Skip to main content

Promiscuous Organellar DNA

  • Chapter
  • First Online:
Genomics of Chloroplasts and Mitochondria

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 35))

Summary

Endosymbiotic transfer of DNA from the cytoplasmic organelles (mitochondria and chloroplasts) to the nucleus has been a major factor driving the origin of new nuclear genes, a process central to eukaryote evolution. Typically, transfer of organelle DNA to the nucleus is quickly followed by decay, deletion and rearrangement. However, in rare instances these new sequences lead to functional relocation of organelle genes to the nucleus or the generation of genes with novel function. Similar transfer of chloroplast DNA has also added to the complexity of plant mitochondrial genomes. Significantly, these processes are ongoing, making promiscuous organellar DNA an important contributor to the continued evolution of plant genomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CaMV:

Cauliflower mosaic virus;

DSB:

Double strand break;

GUS:

β-glucuronidase;

mtpt :

– Mitochondrial integrant of plastid DNA;

MYA:

Million years ago;

NHEJ:

Non-homologous end joining;

norg – :

Nuclear integrant of organellar DNA;

numt – :

Nuclear integrant of mitochondrial DNA;

nupt – :

Nuclear integrant of plastid DNA;

TAIL-PCR:

Thermal asymmetric interlaced PCR;

T-DNA:

Transfer DNA;

TOC/TIC:

Translocase at the outer/inner envelope membrane of chloroplasts;

TOM/TIM:

Translocase at the outer/inner envelope membrane of mitochondria

References

  • Adams KL, Daley DO, Qiu YL, Whelan J, Palmer JD (2000) Repeated, recent and diverse transfers of a mitochondrial gene to the nucleus in flowering plants. Nature 408:354–357

    Article  PubMed  CAS  Google Scholar 

  • Adams KL, Daley DO, Whelan J, Palmer JD, Mollier P, Hoffmann B, Debast C, Small I (2002) Genes for two mitochondrial ribosomal proteins in flowering plants are derived from their chloroplast or cytosolic counterparts. Plant Cell 14:931–943

    Article  PubMed  CAS  Google Scholar 

  • Allen JF (2003) The function of genomes in bioenergetic organelles. Philos Trans R Soc Lond B Biol Sci 358:19–37

    Article  PubMed  CAS  Google Scholar 

  • Allen JF, Raven JA (1996) Free-radical-induced mutation vs redox regulation: costs and benefits of genes in organelles. J Mol Evol 42:482–492

    Article  PubMed  CAS  Google Scholar 

  • Allen JO, Fauron CM, Minx P, Roark L, Oddiraju S, Lin GN, Meyer L, Sun H, Kim K, Wang CY et al (2007) Comparisons among two fertile and three male-sterile mitochondrial genomes of maize. Genetics 177:1173–1192

    Article  PubMed  CAS  Google Scholar 

  • Alverson AJ, Wei XX, Rice DW, Stern DB, Barry K, Palmer JD (2010) Insights into the evolution of mitochondrial genome size from complete sequences of Citrullus lanatus and Cucurbita pepo (Cucurbitaceae). Mol Biol Evol 27:1436–1448

    Article  PubMed  CAS  Google Scholar 

  • Arthofer W, Schuler S, Steiner FM, Schlick-Steiner BC (2010) Chloroplast DNA-based studies in molecular ecology may be compromised by nuclear-encoded plastid sequence. Mol Ecol 19:3853–3856

    Article  PubMed  CAS  Google Scholar 

  • Barbrook AC, Howe CJ, Purton S (2006) Why are plastid genomes retained in non-photosynthetic organisms? Trends Plant Sci 11:101–108

    Article  PubMed  CAS  Google Scholar 

  • Behura SK (2007) Analysis of nuclear copies of mitochondrial sequences in honeybee (Apis mellifera) genome. Mol Biol Evol 24:1492–1505

    Article  PubMed  CAS  Google Scholar 

  • Berg OG, Kurland CG (2000) Why mitochondrial genes are most often found in nuclei. Mol Biol Evol 17:951–961

    Article  PubMed  CAS  Google Scholar 

  • Birky CW (2001) The inheritance of genes in mitochondria and chloroplasts: laws, mechanisms, and models. Annu Rev Genet 35:125–148

    Article  PubMed  CAS  Google Scholar 

  • Blanchard JL, Lynch M (2000) Organellar genes: why do they end up in the nucleus? Trends Genet 16:315–320

