Skip to main content

Legume–Rhizobium Symbioses as a Tool for Bioremediation of Heavy Metal Polluted Soils

  • Chapter
  • First Online:
Biomanagement of Metal-Contaminated Soils

Part of the book series: Environmental Pollution ((EPOL,volume 20))

Abstract

Legumes have traditionally been used in soil regeneration, owing to their capacity to increase soil nitrogen due to biological nitrogen fixation. Recently, legumes have attracted attention for their role in remediation of metal-contaminated soils. Legumes accumulate heavy metals mainly in roots and show a low level of metal translocation to the shoot. The main application of these plants is thus in metal phytostabilization. However, high concentrations of heavy metals in soil lead to a decrease in the symbiotic properties of legumes, which could be due to a decrease in the number of rhizobial infections. In order to identify a best legume–Rhizobium partnership for bioremediation purposes, selection of plant varieties and rhizobia resistant to heavy metal is required. Different approaches directed to improve metal bioremediation potential of legumes have been undertaken; from inoculation with rhizosphere bacterial consortia resistant to heavy metals to genetic engineering. Inoculation of legume plants with appropriate inocula containing rhizobia and heavy metal-resistant plant growth-promoting rhizobacteria (PGPR) and/or mycorrhiza has been found as an interesting option to improve plant performance under stressed conditions. The role of Rhizobium–legume symbiosis and approaches employed to genetically engineer legume–Rhizobium interactions in order to improve bioremediation are reviewed and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abou-Shanab RA, Ghanem K, Ghanem N, Al-Kolaibe A (2008) The role of bacteria on heavy-metal extraction and uptake by plants growing on multi-metal-contaminated soils. World J Microbiol Biotechnol 24:253–262

    CAS  Google Scholar 

  • Anderson TA, Guthrie EA, Walton BT (1993) Bioremediation. Environ Sci Technol 27:2630–2636

    CAS  Google Scholar 

  • Anton A, Grosse C, Reissmann J, Privyl T, Nies DH (1999) CzcD is a heavy metal ion transporter involved in regulation of heavy metal resistance in Ralstonia sp. strain CH34. J Bacteriol 181:6876–6881

    CAS  Google Scholar 

  • Baker AJM (1981) Accumulators and excluder-strategies in the response of plants to heavy metals. J Plant Nutr 3:643–654

    CAS  Google Scholar 

  • Balestrasse KB, Gallego SM, Tomaro ML (2006) Aluminium stress affects nitrogen fixation and assimilation in soybean (Glycine max L.). Plant Growth Regul 48:271–281

    CAS  Google Scholar 

  • Bleeker PM, Schat H, Vooijs R, Verkleij JAC, Ernst WHO (2003) Mechanisms of arsenate tolerance in Cytisus striatus. New Phytol 157:33–38

    CAS  Google Scholar 

  • Brady DJ, Hecht-Buchholz CH, Asher CJ, Edwards DG (1990) Effects of low activities of aluminium on soybean (Glycine max). In: van Beusichem ML (ed.) Early growth and nodulation. Plant nutrition, physiology and applications. Kluwer Academic Publishers, Haren, pp 329–334

    Google Scholar 

  • Branco R, Chung AP, Morais PV (2008) Sequencing and expression of two arsenic resistance operons with different functions in the highly arsenic-resistant strain Ochrobactrum tritici SCII24T. BMC Microbiol 8:95

    Google Scholar 

  • Brewin NJ (2004) Plant cell wall remodelling in the Rhizobium-legume symbiosis. Crit Rev Plant Sci 23:293–316

    CAS  Google Scholar 

  • Broos K, Uyttebroek M, Mertens J, Smolders E (2004) A survey of symbiotic nitrogen fixation by white clover grown on metal contaminated soils. Soil Biol Biochem 36:633–640

    CAS  Google Scholar 

  • Broos K, Beyens H, Smolders E (2005) Survival of rhizobia in soil is sensitive to elevated zinc in the absence of the host plant. Soil Biol Biochem 37:573–579

    CAS  Google Scholar 

  • Callahan DL, Baker AJM, Kolev SD, Wedd AG (2006) Metal ion ligands in hyperaccumulating plants. J Biol Inorg Chem 11:2–12

    CAS  Google Scholar 

  • Carlin A, Shi W, Dey S, Rosen BP (1995) The ars operon of Escherichia coli confers arsenical and antimonial resistance. J Bacteriol 177:981–986

    CAS  Google Scholar 

  • Carrasco JA, Armario P, Pajuelo E, Burgos A, Caviedes MA, López R, Chamber MA, Palomares AJ (2005) Isolation and characterisation of symbiotically effective Rhizobium resistant to arsenic and heavy metals after the toxic spill at the Aznalcóllar pyrite mine. Soil Biol Biochem 37:1131–1140

    CAS  Google Scholar 

  • Castro IV, Ferreira E, McGrath SP (1997) Effectiveness and genetic diversity of Rhizobium leguminosarum biovar trifolii strains in Portuguese soils polluted by industrial effluents. Soil Biol Biochem 29:1209–1213

    CAS  Google Scholar 

  • Cebolla A, Vinardell JM, Kiss E, Oláh B, Roudier F, Kondorosi A, Kondorosi E (1999) The mitotic inhibitor ccs52 is required for endoreduplication and ploidy-dependent cell enlargement in plants. EMBO J 18:4476–84

    CAS  Google Scholar 

  • Chaintreuil C, Rigault F, Moulin L, Jaffré T, Fardoux J, Giraud E, Dreyfus B, Bailly X (2007) Nickel resistance determinants in Bradyrhizobium strains from nodules of the endemic New Caledonia legume Serianthes calycina. Appl Environ Microbiol 73:8018–8022

    CAS  Google Scholar 

  • Chaudri AM, McGrath SP, Giller KE (1992) Survival of the indigenous population of Rhizobium leguminosarum biovar trifolii in soil spiked with Cd, Zn, Cu and Ni salts. Soil Biol Biochem 24:625–632

    CAS  Google Scholar 

  • Cooper JE (2007) Early interactions between legumes and rhizobia: disclosing complexity in a molecular dialogue. J Appl Microbiol 103:1355–1365

    CAS  Google Scholar 

  • Copeland A, Lucas S, Lapidus A, Barry K, Detter JC, Glavina del Rio T, Hammon N, Israni S, Dalin E, Tice H, Pitluck S, Chertkov O, Brettin T, Bruce D, Han C, Tapia R, Gilna P, Schmutz J, Larimer F, Land M, Hauser L, Kyrpides N, Mikhailova NL, Richardson P (2006) Complete sequence of chromosome of Mesorhizobium sp. BNC1, NCBI genome project, accession number NC-008254

    Google Scholar 

  • Copeland A, Lucas S, Lapidus A, Barry K, Glavina del Rio T, Dalin E, Tice H, Pitluck S, Chain P, Malfatti S, Shin M, Vergez L, Schmutz J, Larimer F, Land M, Hauser L, Kyrpides N, Mikhailova N, Reeve W, Richardson P (2007) Complete genome sequence of the Medicago microsymbiont Ensifer (Sinorhizobium) medicae strain WSM419, US DOE Joint Genome Institute, accession number CP000740

    Google Scholar 

  • Dary M, Chamber-Pérez MA, Palomares AJ, Pajuelo E (2010) “In situ” phytostabilisation of heavy metal polluted soils using Lupinus luteus inoculated with metal resistant plant-growth promoting rhizobacteria. J Hazard Mater 177:323–330

    CAS  Google Scholar 

  • Day AD, Ludeke KL, Tucker TC (1980) Plant response in vegetative reclamation of mine wastes. In: Vegetative reclamation of mine wastes and tailings in the Southwest. Arizona Mining and Mineral Resources Research Institute, Tucson, pp 1–3

    Google Scholar 

  • De Hoff P, Hirsch AM (2003) Nitrogen comes down to earth: report from the 5th european nitrogen fixation conference. Mol Plant Microbe Interact 16:371–375

    Google Scholar 

  • de Lorenzo V (2008) Systems biology approaches to bioremediation. Curr Opin Biotechnol 19:579–589

    Google Scholar 

  • de Souza MP, Huang CP, Chee N, Terry N (1999) Rhizosphere bacteria enhance the accumulation of selenium and mercury in wetland plants. Planta 209:259–263

    Google Scholar 

  • Del Rio M, Font F, Almela C, Vélez D, Montoro R, De Haro A (2002) Heavy metals and arsenic uptake by wild vegetation in the Guadiamar river area after the toxic spill of the aznalcóllar mine. J Biotechnol 98:125–137

    Google Scholar 

  • Den Herder G, Schroeyers K, Holsters M, Goormachtig S (2006) Signaling and gene expression for water-tolerant legume nodulation. CRC Crit Rev Plant Sci 25:367–380

    Google Scholar 

  • Dong R (2005) Molecular cloning and characterization of a phytochelatin synthase gene, PvPCS1, from Pteris vittata L. J Ind Microbiol Biotechnol 32:527–533

    Google Scholar 

  • Doty SL (2008) Enhancing phytoremediation through the use of transgenics and endophytes. New Phytol 179:318–333

    Google Scholar 

  • Doty SL, Shang QT, Wilson AM, Moore AL, Newman LA, Strand SE, Gordon MP (2003) Metabolism of the soil and groundwater contaminants, ethylene dibromide and ­trichloroethylene, by the tropical leguminous tree, Leucaena leucocephala. Water Res 37:441–449

    CAS  Google Scholar 

  • Downie JA (2010) The roles of extracellular proteins, polysaccharides and signals in the interactions of rhizobia with legume roots. FEMS Microbiol Rev 34:150–170

    CAS  Google Scholar 

  • Duan GL, Zhu YG, Tong YP, Cai C, Kneer R (2005) Characterization of arsenate reductase in the extract of roots and fronds of chinese brake fern, an arsenic hyperaccumulator. Plant Physiol 138:461–469

    CAS  Google Scholar 

  • Ebbs S, Lau I, Ahner B, Kochian LV (2002) Phytochelatin synthesis is not responsible for Cd tolerance in the Zn/Cd hyperaccumulator Thlaspi caerulescens (J & C Presl). Planta 214:635–640

    CAS  Google Scholar 

  • Figueira EM, Gusmão AI, Almeida SI (2005) Cadmium tolerance plasticity in Rhizobium leguminosarum bv. viciae: glutathione as a detoxifying agent. Can J Microbiol 51:7–14

    CAS  Google Scholar 

  • Freeman JF, Zhang LH, Marcus MA, Fakra S, McGrath SP, Pilon-Smits EAH (2006) Spatial imaging, speciation and quantification of selenium in the hyperaccumulator plants Astragalus bisulcatus and Stanleya pinnata. Plant Physiol 142:124–134

    CAS  Google Scholar 

  • Frérot H, Lefèbvre C, Gruber W, Collin C, Dos Santos A, Escarre J (2006) Specific interactions between local metallicolous plants improve the phytostabilization of mine soils. Plant Soil 282:53–65

    Google Scholar 

  • Gage DJ (2004) Infection and invasion of roots by symbiotic nitrogen-fixing rhizobia during nodulation of temperate legumes. Microbiol Mol Biol Rev 68:280–300

    CAS  Google Scholar 

  • Gerhardt KE, Huang XD, Glick BR, Greenberg BM (2009) Phytoremediation and rhizoremediation of organic soil contaminants: potential and challenges. Plant Sci 176:20–30

    CAS  Google Scholar 

  • Geurts R, Fedorova E, Bisseling T (2005) Nod factor signalling genes and their function in the early stages of Rhizobium infection. Curr Opin Plant Biol 8:346–352

    CAS  Google Scholar 

  • Ghosh M, Singh SP (2005) A review on phytoremediation of heavy metals and utilization of its byproducts. Appl Ecol Environ Res 3:1–18

    Google Scholar 

  • Gibson KE, Kobayashi H, Walker GC (2008) Molecular determinants of a symbiotic chronic infection. Annu Rev Genet 42:413–441

    CAS  Google Scholar 

  • Giller KE, Nussbaun R, Chaudri AM, McGrath SP (1993) Rhizobium meliloti is less sensitive to heavy-metal contamination in soil than R. leguminosarum bv. trifolii or R. loti. Soil Biol Biochem 25:273–278

    CAS  Google Scholar 

  • Giller KE, Witter E, McGrath SP (1998) Toxicity of heavy metals to microorganisms and microbial processes in agricultural soils: a review. Soil Biol Biochem 30:1389–1414

    CAS  Google Scholar 

  • Glick BR (2003) Phytoremediation: synergistic use of plants and bacteria to clean up the environment. Biotechnol Adv 21:383–393

    CAS  Google Scholar 

  • González RC, González-Chávez MC (2006) Metal accumulation in wild plants surrounding mining wastes. Environ Pollut 144:84–92

    Google Scholar 

  • Graham PH, Vance CP (2003) Legumes: importance and constraints to greater use. Plant Physiol 131:872–877

    CAS  Google Scholar 

  • Gupta AK, Dwivedi S, Sinha S, Tripathi RD, Rai UN, Singh SN (2007) Metal accumulation and growth performance of Phaseolus vulgaris grown in ash amended soil. Bioresour Technol 98:3404–3407

    CAS  Google Scholar 

  • Gusmão AI, Caçoilo S, Figueira EM (2006) Glutathione-mediated cadmium sequestration in Rhizobium leguminosarum. Enzyme Microb Technol 39:763–769

    Google Scholar 

  • Hinsinger P, Gobran GR, Gregory PJ, Wenzel WW (2005) Rhizosphere geometry and heterogeneity arising from root-mediated physical and chemical processes. New Phytol 168:293–303

    CAS  Google Scholar 

  • Hunter WJ, Kuykendall LD, Manter DK (2007) Rhizobium selenireducens sp. nov.: a selenite-reducing a-Proteobacteria isolated from a bioreactor. Curr Microbiol 55:455–460

    CAS  Google Scholar 

  • Ike A, Sriprang R, Ono H, Murooka Y, Yamashita M (2007) Bioremediation of cadmium contaminated soil using symbiosis between leguminous plant and recombinant rhizobia with the MTL4 and the PCS genes. Chemosphere 66:1670–1676

    CAS  Google Scholar 

  • Ingle RA, Mugford ST, Rees JB, Campbell MM, Smith JA (2005) Constitutively high expressed of the histidine biosynthetic pathway contributes to nickel tolerance in hyperaccumulator plants. Plant Cell 17:2089–2106

    CAS  Google Scholar 

  • Jones KM, Kobayashi H, Davies BW, Taga ME, Walker GC (2007) How rhizobial symbionts invade plants: the Sinorhizobium-Medicago model. Nat Rev Microbiol 5:619–633

    CAS  Google Scholar 

  • Jorgensen KS (2007) In situ bioremediation. Adv Appl Microbiol 61:285–305

    CAS  Google Scholar 

  • Khan AG (2005) Role of soil microbes in the rhizospheres of plants growing on trace metal contaminated soils in phytoremediation. J Trace Elem Med Biol 18:355–364

    CAS  Google Scholar 

  • Khan MS, Zaidi A, Wani PA, Oves M (2009) Role of plant growth promoting rhizobacteria in the remediation of heavy metal contaminated soils. Environ Chem Lett 7:1–19

    Google Scholar 

  • Kidd P, Barceló J, Bernal MP, Navari-Izzo F, Poschenrieder C, Shilev S, Clemente R, Monterroso C (2009) Trace element behaviour at the root-soil interface: Implications in phytoremediation. Environ Exp Bot 67:243–259

    CAS  Google Scholar 

  • Kopittke PM, Dart PJ, Menzies NW (2007) Toxic effects of low concentrations of Cu on nodulation of cowpea (Vigna unguiculata). Environ Pollut 145:309–315

    CAS  Google Scholar 

  • Kuiper I, Lagendijk EL, Bloemberg GV, Lugtenberg BJJ (2004) Rhizoremediation: a beneficial plant–microbe interaction. Mol Plant Microbe Interact 17:6–15

    CAS  Google Scholar 

  • Lafuente A, Pajuelo E, Caviedes MA, Rodríguez-Llorente ID (2010) Reduced nodulation in alfalfa induced by arsenic correlates with altered expression of early nodulins. J Plant Physiol 167:286–291

    CAS  Google Scholar 

  • Lakzian A, Murphy P, Turner A, Beynon JL, Giller KE (2002) Rhizobium leguminosarum bv. viciae populations in soils with increasing heavy metal contamination: abundance, plasmid profiles, diversity and metal tolerance. Soil Biol Biochem 34:519–529

    CAS  Google Scholar 

  • Lasat MM (2000) Phytoextraction of metals from contaminated soil: a review of plant/soil/metal interaction and assessment of pertinent agronomic issues. J Hazard Sub Res 2:1–21

    Google Scholar 

  • Le Duc DL, Terry T (2005) Phytoremediation of toxic trace elements in soil and water. J Ind Microbiol Biotechnol 32:514–520

    Google Scholar 

  • Ma LQ, Komar KMM, Tu C, Zhang W, Cai Y, Kennelley ED (2001) A fern that hyperaccumulates arsenic. Nature 409:579–581

    CAS  Google Scholar 

  • Ma Y, Rajkumar M, Freitas H (2009) Isolation and characterization of Ni mobilizing PGPB from serpentine soils and their potential in promoting plant growth and Ni accumulation by Brassica spp. Chemosphere 75:719–725

    CAS  Google Scholar 

  • Malik A (2004) Metal bioremediation through growing cells. Environ Int 30:261–278

    CAS  Google Scholar 

  • Mandal SM, Pati BR, Das AK, Ghosh AK (2008) Characterization of a symbiotically effective Rhizobium resistant to arsenic: isolated from the root of Vigna mungo (L.) hepper grown in an arsenic-contaminated field. J Gen Appl Microbiol 54:93–99

    CAS  Google Scholar 

  • Mejáre M, Bülow L (2001) Metal-binding proteins and peptides in bioremediation and phytoremediation of heavy metals. Trends Biotechnol 19:67–73

    Google Scholar 

  • Méndez MO, Maier RM (2008) Phytostabilisation of mine tailings in arid and semiarid environments: an emerging remediation technology. Environ Health Perspect 116:278–283

    Google Scholar 

  • Moore CM, Helmann JD (2005) Metal ion homeostasis in Bacillus subtilis. Curr Opin Microbiol 8:188–195

    CAS  Google Scholar 

  • Moreno-Jiménez E, Peñalosa JM, Manzano R, Carpena-Ruíz RO, Gamarra R, Esteban E (2009) Heavy metals distribution in soils surrounding an abandoned mine in NW Madrid (Spain) and their transference to wild flora. J Hazard Mat 162:854–859

    Google Scholar 

  • Nawapan S, Charoenlap N, Charoenwuttitam A, Saenkham P, Mongkolsuk S, Vattanaviboon P (2009) Functional and expression analyses of the cop operon, required for copper resistance in Agrobacterium tumefaciens. J Bacteriol 191:5159–5168

    CAS  Google Scholar 

  • Nies DH (2003) Efflux-mediated heavy metal resistance in prokaryotes. FEMS Microbiol Rev 27:313–339

    CAS  Google Scholar 

  • Nies DH, Silver S (2007) Molecular microbiology of heavy metals. Springer, Berlin/Heidelberg/New York

    Google Scholar 

  • Nies DH, Koch S, Wachi S, Peitzsch N, Saier MH Jr (1998) CHR, a novel family of prokaryotic proton motive force-driven transporters probably containing chromate/sulfate antiporters. J Bacteriol 180:5799–5802

    CAS  Google Scholar 

  • Nucifora G, Chu L, Misra TK, Silver S (1989) Cadmium resistance from Staphylococcus aureus plasmid pI258 cadA gene results from a cadmium-efflux ATPase. Proc Natl Acad Sci USA 86:3544–3548

    CAS  Google Scholar 

  • Oldroyd ED, Downie JA (2006) Nuclear calcium changes at the core of symbiosis signalling. Curr Opin Plant Biol 9:351–357

    CAS  Google Scholar 

  • Oldroyd ED, Downie JA (2008) Coordinating nodule morphogenesis with rhizobial infection in legumes. Annu Rev Plant Biol 59:519–546

    CAS  Google Scholar 

  • Oremland SO, Stolz JF (2003) The ecology of arsenic. Science 300:939–943

    CAS  Google Scholar 

  • Ortega-Villasante C, Rellán-Álvarez R, Del Campo FF, Carpena-Ruíz RO, Hernández LE (2005) Cellular damage induced by cadmium and mercury in Medicago sativa. J Exp Bot 56:2239–2251

    CAS  Google Scholar 

  • Outten FW, Outten CE, Hale J, O’Halloran TV (2000) Transcriptional activation of an Escherichia coli copper efflux regulon by the chromosomal MerR homologue, cueR. J Biol Chem 275:31024–31029

    CAS  Google Scholar 

  • Pajuelo E, Rodríguez-Llorente ID, Dary M, Palomares AJ (2008) Toxic effects of arsenic on Sinorhizobium–Medicago sativa symbiotic interaction. Environ Pollut 154:203–211

    CAS  Google Scholar 

  • Pastor J, Hernandez AJ, Prieto N, Fernandez-Pascual M (2003) Accumulating behaviour of Lupinus albus L. growing in a normal and a decalcified calcic luvisol polluted with Zn. J Plant Physiol 160:1457–1465

    CAS  Google Scholar 

  • Patel PC, Goulhen F, Boothman C, Gault AG, Charnock JM, Kalia K, Lloyd JR (2007) Arsenate detoxification in a Pseudomonad hypertolerant to arsenic. Arch Microbiol 187:171–183

    CAS  Google Scholar 

  • Pence NS, Larsen PB, Ebbs SD, Letham DLD, Lasat MM, Garvin DF, Eide D, Kochian LV (2000) The molecular physiology of heavy metal transport in the Zn and Cd hyperaccumulator Thlaspi caerulescens. PNAS 97:4956–4960

    CAS  Google Scholar 

  • Pickering IJ, Wright C, Bubner B, Ellis D, Persans NW, Yu EY, George GN, Prince RC, Salt DE (2003) Chemical form and distribution of selenium and sulphur in the selenium hyperaccumulator Astragalus bisulcatus. Plant Physiol 131:1460–1467

    CAS  Google Scholar 

  • Piha MI, Vallack HW, Reeler BM, Michael N (1995) A low input approach to vegetation establishment on mine and coal ash wastes in semi-arid regions. 1. Tin mine tailings in Zimbabwe. J Appl Ecol 32:372–381

    Google Scholar 

  • Pilon-Smits E (2005) Phytoremediation. Annu Rev Plant Biol 56:15–39

    CAS  Google Scholar 

  • Prasad MNV, Freitas HM (2003) Metal hyperaccumulation in plants. Biodiversity prospecting for phytoremediation technology. Electr J Biotechnol 6:287–321

    Google Scholar 

  • Radutoiu S, Madsen LH, Madsen EB, Felle HH, Umehara Y, Grønlund M, Sato S, Nakamura Y, Tabata S, Sandal N, Stougaard J (2003) Plant recognition of symbiotic bacteria requires two LysM receptor-like kinases. Nature 425:585–592

    CAS  Google Scholar 

  • Reeve WG, O’Hara G, Chain P, Ardley J, Braeu L, Nandesena K, Tiwari R, Malfatti S, Kiss H, Lapidus A, Copeland A, Nolan M, Land M, Ivanova N, Mavromatis K, Markowitz V, Kyrpides NC, Melino V, Denton M, Yates R, Howieson J (2010) Complete genome sequence of Rhizobium leguminosarum bv. trifolii strain WSM2304, an effective microsymbiont of the South American clover Trifolium polymorphum. Stand Genomic Sci 2:66–76

    Google Scholar 

  • Reeves RD, Baker AJM (2000) Metal accumulating plants. In: Raskin I, Ensley B (eds.) Phytoremediation of toxic metals: using plants to clean up the environment. Wiley, New York, pp 193–229

    Google Scholar 

  • Requena N, Perez-Solis E, Azcón-Aguilar C, Jeffries P, Barea JM (2002) Management of indigenous plant-microbe symbioses aids restoration of desertified ecosystems. Appl Environ Microbiol 67:495–498

    Google Scholar 

  • Rivera-Becerril F, Calantzis C, Turnau K, Caussanel JP, Belimov AA, Gianinazzi S, Strasser RJ, Gianinazzi-Pearson V (2002) Cadmium accumulation and buffering of cadmium-induced stress by arbuscular mycorrhiza in three Pisum sativum L. genotypes. J Exp Bot 53:1177–1185

    CAS  Google Scholar 

  • Rodríguez-Llorente ID, Gamane D, Lafuente A, Dary M, El Hamdaoui A, Delgadillo J, Doukkali K, Caviedes MA, Pajuelo E (2010) Cadmium biosorption of the metal resistant Ochrobactrum cytisi Azn6.2. Eng Life Sci 10:49–56

    Google Scholar 

  • Rodríguez-Navarro DN, Dardanelli MS, Ruíz-Sáinz JE (2007) Attachment of bacteria to the roots of higher plants. FEMS Microbiol Lett 272:127–136

    Google Scholar 

  • Roth LE, Stacey G (1989) Bacterium release into host cells of nitrogen-fixing soybean nodules: the symbiosome membrane comes from three sources. Eur J Cell Biol 49:13–23

    CAS  Google Scholar 

  • Sá-Pereira P, Rodrigues M, Videira e, Castro I, Simões F (2007) Identification of an arsenic resistance mechanism in rhizobial strains. World J Microbiol Biotechnol 23:1351–1356

    Google Scholar 

  • Sá-Pereira P, Rodrigues M, Simões F, Domingues L, Videira e, Castro I (2009) Bacterial activity in heavy metals polluted soils: metal efflux systems in native rhizobial strains. Geomicrobiol J 26:281–288

    Google Scholar 

  • Sawada H, Kuykendall LD, Young JM (2003) Changing concepts in the systematics of bacterial nitrogen-fixing legume symbionts. J Gen Appl Microbiol 49:155–179

    CAS  Google Scholar 

  • Sharples JM, Meharg AA, Chambers SM, Cairney JWG (2000) Evolution: symbiotic solution to arsenic contamination. Nature 404:951–952

    CAS  Google Scholar 

  • Sheng FX, Xia JJ (2006) Improvement of rape (Brassica napus) plant growth and cadmium uptake by cadmium-resistant bacteria. Chemosphere 64:1036–1042

    CAS  Google Scholar 

  • Silver S (1996) Bacterial resistances to toxic metal ions: a review. Gene 179:9–19

    CAS  Google Scholar 

  • Silver S, Phung LT (1996) Bacterial heavy metals resistance: new surprises. Annu Rev Microbiol 50:753–789

    CAS  Google Scholar 

  • Silver S, Phung LT (2005) A microbial view of the periodic table: genes and proteins for toxic inorganic ions. J Ind Microbiol Biotechnol 32:587–605

    CAS  Google Scholar 

  • Singh S, Kang SH, Mulchandani A, Chen W (2008) Bioremediation: environmental clean-up through pathway engineering. Curr Opin Biotechnol 19:437–444

    CAS  Google Scholar 

  • Sprent JI (2007) Evolving ideas of legume evolution and diversity: a taxonomic perspective on the occurrence of nodulation. New Phytol 174:11–25

    CAS  Google Scholar 

  • Sriprang R, Hayashi M, Yamashita M, Ono H, Saeki K, Murooka Y (2002) A novel bioremediation system for heavy metals using the symbiosis between leguminous plant and genetically engineered rhizobia. J Biotechnol 99:279–293

    CAS  Google Scholar 

  • Sriprang R, Hayashi M, Ono H, Takagi M, Hirata K, Murooka Y (2003) Enhanced accumulation of Cd2+ by Mesorhizobium transformed with a gene for phytochelatin synthase from Arabidopsis. Appl Environ Microbiol 69:1791–1796

    Google Scholar 

  • Stephanie M, Hélène F, Céline V, Antoine G, Karine H, Lucette M, Brigitte B, Claude L, José E, Jean-Claude CM (2011) Anthyllis vulneraria/Mesorhizobium metallidurans, an efficient symbiotic nitrogen fixing association able to grow in mine tailings highly contaminated by Zn. Pb Cd Plant Soil. doi:10.1007/s11104-010-0705-7

  • Trujillo ME, Willems A, Abril A, Planchuela AM, Rivas R, Luden D, Mateos PF, Martínez-Molina E, Velázquez E (2005) Nodulation of Lupinus albus by strains of Ochrobactrum lupini sp. nov. Appl Environ Microbiol 71:1318–1327

    CAS  Google Scholar 

  • van Aken B (2008) Transgenic plants for phytoremediation: helping nature to clean up environmental pollution. Trends Biotechnol 26:225–227

    Google Scholar 

  • van Batenburg FHD, Jonker R, Kijne JW (1986) Rhizobium induces marked root hair curling by redirection of tip growth: a computer simulation. Physiol Plant 66:476–480

    Google Scholar 

  • van Brussel AAN, Bakhuizen R, Van Sprosen PC, Spaink HP, Tak T, Lutenberg BJJ, Kijne JW (1992) Induction of preinfection threads structures in the leguminous host plant by mitogenic lipo-oligosaccharides of Rhizobium. Science 257:70–72

    Google Scholar 

  • Vangrosveld J, Herzig R, Weyens N, Boulet J, Adriansen K, Ruttens A, Thewys T, Vassiley A, Meers E, Nehnevajova E, van der Lelie D, Mench M (2009) Phytoremediation of contaminated soils and groundwater: lessons from the field. Environ Sci Pollut Res 16:765–794

    Google Scholar 

  • Vázquez S, Agha R, Granado A, Sarro MJ, Esteban E, Peñalosa JM, Carpena RO (2006) Use of white lupin plant for phytostabilization of Cd and As pollute acid soil. Water Air Soil Pollut 177:349–365

    Google Scholar 

  • Velázquez E, García-Fraile P, Ramírez-Bahena MH, Rivas R, Martínez-Molina E (2010) Bacteria involved in nitrogen-fixing legume symbiosis: current taxonomic perspective. In: Khan MS, Zaidi A, Musarrat J (eds.) Microbes for legume improvement. Springer, Wien

    Google Scholar 

  • Vidal C, Chantreuil C, Berge O, Mauré L, Escarré J, Béna BB, Cleyet-Marel JC (2009) Mesorhizobium metallidurans sp. nov., a metal resistant symbiont of Anthyllis vulneraria growing on metallicolous soil in Languedoc, France. Int J Syst Evol Microbiol 59:850–855

    CAS  Google Scholar 

  • Volesky B (2007) Biosorption and me. Water Res 41:4017–4029

    CAS  Google Scholar 

  • Wang J, Zhao F-J, Meharg AA, Raab A, Feldmann J, McGrath SP (2002) Mechanisms of arsenic hyperaccumulation in Pteris vittata. Uptake kinetics, interactions with phosphate, and arsenic speciation. Plant Physiol 130:1552–1561

    CAS  Google Scholar 

  • Wani PA, Khan MS, Zaidi A (2006) An evaluation of the effects of heavy metals on the growth, seed yield and grain protein of lentil in pots. Ann Appl Biol (Suppl TAC) 27:23–24

    Google Scholar 

  • Wani PA, Khan MS, Zaidi A (2007a) Effect of metal tolerant plant growth promoting Bradyrhizobium sp. (vigna) on growth, symbiosis, seed yield and metal uptake by greengram plants. Chemosphere 70:36–45

    CAS  Google Scholar 

  • Wani PA, Khan MS, Zaidi A (2007b) Impact of heavy metal toxicity on plant growth, symbiosis, seed yield and nitrogen and metal uptake in chickpea. Aust J Exp Agric 47:712–720

    CAS  Google Scholar 

  • Wani PA, Khan MS, Zaidi A (2008a) Effect of heavy metal toxicity on growth, symbiosis, seed yield and metal uptake in pea grown in metal amended soil. Bull Environ Contam Toxicol 81:152–158

    CAS  Google Scholar 

  • Wani PA, Khan MS, Zaidi A (2008b) Chromium reducing and plant growth promoting Mesorhizobium improves chickpea growth in chromium amended soil. Biotechnol Lett 30:159–163

    CAS  Google Scholar 

  • Wani PA, Zaidi A, Khan MS (2009) Chromium reducing and plant growth promoting potential of Mesorhizobium species under chromium stress. Biorem J 13:121–129

    CAS  Google Scholar 

  • Wei G, Fan L, Zhu W, Fu Y, Yu F, Tang M (2009) Isolation and characterization of the heavy metal resistant bacteria CCNWRS33-2 isolated from root nodule of Lespedeza cuneata in gold mine tailings in China. J Hazard Mat 162:50–56

    CAS  Google Scholar 

  • Weir BS (2009) The current taxonomy of rhizobia. New Zealand rhizobia website. http://www.rhizobia.co.nz/taxonomy/rhizobia.html

  • Wood TK (2008) Molecular approaches in bioremediation. Curr Opin Biotechnol 19:572–578

    CAS  Google Scholar 

  • Yang HC, Cheng J, Finan M, Rosen BP, Bhattacharjee H (2005) Novel pathway for arsenic detoxification in the legume symbiont Sinorhizobium meliloti. J Bacteriol 187:6991–6997

    CAS  Google Scholar 

  • Zaidi S, Usmani S, Singh BR, Musarrat J (2006) Significance of Bacillus subtilis strain SJ 101 as a bioinoculant for concurrent plant growth promotion and nickel accumulation in Brassica juncea. Chemosphere 64:991–997

    CAS  Google Scholar 

  • Zhang S, Chen M, Li T, Xu X, Deng L (2010) A newly found cadmium accumulator-Malva sinensis Cavan. J Hazard Mat 173:705–709

    CAS  Google Scholar 

  • Zhengwei Z, Fang W, Lee HY, Yang Z (2005) Response of Azhorhizobium caulinodans to cadmium stress. FEMS Microbiol Ecol 54:455–461

    Google Scholar 

  • Zhuang X, Chen J, Shim H, Bai Z (2007) New advances in plant growth-promoting rhizobacteria for bioremediation. Environ Int 33:406–413

    Google Scholar 

  • Zurdo-Piñeiro JL, Rivas R, Trujillo ME, Vizcaíno N, Carrasco JA, Chamber MA, Palomares AJ, Mateos PF, Martínez-Molina E, Velázquez E (2007) Ochrobactrum cytisi sp. nov., isolated from nodules of Cytisus scoparius in Spain. Int J Syst Evol Microbiol 57:784–788

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eloísa Pajuelo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Pajuelo, E., Rodríguez-Llorente, I.D., Lafuente, A., Caviedes, M.Á. (2011). Legume–Rhizobium Symbioses as a Tool for Bioremediation of Heavy Metal Polluted Soils. In: Khan, M., Zaidi, A., Goel, R., Musarrat, J. (eds) Biomanagement of Metal-Contaminated Soils. Environmental Pollution, vol 20. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1914-9_4

Download citation

Publish with us

Policies and ethics