Skip to main content

Vibration Based Structural Health Monitoring and the Modal Strain Energy Damage Index Algorithm Applied to a Composite T-Beam

  • Chapter
Vibration and Structural Acoustics Analysis

Abstract

A Finite Element based numerical model for a vibration based damage identification method for a thin-walled slender composite structure is discussed in this chapter. The linear dynamic response of an intact and a locally delaminated 16-layer unidirectional carbon fibre PEKK reinforced T-beam is analysed. The capabilities of the modal strain energy damage index algorithm to detect and localize a delamination is assessed. Both bending and torsion modes of the structure are used in the algorithm. Both an experimental set-up and a numerical model are discussed. Measurements are performed on an intact and an artificially delaminated structure, using a laser-vibro measuring system to determine the response to a force excitation. A commercially available Finite Element package is employed for the numerical model. The aim of the numerical model is to perform a parametric study. The study is preceded by an experimental verification of the numerical model. Subsequently, it is used to analyse the effect of the size and location of a delamination, as well as the number of data points employed, on the damage index.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Damage propagation is not accounted for, as the time scale of damage propagation must be significantly smaller than the time scale of the vibration. If not, the damage detection will coincide with actual failure of the structure.

Abbreviations

E :

modulus of elasticity [N m−2]

f :

fraction [–]

F :

fractional strain energy [–]

F N :

natural frequency [Hz]

G :

shear modulus [N m−2]

H :

height of stiffener [m]

i,j :

indices

I :

2nd moment of inertia [m4]

J :

rotational moment of inertia [m4]

l :

length [m]

L d :

length of delamination [m]

L s :

start of delamination [m]

L T :

total length [m]

M :

momentum [N m]

n :

natural mode index [–]

N :

total number [–]

s :

location of data lines [m]

T :

torque [N m]

u :

displacement [m]

U :

strain energy [N m]

W 1 :

skin flange width [m]

W 2 :

distance to data lines [m]

x,y,z :

cartesian coordinates

B:

bending mode related value

T:

torsion mode related value

thrs:

threshold value

α :

damage severity [–]

β :

damage index [–]

ε :

relative error [%]

ε max  :

maximum relative error [%]

ζ:

damping [N s m−1]

θ :

angle [rad]

ν :

Poisson’s ratio [–]

ρ :

volumetric density [kg m−3]

| |:

absolute value

\(\bar{\,}\) :

mean value

\(\tilde{\,}\) :

damaged variant of parameter/variable

:

partial derivative

d:

derivative/infinitesimal part

Σ:

summation

EMA:

Experimental modal analysis

FBG:

Fibre bragg grating

FRF:

Frequency response function

MSE-DI:

Modal strain energy damage identification

PEKK:

PolyEhterKatoneKatone

SHM:

Structural health monitoring

TRL:

Technology readiness level

VB:

Vibration based

References

  1. Adams, D.: Health Monitoring of Structural Materials and Components. Wiley, New York (2007)

    Book  Google Scholar 

  2. Alvandi, A., Cremona, C.: Assessment of vibration-based damage identification techniques. J. Sound Vib. 292(1–2), 179–202 (2006)

    Article  Google Scholar 

  3. Avitabile, P.: Experimental modal analysis. Sound Vib. Mag. (2001). http://www.sandv.com/downloads/0101avit.pdf

  4. Avitabile, P.: Teaching experimental structural dynamics applications. Sound Vib. Mag. (2007). http://www.sandv.com/downloads/0711avit.pdf

  5. Avitabile, P.: Modal space in our own little world. Tech. rep., University of Massachusetts Lowell (1998–2008). http://macl.caeds.eng.uml.edu/umlspace/mspace.html

