF) are inversely regulated during folliculogenesis and early luteogenesis. Endocrinology 141:2648–2657

    Article  PubMed  CAS  Google Scholar 

  • Wang QF, Tilly KL, Tilly JL et al (1996) Activin inhibits basal an androgen-stimulated ­proliferation and induces apoptosis in the human prostatic cancer cell line, LNCaP. Endocrinology 137:5476–5483

    Article  PubMed  CAS  Google Scholar 

  • Webb R, Campbell BK, Garverick HA et al (1999) Molecular mechanisms regulating follicular recruitment and selection. J Reprod Fertil Suppl 54:33–48

    PubMed  CAS  Google Scholar 

  • Xu J, Oakley J, McGee EA (2002) Stage-specific expression of Smad2 and Smad3 during folliculogenesis. Biol Reprod 66:1571–1578

    Article  PubMed  CAS  Google Scholar 

  • Zimmerman CM, Padgett RW (2000) Transforming growth factor-β signalling mediators and modulators. Gene 249:17–30

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Luisa Escobar .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Escobar, M.L., Vázquez-Nin, G.H., Echeverría, O.M. (2011). Brief Description of the Histological, Cytological and Functional Aspects of the Ovary. In: Cell Death in Mammalian Ovary. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1134-1_1

Download citation

Publish with us

Policies and ethics