    Article  PubMed  CAS  Google Scholar 

  • Blitzblau HG, Bell GW, Rodriguez J, Bell SP, Hochwagen A (2007) Mapping of meiotic single-stranded DNA reveals double-strand-break hotspots near centromeres and telomeres. Curr Biol 17:2003–2012

    Article  PubMed  CAS  Google Scholar 

  • Bock R, Timmis JN (2008) Reconstructing evolution: gene transfer from plastids to the nucleus. Bioessays 30:556–566

    Article  PubMed  CAS  Google Scholar 

  • Boxma B, de Graaf RM, van der Staay GW, van Alen TA, Ricard G, Gabaldon T, van Hoek AH, Moon-van der Staay SY, Koopman WJ, van Hellemond JJ et al (2005) An anaerobic mitochondrion that produces hydrogen. Nature 434:74–79

    Article  PubMed  CAS  Google Scholar 

  • Brandvain Y, Barker MS, Wade MJ (2007) Gene co-inheritance and gene transfer. Science 315:1685

    Article  PubMed  CAS  Google Scholar 

  • Brouard JS, Otis C, Lemieux C, Turmel M (2010) The exceptionally large chloroplast genome of the green alga Floydiella terrestris illuminates the evolutionary history of the Chlorophyceae. Genome Biol Evol 2:240–256

    Article  PubMed  CAS  Google Scholar 

  • Cavalier-Smith T, Lee JJ (1985) Protozoa as hosts for endosymbioses and the conversion of symbionts into organelles. J Protozool 32:376–379

    Google Scholar 

  • Chaw SM, Shih ACC, Wang D, Wu YW, Liu SM, Chou TY (2008) The mitochondrial genome of the gymnosperm Cycas taitungensis contains a novel family of short interspersed elements, Bpu sequences, and abundant RNA editing sites. Mol Biol Evol 25:603–615

    Article  PubMed  CAS  Google Scholar 

  • Cheung AY, Bogorad L, Vanmontagu M, Schell J (1988) Relocating a gene for herbicide tolerance: a chloroplast gene is converted into a nuclear gene. Proc Natl Acad Sci USA 85:391–395

    Article  PubMed  CAS  Google Scholar 

  • Clemens DL, Johnson PJ (2000) Failure to detect DNA in hydrogenosomes of Trichomonas vaginalis by nick translation and immunomicroscopy. Mol Biochem Parasit 106:307–313

    Article  CAS  Google Scholar 

  • Clifton SW, Minx P, Fauron CMR, Gibson M, Allen JO, Sun H, Thompson M, Barbazuk WB, Kanuganti S, Tayloe C, Meyer L, Wilson RK, Newton KJ (2004) Sequence and comparative analysis of the maize NB mitochondrial genome. Plant Physiol 136:3486–3503

    Article  PubMed  CAS  Google Scholar 

  • Cornelissen M, Vandewiele M (1989) Nuclear transcriptional activity of the plastid psbA promoter. Nucleic Acids Res 17:19–29

    Article  PubMed  CAS  Google Scholar 

  • Cusack BP, Wolfe KH (2007) When gene marriages don’t work out: divorce by subfunctionalization. Trends Genet 23:270–272

    Article  PubMed  CAS  Google Scholar 

  • Daley DO, Whelan J (2005) Why genes persist in organelle genomes. Genome Biol 6:110

    Article  PubMed  CAS  Google Scholar 

  • Delannoy E, Fujii S, des Francs CC, Brundrett M, Small I (2011) Rampant gene loss in the underground Orchid Rhizanthella gardneri highlights evolutionary constraints on plastid genomes. Mol Biol Evol 28:2077–2086

    Google Scholar 

  • Doolittle WE (1998) You are what you eat: a gene transfer ratchet could account for bacterial genes in eukaryotic nuclear genomes. Trends Genet 14:307–311

    Article  PubMed  CAS  Google Scholar 

  • Figueroa P, Gomez I, Holuigue L, Araya A, Jordana X (1999) Transfer of rps14 from the mitochondrion to the nucleus in maize implied integration within a gene encoding the iran-sulphur subunit of succinate dehydrogenase and expression by alternative splicing. Plant J 18:601–609

