Skip to main content

Cyanobacterial Biofilms in Monuments and Caves

  • Chapter
  • First Online:
Ecology of Cyanobacteria II

Summary

Biofilm-forming cyanobacteria are widespread inhabitants of exposed stones in archaeological and historical sites and caves. Outdoors, these phototrophic biofilms are adapted to all types of stress imposed by growth at the air-rock interface and have developed the capacity to tolerate excess solar radiation, extreme temperatures and desiccation at different latitudes. Indoors, the typology of the cave or the characteristics of confined environments strongly selects the microbial community according to light availability and air humidity. Interactions of cyanobacteria with rocky substrata serving as the source of mineral nutrients are based on the adhesion mechanisms and metabolic processes that allow the development of these biofilms. Both types of subaerial phototrophic community include cyanobacteria that support associated populations of heterotrophic populations of mostly very specialized species. The distribution of particular cyanobacterial taxa on monuments in urban or agricultural areas is related mostly to climatic conditions and the position and orientation of the hard surface with respect to water availability and air circulation.

The chapter provides an overview of the more recent studies on free-living subaerophytic cyanobacteria causing discolouration and erosion of lithic faces. Emphasis is on the biodeterioration of artworks due to physical and chemical processes caused by the growth of epilithic and endolithic organisms. The methods used for studying cyanobacterial communities on rocks and buildings of historic and artistic value are summarized, with the focus on conservation issues. Study techniques which are non-invasive of the underlying substrata are essential and it is important to identify the biodeteriogens responsible for the damage.

deceased

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdelahad N (1989) On four Myxosarcina-like species (Cyanophyta) living in the Inferniglio cave (Italy). Arch Hydrobiol Suppl Algol Stud 54:3–13

    Google Scholar 

  • Abdelahad N, Bazzichelli G (1988) Geitleria calcarea Friedmann, Cyanophycée cavernicole nouvelle pour l’Italie. Nova Hedwig 46:265–270

    Google Scholar 

  • Aboal M, Ad A, Prefasi M (1994) Studies on cave cyanophytes from Southeastern Spain: Scytonema julianum Meneghini. Arch Hydrobiol Suppl Algol Stud 75:31–36

    Google Scholar 

  • Aboal M, Ad A, Lopez-Jiménez E (2003) Morphological, ultrastructural and ecological study of Asterocapsa divina Komárek (Chroococcaceae, Cyanobacteria) from a cave of SouthEastern Spain. Arch Hydrobiol Suppl Algol Stud 109:57–65

    Google Scholar 

  • Adhikary SP (2000a) Chlorophyll stability of epilithic cyanobacteria from temples of India. Arch Hydrobiol Suppl Algol Stud 98:119–131

    Google Scholar 

  • Adhikary SP (2000b) Epilithic cyanobacteria on the exposed rocks and walls of temples and monuments of India. Indian J Microbiol 40:67–81

    Google Scholar 

  • Adhikary SP (2002) Survival in darkness and heterotrophic growth of epilithic cyanobacteria from temples of India. Arch Hydrobiol Suppl Algol Stud 105:141–155

    Google Scholar 

  • Adhikary SP (2004) Survival strategies of lithophytic cyanobacteria on the temples and monuments. In: Jain PC (ed) Microbiology and biotechnology for sustainable development. CBS Publishers and Distributors, New Delhi, pp 187–194

    Google Scholar 

  • Adhikary SP, Satapathy DP (1996) Tolypothrix byssoidea (Cyanophyceae/Cyanobacteria) from temple rock surfaces of coastal Orissa, India. Nova Hedwig 62:419–423

    Google Scholar 

  • Albertano P (1993) Epilithic algal communities in hypogean environments. G Bot Ital 127:386–392

    Google Scholar 

  • Albertano P (1997) Elemental mapping as a tool in the understanding of microorganisms-substrate interactions. J Comp Assist Microsc 9:81–84

    Google Scholar 

  • Albertano P (2003) Methodological approaches to the study of stone alteration caused by cyanobacterial biofilms in hypogean environments. In: Koestler RJ, Koestler VR, Charola AE, Nieto-Fernandez FE (eds) Art, biology, and conservation: biodeterioration of works of art. The Metropolitan Museum of Art, New York, pp 302–315