  6. Balageas, D., Fritzen, C.P., Güemes, A. (eds.): Structural Health Monitoring. ISTE (2006)

    Google Scholar 

  7. Carden, E., Fanning, P.: Vibration based condition monitoring: A review. Struct. Health Monitor. 3, 355–377 (2004)

    Article  Google Scholar 

  8. Choi, S., Stubbs, N.: Damage identification in structures using the time-domain response. J. Sound Vib. 275, 557–590 (2004)

    Article  Google Scholar 

  9. Choi, S., Park, S., Stubbs, N.: Nondestructive damage detection in structures using changes in compliance. Int. J. Solids Struct. 42, 4494 (2005)

    Article  MATH  Google Scholar 

  10. Choi, S., Park, S., Park, N.H., Stubbs, N.: Improved fault quantification for a plate structure. J. Sound Vib. 297, 865–879 (2006)

    Article  Google Scholar 

  11. Cornwell, P., Doebling, S., Farrar, C.: Application of the strain energy damage detection method to plate-like structures. J. Sound Vib. 224(2), 359–374 (1999)

    Article  Google Scholar 

  12. Della, C., Shu, D.: Vibration of delaminated composite laminates: A review. Appl. Mech. Rev. 60(1–6), 1–20 (2007)

    Article  Google Scholar 

  13. Duffey, T., Doebling, S., Farrar, C., Baker, W., Rhee, W.: Vibration-based damage identification in structures exhibiting axial and torsional response. J. Vib. Acoust. 123(1), 84–91 (2001)

    Article  Google Scholar 

  14. Fan, W., Qiao, P.: Vibration-based damage identification methods: A review and comparative study. Struct. Health Monitor. (2010). doi:10.1177/1475921710365419

  15. Farrar, C., Jauregui, D.: Comparative study of damage identification algorithms applied to a bridge: I. Experiment. Smart Mater. Struct. 7(5), 704–719 (1998)

    Article  Google Scholar 

  16. Farrar, C., Jauregui, D.: Comparative study of damage identification algorithms applied to a bridge: II. Numerical study. Smart Mater. Struct. 7(5), 720–731 (1998)

    Article  Google Scholar 

  17. Giurgiutiu, V.: Structural Health Monitoring: With Piezoelectric Wafer Active Sensors. Elsevier, Amsterdam (2007)

    Google Scholar 

  18. Glišić, B., Inaudi, D.: Fibre Optic Methods for Structural Health Monitoring. Wiley, New York (2007)

    Google Scholar 

  19. Grouve, W., Warnet, L., de Boer, A., Akkerman, R., Vlekken, J.: Delamination detection with fibre bragg gratings based on dynamic behaviour. Compos. Sci. Technol. 68(12), 2418–2424 (2008)

    Article  Google Scholar 

  20. Kim, B., Stubbs, N., Park, T.: Flexural damage index equations of a plate. J. Sound Vib. 283, 341–368 (2005)

    Article  Google Scholar 

  21. Kim, J.T., Stubbs, N.: Model uncertainty impact and damage-detection accuracy in plate grider. J. Struct. Eng. 121(10), 1409–1417 (1995)

    Article  Google Scholar 

  22. Kim, J.T., Stubbs, N.: Improved damage identification method based on modal information. J. Sound Vib. 252(2), 223–238 (2002)

    Article  Google Scholar 

  23. Kim, B., Stubbs, N., Park, T.: A new method to extract modal parameters using output-only responses. J. Sound Vib. 282, 215–230 (2005)

    Article  Google Scholar 

  24. Kumar, M., Shenoi, R., Cox, S.: Experimental validation of modal strain energies based damage identification method for a composite sandwich beam. Compos. Sci. Technol. 69, 1635–1643 (2009)

    Article  Google Scholar 

  25. Li, H., Yang, H., Hu, S.L.: Modal strain energy decomposition method for damage localization in 3D. J. Eng. Mech. 132(9), 941–951 (2006)

    Article  Google Scholar 

  26. Li, H., Fang, H., Hu, S.L.: Damage localization and severity estimate for three-dimensional frame structures. J. Sound Vib. 301, 481–494 (2007)