    Article  PubMed  CAS  Google Scholar 

  • Gallois JL, Achard P, Green G, Mache R (2001) The Arabidopsis chloroplast ribosomal protein L21 is encoded by a nuclear gene of mitochondrial origin. Gene 274:179–185

    Article  PubMed  CAS  Google Scholar 

  • Gissi C, Iannelli F, Pesole G (2008) Evolution of the mitochondrial genome of Metazoa as exemplified by comparison of congeneric species. Heredity 101:301–320

    Article  PubMed  CAS  Google Scholar 

  • Goremykin VV, Salamini F, Velasco R, Viola R (2009) Mitochondrial DNA of Vitis vinifera and the issue of rampant horizontal gene transfer. Mol Biol Evol 26:99–110

    Article  PubMed  CAS  Google Scholar 

  • Grohmann L, Brennicke A, Schuster W (1992) The mitochondrial gene encoding ribosomal protein S12 has been translocated to the nuclear genome in Oenothera. Nucleic Acids Res 20:5641–5646

    Article  PubMed  CAS  Google Scholar 

  • Guo XY, Ruan SL, Hu WM, Ca DG, Fan LJ (2008) Chloroplast DNA insertions into the nuclear genome of rice: the genes, sites and ages of insertion involved. Funct Integr Genomics 8:101–108

    Article  PubMed  CAS  Google Scholar 

  • Hall AE, Kettler GC, Preuss D (2006) Dynamic evolution at pericentromeres. Genome Res 16:355–364

    Article  PubMed  CAS  Google Scholar 

  • Handa H (2003) The complete nucleotide sequence and RNA editing content of the mitochondrial genome of rapeseed (Brassica napus L.): comparative analysis of the mitochondrial genomes of rapeseed and Arabidopsis thaliana. Nucleic Acids Res 31:5907–5916

    Article  PubMed  CAS  Google Scholar 

  • Hao WL, Palmer JD (2009) Fine-scale mergers of chloroplast and mitochondrial genes create functional, transcompartmentally chimeric mitochondrial genes. Proc Natl Acad Sci USA 106:16728–16733

    Article  PubMed  CAS  Google Scholar 

  • Haviv-Chesner A, Kobayashi Y, Gabriel A, Kupiec M (2007) Capture of linear fragments at a double-strand break in yeast. Nucleic Acids Res 35:5192–5202

    Article  PubMed  CAS  Google Scholar 

  • Hazkani-Covo E, Zeller RM, Martin W (2010) Molecular poltergeists: mitochondrial DNA copies (numts) in sequenced nuclear genomes. PLoS Genet 6:e1000834

    Article  PubMed  CAS  Google Scholar 

  • Henze K, Martin W (2001) How do mitochondrial genes get into the nucleus? Trends Genet 17:383–387

    Article  PubMed  CAS  Google Scholar 

  • Huang CY, Ayliffe MA, Timmis JN (2003) Direct measurement of the transfer rate of chloroplast DNA into the nucleus. Nature 422:72–76

    Article  PubMed  CAS  Google Scholar 

  • Huang CY, Ayliffe MA, Timmis JN (2004) Simple and complex nuclear loci created by newly transferred chloroplast DNA in tobacco. Proc Natl Acad Sci USA 101:9710–9715

    Article  PubMed  CAS  Google Scholar 

  • Huang CY, Grunheit N, Ahmadinejad N, Timmis JN, Martin W (2005) Mutational decay and age of chloroplast and mitochondrial genomes transferred recently to angiosperm nuclear chromosomes. Plant Physiol 138:1723–1733

    Article  PubMed  CAS  Google Scholar 

  • Kanno A, Nakazono M, Hirai A, Kameya T (1997) Maintenance of chloroplast-derived sequences in the mitochondrial DNA of gramineae. Curr Genet 32:413–419

    Article  PubMed  CAS  Google Scholar 

  • Khakhlova O, Bock R (2006) Elimination of deleterious mutations in plastid genomes by gene conversion. Plant J 46:85–94

    Article  PubMed  CAS  Google Scholar 

  • Kitazaki K, Kubo T (2010) Cost of having the largest mitochondrial genome: evolutionary mechanism of plant mitochondrial genome. J Bot 2010. doi:10.1155/2010/620137

  • Kleine T, Maier UG, Leister D (2009) DNA transfer from organelles to the nucleus: the idiosyncratic genetics of endosymbiosis. Annu Rev Plant Biol 60:115–138

    Article  PubMed  CAS  Google Scholar 

  • Knoop V, Brennicke A (1991) A mitochondrial intron sequence in the 5′-flanking region of a plant nuclear lectin gene. Curr Genet 20:423–425

    Article  PubMed  CAS  Google Scholar 

  • Knoop V, Unseld M, Marienfeld J, Brandt P, Sunkel S, Ullrich H, Brennicke A (1996) copia-, gypsy- and LINE-like retrotransposon fragments in the mitochondrial genome of Arabidopsis thaliana. Genetics 142:579–585

    PubMed  CAS  Google Scholar 

  • Kubo N, Arimura S (2010) Discovery of the rpl10 gene in diverse plant mitochondrial genomes and its probable replacement by the nuclear gene for chloroplast RPL10 in two lineages of angiosperms. DNA Res 17:1–9

    Article  PubMed  CAS  Google Scholar 

  • Kubo T, Nishizawa S, Sugawara A, Itchoda N, Estiati A, Mikami T (2000) The complete nucleotide sequence of the mitochondrial genome of sugar beet (Beta vulgaris L.) reveals a novel gene for tRNA(Cys)(GCA). Nucleic Acids Res 28:2571–2576

    Article  PubMed  CAS  Google Scholar 

  • Kundu M, Thompson CB (2005) Macroautophagy versus mitochondrial autophagy: a question of fate? Cell Death Differ 12:1484–1489

    Article  PubMed  CAS  Google Scholar 

  • Leister D (2005) Origin, evolution and genetic effects of nuclear insertions of organelle DNA. Trends Genet 21:655–663

    Article  PubMed  CAS  Google Scholar 

  • Lenglez S, Hermand D, Decottignies A (2010) Genome-wide mapping of nuclear mitochondrial DNA sequences links DNA replication origins to chromosomal double-strand break formation in Schizosaccharomyces pombe. Genome Res 20:1250–1261

    Article  PubMed  CAS  Google Scholar 

  • Li HM, Chiu CC (2010) Protein transport into chloroplasts. Annu Rev Plant Biol 61:157–180

    Article  PubMed  CAS  Google Scholar 

  • Li LB, Wang B, Liu Y, Qiu YL (2009) The complete mitochondrial genome sequence of the Hornwort Megaceros aenigmaticus shows a mixed mode of conservative yet dynamic evolution in early land plant mitochondrial genomes. J Mol Evol 68:665–678

    Article  PubMed  CAS  Google Scholar 

  • Lim L, Linka M, Mullin KA, Weber APM, McFadden GI (2010) The carbon and energy sources of the non-photosynthetic plastid in the malaria parasite. FEBS Lett 584:549–554

    Article  PubMed  CAS  Google Scholar 

  • Lin YF, Waldman AS (2001) Capture of DNA sequences at double-strand breaks in mammalian chromosomes. Genetics 158:1665–1674

    PubMed  CAS  Google Scholar 

  • Lin XY, Kaul SS, Rounsley S, Shea TP, Benito MI, Town CD, Fujii CY, Mason T, Bowman CL, Barnstead M et al (1999) Sequence and analysis of chromosome 2 of the plant Arabidopsis thaliana. Nature 402:761–768

    Article  PubMed  CAS  Google Scholar 

  • Lister DL, Bateman JM, Purton S, Howe CJ (2003) DNA transfer from chloroplast to nucleus is much rarer in Chlamydomonas than in tobacco. Gene 316:33–38

    Article  PubMed  CAS  Google Scholar 

  • Liu SL, Zhuang Y, Zhang P, Adams KL (2009) Comparative analysis of structural diversity and sequence evolution in plant mitochondrial genes transferred to the nucleus. Mol Biol Evol 26:875–891

    Article  PubMed  CAS  Google Scholar 

  • Lloyd AH, Timmis JN (2011) The origin and characterization of new nuclear genes originating from a cytoplasmic organellar genome. Mol Biol Evol 28:2019–2028

    Google Scholar 

  • Lough AN, Roark LM, Kato A, Ream TS, Lamb JC, Birchler JA, Newton KJ (2008) Mitochondrial DNA transfer to the nucleus generates extensive insertion site variation in maize. Genetics 178:47–55

    Article  PubMed  CAS  Google Scholar 

  • Lynch M (1996) Mutation accumulation in transfer RNAs: molecular evidence for Muller’s ratchet in mitochondrial genomes. Mol Biol Evol 13:209–220

    Article  PubMed  CAS  Google Scholar 

  • Magee AM, Aspinall S, Rice DW, Cusack BP, Semon M, Perry AS, Stefanovic S, Milbourne D, Barth S, Palmer JD, Gray JC, Kavanagh TA, Wolfe KH (2010) Localized hypermutation and associated gene losses in legume chloroplast genomes. Genome Res 20:1700–1710

    Article  PubMed  CAS  Google Scholar 

  • Marechal A, Brisson N (2010) Recombination and the maintenance of plant organelle genome stability. New Phytol 186:299–317

    Article  PubMed  CAS  Google Scholar 

  • Martin W, Herrmann RG (1998) Gene transfer from organelles to the nucleus: how much, what happens, and why? Plant Physiol 118:9–17

    Article  PubMed  CAS  Google Scholar 

  • Martin W, Rujan T, Richly E, Hansen A, Cornelsen S, Lins T, Leister D, Stoebe B, Hasegawa M, Penny D (2002) Evolutionary analysis of Arabidopsis, cyanobacterial, and chloroplast genomes reveals plastid phylogeny and thousands of cyanobacterial genes in the nucleus. Proc Natl Acad Sci USA 99:12246–12251

    Article  PubMed  CAS  Google Scholar 

  • Matsuo M, Ito Y, Yamauchi R, Obokata J (2005) The rice nuclear genome continuously integrates, shuffles, and eliminates the chloroplast genome to cause chloroplast-nuclear DNA flux. Plant Cell 17:665–675

    Article  PubMed  CAS  Google Scholar 

  • Millar AH, Whelan J, Small I (2006) Recent surprises in protein targeting to mitochondria and plastids. Curr Opin Plant Biol 9:610–615

    Article  PubMed  CAS  Google Scholar 

  • Millen RS, Olmstead RG, Adams KL, Palmer JD, Lao NT, Heggie L, Kavanagh TA, Hibberd JM, Giray JC, Morden CW, Calie PJ, Jermiin LS, Wolfe KH (2001) Many parallel losses of infA from chloroplast DNA during angiosperm evolution with multiple independent transfers to the nucleus. Plant Cell 13:645–658

    PubMed  CAS  Google Scholar 

  • Ming R, Hou SB, Feng Y, Yu QY, Dionne-Laporte A, Saw JH, Senin P, Wang W, Ly BV, Lewis KLT et al (2008) The draft genome of the transgenic tropical fruit tree papaya (Carica papaya Linnaeus). Nature 452:991–996

    Article  PubMed  CAS  Google Scholar 

  • Mishmar D, Ruiz-Pesini E, Brandon M, Wallace DC (2004) Mitochondrial DNA-like sequences in the nucleus (NUMTs): insights into our African origins and the mechanism of foreign DNA integration. Hum Mutat 23:125–133

    Article  PubMed  CAS  Google Scholar 

  • Miyata S, Nakazono M, Hirai A (1998) Transcription of plastid derived tRNA genes in rice mitochondria. Curr Genet 34:216–220

    Article  PubMed  CAS  Google Scholar 

  • Nakazono M, Nishiwaki S, Tsutsumi N, Hirai A (1996) A chloroplast-derived sequence is utilized as a source of promotes sequences for the gene for subunit 9 of NADH dehydrogenase (nad9) in rice mitochondria. Mol Gen Genet 252:371–378

    PubMed  CAS  Google Scholar 

  • NCBI (2011) NCBI eukaryotae organelles list. http://www.ncbi.nlm.nih.gov/genomes/GenomesHome.cgi?taxid=2759&hopt=html. Accessed 25 Mar 2011

    Google Scholar 

  • Neupert W (1997) Protein import into mitochondria. Annu Rev Biochem 66:863–917

    Article  PubMed  CAS  Google Scholar 

  • Notsu Y, Masood S, Nishikawa T, Kubo N, Akiduki G, Nakazono M, Hirai A, Kadowaki K (2002) The complete sequence of the rice (Oryza sativa L.) mitochondrial genome: frequent DNA sequence acquisition and loss during the evolution of flowering plants. Mol Genet Genomics 268:434–445

    Article  PubMed  CAS  Google Scholar 

  • Noutsos C, Richly E, Leister D (2005) Generation and evolutionary fate of insertions of organelle DNA in the nuclear genomes of flowering plants. Genome Res 15:616–628

    Article  PubMed  CAS  Google Scholar 

  • Noutsos C, Kleine T, Armbruster U, DalCorso G, Leister D (2007) Nuclear insertions of organellar DNA can create novel patches of functional exon sequences. Trends Genet 23:597–601

    Article  PubMed  CAS  Google Scholar 

  • Nugent JM, Palmer JD (1991) RNA-mediated transfer of the gene coxII from the mitochondrion to the nucleus during flowering plant evolution. Cell 66:473–481

    Article  PubMed  CAS  Google Scholar 

  • Oda K, Yamato K, Ohta E, Nakamura Y, Takemura M, Nozato N, Akashi K, Kanegae T, Ogura Y, Kohchi T, Ohyama K (1992) Gene organization deduced from the complete sequence of liverwort Marchantia polymorpha mitochondrial DNA: a primitive form of plant mitochondrial genome. J Mol Biol 223:1–7

    Article  PubMed  CAS  Google Scholar 

  • Ogihara Y, Yamazaki Y, Murai K, Kanno A, Terachi T, Shiina T, Miyashita N, Nasuda S, Nakamura C, Mori N, Takumi S, Murata M, Futo S, Tsunewaki K (2005) Structural dynamics of cereal mitochondrial genomes as revealed by complete nucleotide sequencing of the wheat mitochondrial genome. Nucleic Acids Res 33:6235–6250

    Article  PubMed  CAS  Google Scholar 

  • Puthiyaveetil S, Kavanagh TA, Cain P, Sullivan JA, Newell CA, Gray JC, Robinson C, van der Giezen M, Rogers MB, Allen JF (2008) The ancestral symbiont sensor kinase CSK links photosynthesis with gene expression in chloroplasts. Proc Natl Acad Sci USA 105:10061–10066

    Article  PubMed  CAS  Google Scholar 

  • Reith M, Munholland J (1995) Complete nucleotide sequence of the Porphyra purpurea chloroplast genome. Plant Mol Biol Rep 13:333–335

    Article  CAS  Google Scholar 

  • Ricchetti M, Fairhead C, Dujon B (1999) Mitochondrial DNA repairs double-strand breaks in yeast chromosomes. Nature 402:96–100

    Article  PubMed  CAS  Google Scholar 

  • Richly E, Leister D (2004a) NUMTs in sequenced eukaryotic genomes. Mol Biol Evol 21:1081–1084

    Article  PubMed  CAS  Google Scholar 

  • Richly E, Leister D (2004b) NUPTs in sequenced eukaryotes and their genomic organization in relation to NUMTs. Mol Biol Evol 21:1972–1980

    Article  PubMed  CAS  Google Scholar 

  • Roark LM, Hui Y, Donnelly L, Birchler JA, Newton KJ (2010) Recent and frequent insertions of chloroplast DNA into maize nuclear chromosomes. Cytogenet Genome Res 129:17–23

    Article  PubMed  CAS  Google Scholar 

  • Rousseau-Gueutin M, Lloyd AH, Sheppard AE, Timmis JN (2011) Gene transfer to the nucleus. In: Bullerwell CE (ed) Organelle genetics: evolution of organelle genomes and gene expression. Springer, Berlin, pp 147–171

    Google Scholar 

  • Ruf S, Karcher D, Bock R (2007) Determining the transgene containment level provided by chloroplast transformation. Proc Natl Acad Sci USA 104:6998–7002

    Article  PubMed  CAS  Google Scholar 

  • Ruf S, Braune S, Endries P, Hasse C, Stegemann S, Bock R (2010) Plastid transmission, gene transfer and the impact of the environment. ISCGGE, Maynooth

    Google Scholar 

  • Salomon S, Puchta H (1998) Capture of genomic and T-DNA sequences during double-strand break repair in somatic plant cells. EMBO J 17:6086–6095

    Article  PubMed  CAS  Google Scholar 

  • Selosse M, Albert B, Godelle B, Berg OG, Kurland CG (2001) Reducing the genome size of organelles favours gene transfer to the nucleus. Trends Ecol Evol 16:135–141

    Article  PubMed  Google Scholar 

  • Sheppard AE, Timmis JN (2009) Instability of plastid DNA in the nuclear genome. PLoS Genet 5:e1000323

    Article  PubMed  CAS  Google Scholar 

  • Sheppard AE, Ayliffe MA, Blatch L, Day A, Delaney SK, Khairul-Fahmy N, Li Y, Madesis P, Pryor AJ, Timmis JN (2008) Transfer of plastid DNA to the nucleus is elevated during male gametogenesis in tobacco. Plant Physiol 148:328–336

    Article  PubMed  CAS  Google Scholar 

  • Sheppard AE, Panagiotis M, Lloyd AH, Day A, Ayliffe MA, Timmis JN (2011) Introducing an RNA editing requirement into a plastid-localised transgene reduces but does not eliminate functional gene transfer to the nucleus. Plant Mol Biol 76:299–309

    Article  PubMed  CAS  Google Scholar 

  • Sloan DB, Alverson AJ, Storchova H, Palmer JD, Taylor DR (2010) Extensive loss of translational genes in the structurally dynamic mitochondrial genome of the angiosperm Silene latifolia. BMC Evol Biol 10:e274

    Article  CAS  Google Scholar 

  • Smith DR, Lee RW (2008) Mitochondrial genome of the colorless green alga Polytomella capuana: a linear molecule with an unprecedented GC content. Mol Biol Evol 25:487–496

    Article  PubMed  CAS  Google Scholar 

  • Soll J, Schleiff E (2004) Protein import into chloroplasts. Nat Rev Mol Cell Biol 5:198–208

    Article  PubMed  CAS  Google Scholar 

  • Stegemann S, Bock R (2006) Experimental reconstruction of functional gene transfer from the tobacco plastid genome to the nucleus. Plant Cell 18:2869–2878

    Article  PubMed  CAS  Google Scholar 

  • Stegemann S, Hartmann S, Ruf S, Bock R (2003) High-frequency gene transfer from the chloroplast genome to the nucleus. Proc Natl Acad Sci USA 100:8828–8833

    Article  PubMed  CAS  Google Scholar 

  • Stern DB, Lonsdale DM (1982) Mitochondrial and chloroplast genomes of maize have a 12-kilobase DNA sequence in common. Nature 299:698–702

    Article  PubMed  CAS  Google Scholar 

  • Stettler M, Eicke S, Mettler T, Messerli G, Hortensteiner S, Zeeman SC (2009) Blocking the metabolism of starch breakdown products in Arabidopsis leaves triggers chloroplast degradation. Mol Plant 2:1233–1246

    Article  PubMed  CAS  Google Scholar 

  • Stupar RM, Lilly JW, Town CD, Cheng Z, Kaul S, Buell CR, Jiang JM (2001) Complex mtDNA constitutes an approximate 620-kb insertion on Arabidopsis thaliana chromosome 2: implication of potential sequencing errors caused by large-unit repeats. Proc Natl Acad Sci USA 98:5099–5103

    Article  PubMed  CAS  Google Scholar 

  • Sugiyama Y, Watase Y, Nagase M, Makita N, Yagura S, Hirai A, Sugiura M (2005) The complete nucleotide sequence and multipartite organization of the tobacco mitochondrial genome: comparative analysis of mitochondrial genomes in higher plants. Mol Genet Genomics 272:603–615

    Article  PubMed  CAS  Google Scholar 

  • Svab Z, Hajdukiewicz P, Maliga P (1990) Stable transformation of plastids in higher plants. Proc Natl Acad Sci USA 87:8526–8530

    Article  PubMed  CAS  Google Scholar 

  • Terasawa K, Odahara M, Kabeya Y, Kikugawa T, Sekine Y, Fujiwara M, Sato N (2007) The mitochondrial genome of the moss Physcomitrella patens sheds new light on mitochondrial evolution in land plants. Mol Biol Evol 24:699–709

    Article  PubMed  CAS  Google Scholar 

  • The Rice Chromosome 10 Sequencing Consortium (2003) In-depth view of structure, activity, and evolution of rice chromosome 10. Science 300:1566–1569

    Article  CAS  Google Scholar 

  • Thorsness PE, Fox TD (1990) Escape of DNA from mitochondria to the nucleus in Saccharomyces cerevisiae. Nature 346:376–379

    Article  PubMed  CAS  Google Scholar 

  • Timmis JN, Scott NS (1983) Sequence homology between spinach nuclear and chloroplast genomes. Nature 305:65–67

    Article  CAS  Google Scholar 

  • Timmis JN, Ayliffe MA, Huang CY, Martin W (2004) Endosymbiotic gene transfer: organelle genomes forge eukaryotic chromosomes. Nat Rev Genet 5:123–136

    Article  PubMed  CAS  Google Scholar 

  • Turmel M, Otis C, Lemieux C (2003) The mitochondrial genome of Chara vulgaris: insights into the mitochondrial DNA architecture of the last common ancestor of green algae and land plants. Plant Cell 15:1888–1903

    Article  PubMed  CAS  Google Scholar 

  • Ueda M, Nishikawa T, Fujimoto M, Takanashi H, Arimura S, Tsutsumi N, Kadowaki K (2008) Substitution of the gene for chloroplast RPS16 was assisted by generation of a dual targeting signal. Mol Biol Evol 25:1566–1575

    Article  PubMed  CAS  Google Scholar 

  • Unseld M, Marienfeld JR, Brandt P, Brennicke A (1997) The mitochondrial genome of Arabidopsis thaliana contains 57 genes in 366,924 nucleotides. Nat Genet 15:57–61

    Article  PubMed  CAS  Google Scholar 

  • van den Boogaart P, Samallo J, Agsteribbe E (1982) Similar genes for a mitochondrial ATPase subunit in the nuclear and mitochondrial genomes of Neurospora crassa. Nature 298:187–189

    Article  PubMed  Google Scholar 

  • van der Giezen M, Sjollema KA, Artz RR, Alkema W, Prins RA (1997) Hydrogenosomes in the anaerobic fungus Neocallimastix frontalis have a double membrane but lack an associated organelle genome. FEBS Lett 408:147–150

    Article  PubMed  Google Scholar 

  • Villarejo A, Buren S, Larsson S, Dejardin A, Monne M, Rudhe C, Karlsson J, Jansson S, Lerouge P, Rolland N, von Heijne G, Grebe M, Bako L, Samuelsson G (2005) Evidence for a protein transported through the secretory pathway en route to the higher plant chloroplast. Nat Cell Biol 7:1224–1231

    Article  PubMed  CAS  Google Scholar 

  • Vogel JP, Garvin DF, Mockler TC, Schmutz J, Rokhsar D, Bevan MW, Barry K, Lucas S, Harmon-Smith M, Lail K et al (2010) Genome sequencing and analysis of the model grass Brachypodium distachyon. Nature 463:763–768

    Article  CAS  Google Scholar 

  • Vonheijne G (1986) Why mitochondria need a genome. FEBS Lett 198:1–4

    Article  CAS  Google Scholar 

  • Wada S, Ishida H, Izumi M, Yoshimoto K, Ohsumi Y, Mae T, Makino A (2009) Autophagy plays a role in chloroplast degradation during senescence in individually darkened leaves. Plant Physiol 149:885–893

    Article  PubMed  CAS  Google Scholar 

  • Wang D, Wu YW, Shih ACC, Wu CS, Wang YN, Chaw SM (2007) Transfer of chloroplast genomic DNA to mitochondrial genome occurred at least 300 MYA. Mol Biol Evol 24:2040–2048

    Article  PubMed  CAS  Google Scholar 

  • Wilson RJM, Denny PW, Preiser PR, Rangachari K, Roberts K, Roy A, Whyte A, Strath M, Moore DJ, Moore PW, Williamson DH (1996) Complete gene map of the plastid-like DNA of the malaria parasite Plasmodium falciparum. J Mol Biol 261:155–172

    Article  PubMed  CAS  Google Scholar 

  • Wolfe KH, Li WH, Sharp PM (1987) Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast, and nuclear DNAs. Proc Natl Acad Sci USA 84:9054–9058

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Australian Research Council for financial support (Grants DP0667006 and DP0986973). This chapter is not intended to be an exhaustive review of the topic. Therefore we apologise for omitting citation and discussion of some important research contributions in the interest of brevity. We thank David Adelson for discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeremy N. Timmis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Lloyd, A.H., Rousseau-Gueutin, M., Timmis, J.N., Sheppard, A.E., Ayliffe, M.A. (2012). Promiscuous Organellar DNA. In: Bock, R., Knoop, V. (eds) Genomics of Chloroplasts and Mitochondria. Advances in Photosynthesis and Respiration, vol 35. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2920-9_9

Download citation

Publish with us

Policies and ethics