Skip to main content

Biotin: Biochemical, Physiological and Clinical Aspects

  • Chapter
  • First Online:
Water Soluble Vitamins

Part of the book series: Subcellular Biochemistry ((SCBI,volume 56))

Abstract

Significant progress has been made in our understanding of the biochemical, physiological and nutritional aspects of the water-soluble vitamin biotin (vitamin H). It is well know now that biotin plays important roles in a variety of critical metabolic reactions in the cell, and thus, is essential for normal human health, growth and development. This is underscored by the serious clinical abnormalities that occur in conditions of biotin deficiency, which include, among other things, growth retardation, neurological disorders, and dermatological abnormalities (reviewed in 1). Studies in animals have also shown that biotin deficiency during pregnancy leads to embryonic growth retardation, congenital malformation and death (Watanabe 1983; Cooper and Brown 1958; Mock et al. 2003; Zempleni and Mock 2000). The aim of this chapter is to provide coverage of current knowledge of the biochemical, physiological, and clinical aspects of biotin nutrition. Many sections of this chapter have been the subject of excellent recent reviews by others (Wolf 2001; McMahon 2002; Mock 2004; Rodriguez-Melendez and Zempleni 2003; Said 2004; Said et al. 2000; Said and Seetheram 2006), and thus, for more information the reader is advised to consider these additional sources.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 179.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad PM, Ahmad F (1991) Mammalian pyruvate carboxylase: effect of biotin on the synthesis and translocation of apoenzyme into 3T3-L adipocyte mitochondria. FASEB J 5:2482–2485

    PubMed  CAS  Google Scholar 

  • Baéz-Saldaña A., Díaz G., Espinoza B et al (1998) Biotin deficiency induces changes in subpopulations of spleen lymphocytes in mice. Am J Clin Nutr 67:431–437

    PubMed  Google Scholar 

  • Balamurugan K, Ortiz A, Said HM (2003) Biotin uptake by human intestinal and liver epithelial cells: role of the SMVT system. Am J Physiol 285:G73–G77

    CAS  Google Scholar 

  • Balamurugan K, Vaziri ND, Said HM (2005) Biotin uptake by human proximal tubular epithelial cells: cellular and molecular aspects. Am J Physiol 288:F23–F31

    Google Scholar 

  • Ballard T, Wolff J, Griffin J et al (2002) Biotinidase catalyzes debiotinylation of histones. Eur J Nutr 41:78–84

    PubMed  CAS  Google Scholar 

  • Banares FF, Lacruz AA, Gine JJ et al (1989) Vitamin status in patients with inflammatory bound disease. Am J Gastroenterol 84:744–748

    Google Scholar 

  • Barth CA, Frigg M, Hogemeister H (1986) Biotin absorption from the hindgut of the pig. J Anim Physiol Anim Nutr 55:128–134

    CAS  Google Scholar 

  • Baur B, Baumgartner ER (1993) Na-dependent biotin transport into brush-border membrane vesicles from rat kidney. Am J Physiol 258:F840–F847

    Google Scholar 

  • Baur B, Baumgartner R (2000) Biotin and biocytin uptake into cultured primary calf brain microvessel endothelial cells of the blood-brain barrier. Brain Res 858:348–355

    PubMed  CAS  Google Scholar 

  • Baur B, Wick H, Baumgartner ER (1990) Na-dependent biotin transport into brush-border membrane vesicles from rat kidney. Am J Physiol 258:F840–F847

    PubMed  CAS  Google Scholar 

  • Beinlich CJ, Naumovitz RD, Song WO et al. (1990) Myocardial metabolism of pantothenic acid in chronically diabetic rats. J Mol Cell Cardiol 22:323–332

    PubMed  CAS  Google Scholar 

  • Bonjour JP (1980) Vitamins and alcoholism. Int J Vitam Nutr Res 50:425–440

    PubMed  CAS  Google Scholar 

  • Brown BB, Rosenberg JH (1987) Biotin absorption by distal rat intestine. J Nutr 117:2121–2126

    Google Scholar 

  • Chatterjee NS, Kumar CK, Ortiz A et al (1999) Molecular mechanism of the intestinal biotin transport process. Am J Physiol 277:C605–C613

    PubMed  CAS  Google Scholar 

  • Chatterjee NS, Rubin SA, Said HM (2001) Molecular characterization of the 5′ regulatory region of rat sodium-dependent multivitamin transporter gene. Am J Physiol 280:C548–C555

    CAS  Google Scholar 

  • Chauhan J, Dakshinamurti K (1988) Role of human serum biotinidase as biotin-binding protein. Biochem J 256:265–270

    PubMed  CAS  Google Scholar 

  • Chauhan J, Dakshinamurti K (1991) Transcriptional regulation of the glucokinase gene by biotin in starved rats. J Biol Chem 266:10035–10038

    PubMed  CAS  Google Scholar 

  • Collins JC, Paietta E, Green R et al (1988) Biotin-dependent expression of the asialoglycoprotein receptor in HepG2. J Biol Chem 263:11280–11283

    PubMed  CAS  Google Scholar 

  • Combs GF (ed) (1992) Biotin. The vitamins: fundamental aspects in nutrition and health. Academic, San Diego, CA, pp 329–343

    Google Scholar 

  • Cooper WA, Brown SO (1958) Tissue abnormalities in newborn rats from biotin-deficient mothers. Texas J Sci 10:60–68

    Google Scholar 

  • Crisp S, Camporeale G, White BR et al (2004) Biotin supply affects rates of cell proliferation, biotinylation of carboxylases and histones and expression of the gene encoding the sodium-dependent multivitamin transporter in Jar choriocarcinoma cells. Eur J Nutr 43:23–31

    PubMed  CAS  Google Scholar 

  • Dakshinamurti K, Cheah-Tan C (1968) Biotin-mediated synthesis of hepatic glucokinase in the rat. Ach Biochem Biophys 127:17–21

    CAS  Google Scholar 

  • Dakshinamurti K, Chauhan J (1988) Regulation of biotin enzymes. Annu Rev Nutr 8:211–233

    PubMed  CAS  Google Scholar 

  • Dakshinamurti K, Chalifour LE, Bhullar RJ (1985) Requirement for biotin and the function of biotin in cells in culture. In: Dakshinamurti K, Bhagavan HN (eds) Biotin. Academy of Science, New York, pp 38–55

    Google Scholar 

  • Danford DE, Munro HN (1982) The liver in relation to the B-vitamins. In: Arias J, Pepper H, Schachter D, Shafritz DA (eds) The liver: biology and pathobiology. Raven Press, New York, pp 367–384

    Google Scholar 

  • Dashinamurti K, Li W (1994) Transcriptional regulation of liver phosphoenolpyruvate carboxykinase by biotin in diabetic rats. Mol Cell Biochem 132:127–132

    Google Scholar 

  • De La Vega L, Stockert RJ (2000) Regulation of the insulin and asialoglycoprotein receptors via cGMP-dependent protein kinase. Am J Physiol 279:C2037–C2042

    Google Scholar 

  • Dey S, Subramanian VS, Chatterjee NS (2002) Characterization of the 5′ regulatory region of the human sodium-dependent multivitamin transporter, hSMVT. Biochim Biophys Acta 1574:187–192

    PubMed  CAS  Google Scholar 

  • Fennelly J, Frank O, Baker H et al (1969) Peripheral neuropathy of the alcoholics: I Aetiological role of aneurin and other B-complex vitamins. Br Med J 2:1290–1292

    Google Scholar 

  • Forbes GM, Forbes A (1997) Micronutrient status in patients receiving home parenteral nutrition. Nutrition 13:941–944

    PubMed  CAS  Google Scholar 

  • Freytag SO, Utter MF (1983) Regulation of the synthesis and degradation of pyruvate carboxylases in 3T3-L1 cells. J Biol Chem 258:6307–6312

    PubMed  CAS  Google Scholar 

  • Grassl SM (1992) Human placental brush-border membrane Na+-pantothenate cotransport. J Biol Chem 267:22902–22906

    PubMed  CAS  Google Scholar 

  • Gravel R, Narang M (2005) Molecular genetics of biotin metabolism: old vitamin, new science. J Nutr Biochem 16:428–431

    PubMed  CAS  Google Scholar 

  • Green NM (1990) Avidin and streptavidin. In: Wilchek M, Bayer E (eds) Methods in enzymology, vol 186. Academic, New York, pp 51–67

    Google Scholar 

  • Harding MG, Crooks H (1961) Lesser known vitamins in foods. J Am Diet Assoc 38:204

    Google Scholar 

  • Heard GS, Grier RE, Weiner D et al (1985) Biotinidase-a possible mechanism for the recycling of biotin. Ann NY Acad Sci 447:400 (abst)

    Google Scholar 

  • Hu ZQ, Henderson GI, Mock DM et al (1994) Biotin uptake by basolateral membrane of human placenta: normal characteristics and role ethanol. Proc Soc Biol Exp Med 206:404–408

    CAS  Google Scholar 

  • Karl PI, Fisher SE (1992) Biotin transport in microvillous membrane vesicles, cultured trophblasts and the isolated perfused cotyledon of the human placenta. Am J Physiol 262:C302–C308

    PubMed  CAS  Google Scholar 

  • Komro DM, McCormick D (1985) Biotin uptake by isolated rat liver hepatocytes. Ann NY Acad Sci 447:350–358

    Google Scholar 

  • Krause KH, Berlit P, Bonjour JP (1982a) Impaired biotin status in anticonvulsant therapy. Ann Neurol 12:485–486

    PubMed  CAS  Google Scholar 

  • Krause KH, Berlit P, Bonjour JP (1982b) Vitamin status in patients on chronic anticonvulsant therapy. Int J Vitam Nutr Res 52:375–385

    PubMed  CAS  Google Scholar 

  • Krause KH, Bonjour J, Berlit P et al (1985) Biotin status of epileptics. Ann New York Acad Sci 447:297–313

    CAS  Google Scholar 

  • Kumar M, Axelrod AE (1978) Cellular antibody synthesis in thiamin, riboflavin, biotin and folic acid-deficient rats. Proc Soc Exp Biol Med 157:421–423

    PubMed  CAS  Google Scholar 

  • Kung JT, MacKenzie CG, Talmage DW (1979) The requirement for biotin and fatty acids in the cytotoxic T-cell response. Cell Immmunol 48:100–110

    CAS  Google Scholar 

  • Lampen JO, Bahler GP, Peterson WH (1942) The occurrence of free and bound biotin. J Nutr 23:11–18

    CAS  Google Scholar 

  • Mardach R, Zempleni J, Wolf B et al. (2002) Biotin dependency due to a defect in biotin transport. J Clin Invest 109:1617–1623

    PubMed  CAS  Google Scholar 

  • Mathey KC, Griffin JB, Zempleni J (2002) Biotin supply affects expression of biotin transporters, biotinylation of carboxylases, and metabolism of interleukin-2 in Jurkat cells. J Nutr 132:2316–2322

    Google Scholar 

  • McCormick DB (1975) Biotin. Nutr Rev 33:97

    PubMed  CAS  Google Scholar 

  • McCormick DB, Wright LD (1971) The metabolism of biotin and analogues. In: Florkin M, Stolz EH (eds) Comprehensive biochemistry: metabolism of vitamins and trace elements. Elsevier, Amsterdam, pp. 81–99

    Google Scholar 

  • McMahon RJ (2002) Biotin in metabolism and molecular biology. Annu Rev Nutr 22:221–239

    PubMed  CAS  Google Scholar 

  • Messaritakis J, Katlamis C, Karabula C et al. (1975) Generalized seborrhoeic dermatitis: clinical and therapeutic data of 25 patients. Arch Dis Child 50:871–874

    PubMed  CAS  Google Scholar 

  • Mock D (2004) Biotin: physiology, dietary sources and requirements. In: Caballero B, Allen L, Prentice A (eds) Encyclopedia of human nutrition, 2nd edn. Academic, London

    Google Scholar 

  • Mock DM, Stadler DD, Stratton SL et al (1997) Biotin status assessed longitudinally in pregnant women. J Nutr 127:710–716

    PubMed  CAS  Google Scholar 

  • Mock DM, Mock NI, Lombard KA et al (1998) Distributions in biotin metabolism in children undergoing long-term anticonvulsant therapy. J Pediatr Gastroenterol Nutr 26:245–250

    PubMed  CAS  Google Scholar 

  • Mock DM, Quirk JG, Mock NI (2002) Marginal biotin deficiency during normal pregnancy. Am J Clin Nutr 75:295–299

    PubMed  CAS  Google Scholar 

  • Mock DM, Mock NI, Stewart CW (2003) Marginal biotin deficiency is teratogenic in ICR mice. J Nutr 133:2519–2525

    PubMed  CAS  Google Scholar 

  • Nabokina SM, Subramanian VS, Said HM (2003) Comparative analysis of ontogenic changes in renal and intestinal biotin transport in the rat. Am J Physiol 284:F737–F742

    CAS  Google Scholar 

  • Narang MA, Dumas R, Ayer LM et al. (2004) Reduced histone biotinylation in multiple carboxylase deficiency patients: a nuclear role for holocarboxylase synthetase. Hum Mol Genet 13:15–23

    PubMed  CAS  Google Scholar 

  • National Research Council (1980) Recommended dietary allowances. National Academy of Sciences, Washington, DC

    Google Scholar 

  • Nisenson A (1957) Seborrhoeic dermatitis of infants and Leiner’s disease: a biotin deficiency. J Pediatr 51:537–548

    PubMed  CAS  Google Scholar 

  • Okabe N, Urabe K, Fujita K et al (1988) Biotin effects in Crohn’s disease. Dig Dis Sci 33:1495–1496

    PubMed  CAS  Google Scholar 

  • Ozand PT, Gascon GG, Al Essa M et al (1998) Biotin-responsive basal ganglia disease: a novel entity. Brain 121:1267–1279

    PubMed  Google Scholar 

  • Paul PK (1978) Effects of nutrient toxicities in animals and man. CRC Press, Boca Raton, FL

    Google Scholar 

  • Peteres DM, Griffin JB, Stanley JS et al (2002) Exposure to UV light causes increased biotinylation of histones in Jurkat cells. Am J Physiol 283:C878–C884

    Google Scholar 

  • Petrelli F, Moretti P, Campanati G (1981) Studies on the relationships between biotin and the behavior of B and T lymphocytes in the guinea pig. Experientia 37:1204–1206

    PubMed  CAS  Google Scholar 

  • Podevin RA, Barbarat B (1986) Biotin uptake mechanism in brush-border and basolateral membrane vesicles isolated from rabbit leading cortex. Biochim Biophys Acta 856:471–481

    PubMed  CAS  Google Scholar 

  • Prasad PD, Ganapathy V (2000) Structure and function of mammalian sodium-dependent multivitamin transporter. Curr Opin Clin Nutr Metab Care 8:263–266

    Google Scholar 

  • Prasad PD, Wang H, Kekuda R et al (1998) Cloning and functional expression of a cDNA encoding a mammalian sodium-dependent vitamin transporter mediating the uptake of pantothenate, biotin, and lipoate. J Biol Chem 273:7501–7506

    PubMed  CAS  Google Scholar 

  • Pruzansky J, Axelrod AE (1955) Antibody production to diphtheria toxoid in vitamin deficiency states. Proc Soc Exp Biol Med 89:323–325

    PubMed  CAS  Google Scholar 

  • Rabin BS (1983) Inhibition of experimentally induced autoimmunity in rats by biotin deficiency. J Nutr 113:2316–2322

    PubMed  CAS  Google Scholar 

  • Reidling J, Said HM (2006) In Vitro and in vivo characterization of the minimal promoter of the human intestinal biotin transporter HSMVT: adaptive regulation of the biotin uptake process. Gastroenterol 130:A68 (abst)

    Google Scholar 

  • Rodriguez-Melendez R, Zempleni J (2003) Regulation of gene expression by biotin. J Nutr Biochem 14:680–690

    PubMed  CAS  Google Scholar 

  • Rodriguez-Melendez R, Cano S, Mendez ST et al. (2001) Biotin regulates the genetic expression of holocarboxylase synthetase and mitochondrial carboxylases in rats. J Nutr 131:1909–1913

    PubMed  CAS  Google Scholar 

  • Said HM (1991) Movement of biotin across the rat intestinal basolateral membrane: studies with membrane vesicles. Biochem J 279:671–674

    PubMed  CAS  Google Scholar 

  • Said HM (1999) Cellular uptake of biotin: mechanisms and regulation. J Nutr 129:490S–493S

    PubMed  CAS  Google Scholar 

  • Said HM (2004) Recent advances in carrier-mediated absorption of water-soluble vitamins. Ann Review Physiol 66:419–446

    CAS  Google Scholar 

  • Said HM, Derweesh I (1991) A carrier-mediated mechanism for biotin transport in rabbit intestine: studies with brush border membrane vesicles. Am J Physiol 261:R94–R97

    PubMed  CAS  Google Scholar 

  • Said HM, Redha RN (1987) A carrier-mediated transport system for biotin in rat intestine in vitro. Am J Physiol 252:G52–G55

    PubMed  CAS  Google Scholar 

  • Said HM, Redha R (1988a) Biotin transport in basolateral membrane vesicles of human intestine. Gastroenterology 94:1157–1163

    PubMed  CAS  Google Scholar 

  • Said HM, Redha R (1988b) Biotin transport in brush border membrane vesicles of rat small intestine. Biochim Biophys Acta 945:195–201

    PubMed  CAS  Google Scholar 

  • Said HM, Redha R (1988c) Ontogenesis of the intestinal transport of biotin in the rat. Gastroenterology 94:68–72

    PubMed  CAS  Google Scholar 

  • Said HM, Redha R, Nylander W (1987) A carrier-mediated, Na+ gradient-dependent transport system for biotin in human intestinal brush border membrane vesicles. Am J Physiol 253:G631–G636

    PubMed  CAS  Google Scholar 

  • Said HM, Nylander W, Redha R (1988) Biotin transport in human intestine: site of maximum transport and effect of pH. Gastroenterology 95:1312–1317

    PubMed  CAS  Google Scholar 

  • Said HM, Mock DM, Collins J (1989a) Regulation of intestinal biotin transport in the rat: effect of biotin deficiency and supplementation. Am J Physiol 256:G306–G311

    PubMed  CAS  Google Scholar 

  • Said HM, Redha R, Nylander W (1989b) Biotin transport in the human intestine: inhibition by anticonvulsant drugs. Am J Clin Nutr 49:127–131

    PubMed  CAS  Google Scholar 

  • Said HM, Korchid S, Horne DW et al (1990a) Transport of biotin in basolateral membrane vesicles of rat liver. Am J Physiol 259:G865–G872

    PubMed  CAS  Google Scholar 

  • Said HM, Sharifian A, Bagherzadeh A et al. (1990b) Chronic ethanol feeding and acute ethanol exposure in vitro: effect on intestinal transport of biotin. Am J Clin Nutr 52:1083–1086

    PubMed  CAS  Google Scholar 

  • Said HM, Hoefs J, Mohammadkhani R et al (1992a) Biotin transport in human liver basolateral membrane vesicles: a carrier-mediated, Na+ gradient-dependent process. Gastroenterology 102:2120–2125

    PubMed  CAS  Google Scholar 

  • Said HM, Mc Alister-Henn L, Mohammmadkhani R et al (1992b) Uptake of biotin by isolated rat liver mitochondria. Am J Physiol 263:G81–G86

    PubMed  CAS  Google Scholar 

  • Said HM, Thuy LP, Sweetman L et al (1993) Transport of the biotin dietary derivative biocytin (N-biotinyl-L-lysine) in rat small intestine. Gastroenterology 104:75–79

    PubMed  CAS  Google Scholar 

  • Said HM, Ma TY, Kamanna VS (1994) Uptake of biotin by human hepatoma cell line, Hep G2: a carrier-mediated process similar to that of normal liver. J Cell Physiol 161:483–439

    Google Scholar 

  • Said HM, Ortiz A, McCloud E et al. (1998) Biotin uptake by the human colonic epithelial cells NCM460: a carrier-mediated process shared with pantothenic acid. Am J Physiol 44:C1365–C1371

    Google Scholar 

  • Said HM, Rose R, Seetharam B (2000) Intestinal absorption of water-soluble vitamins: cellular and molecular aspects. In: Barrett KE, Donowitz M (eds) Gastrointestinal transport: molecular physiology. Academic, San Diego, pp. 35–76

    Google Scholar 

  • Said HM, Seetheram P (2006) Intestinal absorption pf water-soluble vitamins. In: Johnson L (ed) Physiology of the G.I. tract. San Diego, Elsevier, pp. 1791–1826

    Google Scholar 

  • Scheerger SB, Zempleni J (2003) Expression of oncogenes depends on biotin in human small cell lung cancer cells NCI-H69. Int J Vitam Nutr Res 73:461–467

    PubMed  CAS  Google Scholar 

  • Schenker S, Hu Z, Johnson RF et al. (1993) Human placental Biotin transport: normal characteristics and effect of ethanol. Alcohol Clin Exp Res 17:566–575

    PubMed  CAS  Google Scholar 

  • Solorzano-Vargas RS, Pacheco-Alvarez D, Leon-Del-Rio A (2002) Holocarboxylase synthetase is an onligate participant in biotin-mediated regulation of its own expression and of biotin-dependent carboxylases mRNA levels in human cells. Proc Natl Acad Sci USA 99:5325–5330

    PubMed  CAS  Google Scholar 

  • Sorrell MF, Frank O, Thomson AD et al. (1971) Absorption of vitamins from the large intestine. Nutr Res Int 3:143–148

    CAS  Google Scholar 

  • Spector R, Mock D (1987) Biotin transport through the blood brain barrier. J Neurochem 48:400–404

    PubMed  CAS  Google Scholar 

  • Stanley JS, Grifin JB, Zempleni J (2002) Biotinylation of histones in human cells. Effects of cell proliferation. Eur J Biochem 268:5424–5429

    Google Scholar 

  • Stanley C, Hymes J, Wolf B (2004) Identification of alternatively spliced human biotinidase mRNAs and putative localization of endogenous biotinidase. Mol Genet Metab 81:300–312

    PubMed  CAS  Google Scholar 

  • Streit WR, Entcheva P (2003) Biotin in microbes, the genes involved in its biosynthesis, its biochemical role and perspectives for biotechnological production. Appl Microbiol Biotechnol 61: 21–31

    PubMed  CAS  Google Scholar 

  • Subramanian V, Marchand JS, Said HM (2006) Biotin-responsive basal ganglia disease-linked mutations inhibit thiamine transporter-2 (hTHTR-2): biotin is not a substrate for hTHTR-2. Am J Physiol Cell Physiol 291:C851–C859

    Google Scholar 

  • Sweetman L, Nyhan WL (1986) Inheritable biotin-treatable disorders and associated phenomena. Ann Rev Nutr 6:314–343

    Google Scholar 

  • Urabe K, Fujita K, Okabe N et al. (1986) Decreased plasma biotin levels in patients with Crohn’s disease. Jpn J Gastroenterol 83:307–309

    Google Scholar 

  • Vlasova TI, Stratton SL, Wells AM et al (2005) Biotin deficiency reduces expression of SLC19A3, a potential biotin transporter, in leukocytes from human blood. J Nutr 135:42–47

    PubMed  CAS  Google Scholar 

  • Wang H, Huang W, Fei YJ (1999) Human placental Na+-dependent multivitamin transporter. J Biol Chem 274:14875–14883

    PubMed  CAS  Google Scholar 

  • Watanabe T (1983) Teratogenic effect of biotin deficiency in mice. J Nutr 113:574–581

    PubMed  CAS  Google Scholar 

  • Watanabe T (1996) Morphological and biochemical effects of excessive amounts of biotin on the embryonic development in mice. Experientia 52:149–157

    PubMed  CAS  Google Scholar 

  • Wiedmann S, Eudy JD, Zempleni J (2003) Biotin supplementation causes increased expression of genes encoding interferon-γ, interleukin-1β, and 3-methylcrotonyl-CoA carboxylase, and causes decreased expression of the gene encoding interleukin-4 in human peripheral blood mononuclear cells. J Nutr 133:716–719

    PubMed  CAS  Google Scholar 

  • Wolf B (2001) Disorders of biotin metabolism. In: Scriver CR, Beaudet AL, Aly WS, Valle D, Childs B, Kinzler KW, Vogelstein B (eds) The metabolic and molecular bases of inherited disease. McGraw-Hill Medical Publishing Division, New York, pp 3935–3962

    Google Scholar 

  • Wolf B, Heard GS, Mc Voy JR et al. (1984) Biotinidase deficiency: the possible role of biotinidase in the processing of dietary protein-bound biotin. J Inherited Metab Dis 7:121–122

    PubMed  CAS  Google Scholar 

  • Wrong OM., Edmonds CJ, Chadwich VS (1981) Vitamins. In: The large intestine: its role in mammalian nutrition and homeostasis. Wiley, New York, pp 157–166

    Google Scholar 

  • Zempleni, J, Mock, DM (2000) Marginal biotin deficiency is teratogenic. Proc Soc Exp Biol Med 223:14–21

    PubMed  CAS  Google Scholar 

  • Zeng W, Al-Yamani E, Acierno J et al. (2005) Biotin-responsive basal ganglia disease maps to 2936.3 and is due to mutations in SLC19SA3. Am J Hum Genet 77:16–26

    PubMed  CAS  Google Scholar 

Download references

Acknowledgment

We appreciate the kind support of the Department of Veterans Affairs and the National Institutes of Health (grants # DK 56061 and DK58057).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamid M. Said .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Said, H.M. (2012). Biotin: Biochemical, Physiological and Clinical Aspects. In: Stanger, O. (eds) Water Soluble Vitamins. Subcellular Biochemistry, vol 56. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2199-9_1

Download citation

Publish with us

Policies and ethics