    Article  Google Scholar 

  27. Montalvão, D., Maia, N., Ribeiro, A.: A review of vibration-based structural health monitoring with special emphasis on composite materials. Shock Vib. Dig. 38(4), 295–326 (2006)

    Article  Google Scholar 

  28. NASA: Definition of technology readiness levels. http://esto.nasa.gov/files/TRL_definitions.pdf

  29. Offringa, A., List, J., Teunissen, J., Wiersma, H.: Fiber reinforced thermoplastic butt joint development. In: Proceedings of International SAMPE Symposium and Exhibition (2008) 16p

    Google Scholar 

  30. Ooijevaar, T., Loendersloot, R., Warnet, L., de Boer, A., Akkerman, R.: Vibration based structural health monitoring of a composite t-beam. Compos. Struct. 92(9), 2007–2015 (2009)

    Article  Google Scholar 

  31. Pandey, A., Biswas, M.: Damage detection in structures using changes in flexibility. J. Sound Vib. 169(1), 3–17 (1994)

    Article  MATH  Google Scholar 

  32. Pandey, A., Biswas, M., Samman, M.: Damage detection from changes in curvature mode shapes. J. Sound Vib. 145(2), 321–332 (1991)

    Article  Google Scholar 

  33. Richardson, M., Schwarz, B.: Modal parameter estimation from operating data. Sound Vib. Mag., 8 (2003). http://www.sandv.com/downloads/0301rich.pdf

  34. Schwarz, J., Richardson, M.: Experimental Modal Analysis. Vibrant Technology Inc. (1999)

    Google Scholar 

  35. Staszewski, W., Boller, C., Tomlinson, G. (eds.): Health Monitoring of Aerospace Structures. Wiley, New York (2004)

    Google Scholar 

  36. Stubbs, N., Kim, J., Farrar, C.: Field verification of a nondestructive damage localization and severity estimation algorithm. In: Proceedings of the 13th International Modal Analysis Conference, pp. 210–218 (1995)

    Google Scholar 

  37. Takeda, N.: Recent developments of structural health monitoring technologies for aircraft composite structures. In: Proceedings of the 26th International Congress of the Aeronautical Sciences, p. 12 (2008)

    Google Scholar 

  38. Toksoy, T., Aktan, A.: Bridge-condition assessment by modal flexibility. Exp. Mech. 34(3), 271–278 (1994)

    Article  Google Scholar 

  39. Ullah, I., Sinha, J.: Dynamic study of a composite plate with delamination. In: Proceedings of the Third International Conference on Integrity, Reliability and Failure (2009). S1145_P0506, 15p

    Google Scholar 

  40. de Vries, R., Lamers, E., Wijskamp, S., Rodriguez, B.V., Akkerman, R.: The university of Twente micromechanics modeller. Tech. rep., University of Twente (2004). http://www.pt.ctw.utwente.nl/organisation/tools/

  41. Whitherell, C.: Mechanical Failure Avoidance: Strategies and Techniques. McGraw-Hill, New York (1994)

    Google Scholar 

  42. Worden, K., Dulieu-Barton, J.: An overview of intelligent fault detection in systems and structures. Struct. Health Monitor. 3, 85–98 (2004)

    Article  Google Scholar 

  43. Zimmerman, D., Kaouk, M.: Structural damage detection using a minimum rank update theory. J. Vib. Acoust. 116(2), 222–231 (1994)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Loendersloot .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Loendersloot, R., Ooijevaar, T.H., Warnet, L., de Boer, A., Akkerman, R. (2011). Vibration Based Structural Health Monitoring and the Modal Strain Energy Damage Index Algorithm Applied to a Composite T-Beam. In: Vasques, C., Dias Rodrigues, J. (eds) Vibration and Structural Acoustics Analysis. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1703-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-1703-9_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-1702-2

  • Online ISBN: 978-94-007-1703-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics