Skip to main content

Biomolecule/Nanomaterial Hybrid Systems for Nanobiotechnology

  • Chapter
  • First Online:
Nano-Biotechnology for Biomedical and Diagnostic Research

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 733))

Abstract

The integration of biomolecules with metallic or semiconductor nanoparticles or carbon nanotubes yields new hybrid nanostructures of unique features that combine the properties of the biomolecules and of the nano-elements. These unique features of the hybrid biomolecule/nanoparticle systems provide the basis for the rapid development of the area of nanobiotechnology. Recent advances in the implementation of hybrid materials consisting of biomolecules and metallic nanoparticles or semiconductor quantum dots will be discussed. The following topics will be exemplified: (i) The electrical wiring of redox enzymes with electrodes by means of metallic nanoparticles or carbon nanotubes, and the application of the modified electrodes as amperometric biosensors or for the construction of biofuel cells. (ii) The biocatalytic growth of metallic nanoparticles as a means to construct optical or electrical sensors. (iii) The functionalization of semiconductor quantum dots with biomolecules and the application of the hybrid nanostructures for developing different optical sensors, including intracellular sensor systems. (iv) The use of biomolecule-metallic nanoparticle nanostructures as templates for growing metallic nanowires, and the construction of fuel-driven nano-transporters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Alivisatos, A. P. (1996). Semiconductor clusters, nanocrystals, and quantum dots. Science, 271, 933–937.

    Article  CAS  Google Scholar 

  • Alivisatos, A. P. (2003). Room-temperature single-nucleotide polymorphism and multiallele DNA detection using ­fluorescent nanocrystals and microarrays. Analytical Chemistry, 75, 4766–4772.

    Article  PubMed  Google Scholar 

  • Baron, R., Zayats, M., & Willner, I. (2005). Dopamine-, L-DOPA-, adrenaline- and noradrenaline-induced growth of au-nanoparticles: Assays for the detection of neurotransmitters and of tyrosinase activity. Analytical Chemistry, 77, 1566–1571.

    Article  PubMed  CAS  Google Scholar 

  • Bartlett, P. N., Tebbutt, P., & Whitaker, R. C. (1991). Kinetic aspects of the use of modified electrodes and mediators in bioelectrochemistry. Progress in Reaction Kinetics, 16, 55–155.

    CAS  Google Scholar 

  • Barton, S. C., Gallaway, J., & Atanassov, P. (2004). Enzymatic biofuel cells for implantable and microscale devices. Chemical Reviews, 104, 4867–4886.

    Article  PubMed  CAS  Google Scholar 

  • Basnar, B., & Willner, I. (2009). Dip-pen-nanolithographic patterning of metallic, semiconductor, and metal oxide nanostructures on surfaces. Small, 5, 28–44.

    Article  PubMed  CAS  Google Scholar 

  • Basnar, B., Weizmann, Y., Cheglakov, Z., & Willner, I. (2006). Synthesis of nanowires using dip-pen nanolithography and biocatalytic inks. Advanced Materials, 18, 713–718.

    Article  CAS  Google Scholar 

  • Freeman, R., Gill, R., Shweky, I., Kotler, M., Banin, U., & Willner, I. (2009). Biosensing and probing of intracellular metabolic pathways by NADH-sensitive quantum dots. Angewandte Chemie (International ed. in English), 48, 309–313.

    Article  CAS  Google Scholar 

  • Freeman, R., Finder, T., Gill, R., & Willner, I. (2010). Probing protein kinase (CK2) and alkaline phosphatase with CdSe/ZnS quantum dots. Nano Letters, 10, 2192–2196.

    Article  PubMed  CAS  Google Scholar 

  • Gerion, D., Chen, F. Q., Kannan, B., Fu, A. H., Parak, W. J., Chen, D. J., Majumdar, A., Willard, D. M., Carillo, L. L., Jung, J., & Van Orden, A. (2001). CdSe-ZnS quantum dots as resonance energy transfer donors in a model protein-protein binding assay. Nano Letters, 1, 469–474.

    Article  Google Scholar 

  • Gill, R., Freeman, R., Xu, J. P., Willner, I., Winograd, S., Shweky, I., & Banin, U. (2006). Probing biocatalytic transformations with CdSe-ZnS QDs. Journal of the American Chemical Society, 128, 15376–15377.

    Article  PubMed  CAS  Google Scholar 

  • Gill, R., Zayats, M., & Willner, I. (2008). Semiconductor quantum dots for bioanalysis. Angewandte Chemie (International ed. in English), 47, 7602–7625.

    Article  CAS  Google Scholar 

  • Ginger, D. S., Zhang, H., & Mirkin, C. A. (2004). The evolution of dip-pen nanolithography. Angewandte Chemie (International ed. in English), 43, 30–45.

    Article  Google Scholar 

  • Goldman, E. R., Clapp, A. R., Anderson, G. P., Uyeda, H. T., Mauro, J. M., Medintz, I. L., & Mattoussi, H. (2004). Multiplexed toxin analysis using four colors of quantum dot fluororeagents. Analytical Chemistry, 76, 684–688.

    Article  PubMed  CAS  Google Scholar 

  • Heller, A. (1992). Electrical connection of enzyme redox centers to electrodes. The Journal of Physical Chemistry, 96, 3579–3587.

    Article  CAS  Google Scholar 

  • Heller, A. (2004). Miniature biofuel cells. Physical Chemistry Chemical Physics: PCCP, 6, 209–216.

    Article  CAS  Google Scholar 

  • Katz, E., & Willner, I. (2004). Integrated nanoparticle–biomolecule hybrid systems: Synthesis, properties, and applications. Angewandte Chemie (International ed. in English), 43, 6042–6108.

    Article  CAS  Google Scholar 

  • Kelly, K. L., Coronado, E., Zhao, L. L., & Schatz, G. C. (2003). The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment. The Journal of Physical Chemistry. B, 107, 668–67.

    Article  CAS  Google Scholar 

  • Lin, C., Liu, Y., Rinker, S., & Yan, H. (2006). DNA tile based self-assembly: Building complex nanoarchitectures. ChemPhysChem, 7, 1641–1647.

    Article  PubMed  CAS  Google Scholar 

  • Maidan, R., & Heller, A. (1992). Elimination of electrooxidizable interferant-produced currents in amperometric biosensors. Analytical Chemistry, 64, 2889–2896.

    Article  PubMed  CAS  Google Scholar 

  • Marcus, R. A., & Sutin, N. (1985). Electron transfers in chemistry and biology. Biochimica et Biophysica Acta, 811, 265–322.

    CAS  Google Scholar 

  • Mattoussi, H., Mauro, J. M., Goldman, E. R., Anderson, G. P., Sundar, V. C., Mikulec, F. V., & Bawendi, M. G. (2000). Self-assembly of CdSe-ZnS quantum dot bioconjugates using an engineered recombinant protein. Journal of the American Chemical Society, 122, 12142–12150.

    Article  CAS  Google Scholar 

  • Medintz, I. L., Uyeda, H. T., Goldman, E. R., & Mattoussi, H. (2005). Quantum dot bioconjugates for imaging, labelling and sensing. Nature Materials, 4, 435–446.

    Article  PubMed  CAS  Google Scholar 

  • Medintz, I. L., Clapp, A. R., Brunel, F. M., Tiefenbrunn, T., Uyeda, H. T., Chang, E. L., Deschamps, J. R., Dawson, P. E., & Mattoussi, H. (2006). Proteolytic activity monitored by fluorescence resonance energy transfer through quantum-dot–peptide conjugates. Nature Materials, 5, 581–589.

    Article  PubMed  CAS  Google Scholar 

  • Murphy, L. (2006). Biosensors and bioelectrochemistry. Current Opinion in Chemical Biology, 10, 177–184.

    Article  PubMed  CAS  Google Scholar 

  • Niemeyer, C. M. (2000). Self-assembled nanostructures based on DNA: Towards the development of ­nanobiotechnology. Current Opinion in Chemical Biology, 4, 609–661.

    Article  PubMed  CAS  Google Scholar 

  • Niemeyer, C. M. (2001). Nanoparticles, proteins, and nucleic acids: Biotechnology meets materials science. Angewandte Chemie (International ed. in English), 40, 4128–4158.

    Article  CAS  Google Scholar 

  • Nirmal, M., & Brus, L. (1999). Luminescence photophysics in semiconductor nanocrystals. Accounts of Chemical Research, 32, 407–414.

    Article  CAS  Google Scholar 

  • Park, S.-J., Taton, T. A., & Mirkin, C. A. (2002). Array-based electrical detection of DNA with nanoparticle probes. Science, 295, 1503–1506.

    Article  PubMed  CAS  Google Scholar 

  • Patolsky, F., Weizmann, Y., & Willner, I. (2004a). Designing actin-based metallic nanowires and bio-nanotransporters. Nature Materials, 3, 692–695.

    Article  PubMed  CAS  Google Scholar 

  • Patolsky, F., Weizmann, Y., & Willner, I. (2004b). Long-range electrical contacting of redox-enzymes by single-walled carbon nanotube connectors. Angewandte Chemie (International ed. in English), 43, 2113–2117.

    Article  CAS  Google Scholar 

  • Rajagopalan, R., Aoki, A., & Heller, A. (1996). Effect of quaternization of the glucose oxidase “wiring” redox polymer on the maximum current densities of glucose electrodes. The Journal of Physical Chemistry, 100, 3719–3729.

    Article  CAS  Google Scholar 

  • Salaita, K., Wang, Y., Vega, R. A., & Mirkin, C. A. (2007). Applications of dip-pen nanolithography. Nature Nanotechnology, 2, 145–155.

    Article  PubMed  CAS  Google Scholar 

  • Schuhmann, W., Ohara, T. J., Schmidt, H.-L., & Heller, A. (1991). Electron transfer between glucose oxidase and electrodes via redox mediators bound with flexible chains to the enzyme surface. Journal of the American Chemical Society, 113, 1394–1397.

    Article  CAS  Google Scholar 

  • Shipway, A. N., Katz, E., & Willner, I. (2000). Nanoparticle arrays on surfaces for electronic, optical and sensoric applications. ChemPhysChem, 1, 1–208.

    Article  Google Scholar 

  • Simmel, F. C. (2008). Three-dimensional nanoconstruction with DNA. Angewandte Chemie (International ed. in English), 47, 5884–5887.

    Article  CAS  Google Scholar 

  • Wang, J. (2008). Electrochemical glucose biosensors. Chemical Reviews, 108, 814–882.

    Article  PubMed  CAS  Google Scholar 

  • Willner, I., & Willner, B. (2001). Biomaterials integrated with electronic elements: En route to bioelectronics. Trends in Biotechnology, 19, 222–230.

    Article  PubMed  CAS  Google Scholar 

  • Willner, I., Lapidot, N., Riklin, A., Kasher, R., Zahavy, E., & Katz, E. (1994). Electron transfer communication in glutathione reductase assemblies: Electrocatalytic, photocatalytic and catalytic systems for the reduction of oxidized glutathione. Journal of the American Chemical Society, 116, 1428–1441.

    Article  CAS  Google Scholar 

  • Willner, I., Heleg-Shabtai, V., Blonder, R., Katz, E., Tao, G., Bückmann, A. F., & Heller, A. (1996). Electrical wiring of glucose oxidase by reconstitution of FAD-modified monolayers assembled onto Au-electrodes. Journal of the American Chemical Society, 118, 10321–10322.

    Article  CAS  Google Scholar 

  • Willner, B., Katz, E., & Willner, I. (2006a). Electrical contacting of redox proteins by nanotechnological means. Current Opinion in Biotechnology, 17, 589–596.

    Article  PubMed  CAS  Google Scholar 

  • Willner, I., Baron, R., & Willner, B. (2006b). Growing metal nanoparticles by enzymes. Advanced Materials, 18, 1109–1120.

    Article  CAS  Google Scholar 

  • Willner, I., Yan, Y.-M., Willner, B., & Tel-Vered, R. (2009). Integrated enzyme-based biofuel cells–A review. Fuel Cells, 9, 7–24.

    Article  CAS  Google Scholar 

  • Wilner, O. I., Shimron, S., Weizmann, Y., Wang, Z.-G., & Willner, I. (2009). Self-assembly of enzymes on DNA scaffolds: En route to biocatalytic cascades and the synthesis of metallic nanowires. Nano Letters, 9, 2040–2043.

    Article  PubMed  CAS  Google Scholar 

  • Wu, C.-C., Reinhoudt, D. N., Otto, C., Subramaniam, V., & Velders, A. H. (2011). Patterning: Strategies for patterning biomolecules with dip-pen nanolithography. Small, 7, 989–1002.

    Article  PubMed  CAS  Google Scholar 

  • Xiao, Y., Patolsky, F., Katz, E., Hainfeld, J. F., & Willner, I. (2003). “Plugging into enzymes”: Nanowiring of redox enzymes by a gold nanoparticle. Science, 299, 1877–1881.

    Article  PubMed  CAS  Google Scholar 

  • Xiao, Y., Pavlov, V., Levine, S., Niazov, T., Markovitch, G., & Willner, I. (2004). Catalytic growth of au-nanoparticles by NAD(P)H cofactors: Optical sensors for NAD(P)+−dependent biocatalyzed transformations. Angewandte Chemie (International ed. in English), 43, 4519–4522.

    Article  CAS  Google Scholar 

  • Zayats, M., Katz, E., & Willner, I. (2002). Electrical contacting of flavoenzymes and NAD(P)+−dependent enzymes by reconstitution and affinity interactions on phenylboronic acid monolayers associated with au-electrodes. Journal of the American Chemical Society, 124, 14724–14735.

    Article  PubMed  CAS  Google Scholar 

  • Zayats, M., Baron, R., Popov, I., & Willner, I. (2005). Biocatalytic growth of Au nanoparticles: From mechanistic aspects to biosensors design. Nano Letters, 5, 21–25.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The support of the Israel Science Foundation is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Itamar Willner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Tel-Vered, R., Yehezkeli, O., Willner, I. (2012). Biomolecule/Nanomaterial Hybrid Systems for Nanobiotechnology. In: Zahavy, E., Ordentlich, A., Yitzhaki, S., Shafferman, A. (eds) Nano-Biotechnology for Biomedical and Diagnostic Research. Advances in Experimental Medicine and Biology, vol 733. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2555-3_1

Download citation

Publish with us

Policies and ethics