    Google Scholar 

  • Albertano P, Bellezza S (2001) Cytochemistry of cyanobacterial exopolymers in biofilms from Roman hypogea. Nova Hedwig 123:501–518

    Google Scholar 

  • Albertano P, Bruno L (2003) The importance of light in the conservation of hypogean monuments. In: Saiz-Jimenez C (ed) Molecular biology and cultural heritage. Swets and Zeitlinger BV, Lisse, pp 171–177, 287 pp

    Google Scholar 

  • Albertano P, Grilli Caiola M (1989) A hypogean algal association. Braun Blanquetia 3:386–392

    Google Scholar 

  • Albertano P, Kovacik L (1996) Light and temperature responses of terrestrial sciaphilous strains of Leptolyngbya sp. in cross-gradient cultures. Arch Hydrobiol Suppl Algol Stud 83:17–28

    Google Scholar 

  • Albertano P, Urzì C (1999) Structural interactions among epilithic cyanobacteria and heterotrophic microorganisms in Roman hypogea. Microb Ecol 38:244–252

    PubMed  Google Scholar 

  • Albertano P, Luongo L, Grilli Caiola M (1991) Observations on cell structure of micro-organisms o fan epilithic phototrophic community competing for light. Nova Hedwig 53:369–381

    Google Scholar 

  • Albertano P, Barsanti L, Passarelli V, Gualtieri P (2000a) A complex photoreceptive structure in the cyanobacterium Leptolyngbya sp. Micron 31:27–34

    PubMed  CAS  Google Scholar 

  • Albertano P, Bruno L, D’Ottavi D, Moscone D, Palleschi G (2000b) Effect of photosynthesis on pH variation in cyanobacterial biofilms from Roman catacombs. J Appl Phycol 12:279–384

    Google Scholar 

  • Albertano P, Moscone D, Palleschi G, Hermosín B, Saiz-Jimenez C, Sánchez-Moral S, Hernández-Mariné M, Urzì C, Groth I, Schroeckh V, Saarela M, Mattila-Sandholm T, Gallon JR, Graziottin F, Bisconti F, Giuliani R (2003) Cyanobacteria attack rocks (CATS): control and preventive strategies to avoid damage caused by cyanobacteria and associated microorganisms in Roman hypogean monuments. In: Saiz-Jimenez C (ed) Molecular biology and cultural heritage. Swets and Zeitlinger BV, Lisse, pp 151–162, 287 pp

    Google Scholar 

  • Albertano P, Bruno L, Bellezza S (2005) New strategy for the monitoring and control of cyanobacterial films on valuable lithic faces. Plant Biosyst 139:311–322

    Google Scholar 

  • Albertano P, Bruno L, Piermarini S, Bellezza S (2007) Monochromatic light and portable spectroradiometry for the conservation of stone monuments affected by phototrophic micro-organisms. In: Drdacky M, Chapuis M (eds) Safeguarded cultural heritage – understanding and viability of the enlarged Europe, vol 2. Glos Semily, Praha, pp 814–817

    Google Scholar 

  • Albertano P, Urzi’ C, Caneva G (2009) Problems of biodeterioration in relation to particular types of environments. – Tombs, Catacombs and other Hypogea. In: Caneva G, Nugari MP, Salvadori O (eds) Plant biology for cultural heritage. Getty Conservation Institute, Los Angeles, pp 184–189

    Google Scholar 

  • Ariño X, Hernández-Mariné M, Saiz-Jiménez C (1997) Colonization of Roman tombs by calcifying cyanobacteria. Phycologia 36:366–373

    Google Scholar 

  • Asencio AD, Aboal M (1996) Cyanophytes from Andragulla cave (Murcia, SE Spain) and their environmental conditions. Arch Hydrobiol Suppl Algol Stud 83:55–72

    Google Scholar 

  • Asencio AD, Aboal M (2000a) A contribution to knowledge of chasmoendolithic algae in cave-like environments. Arch Hydrobiol Suppl Algol Stud 98:133–151

    Google Scholar 

  • Asencio AD, Aboal M (2000b) Algae from La Serreta cave (Murcia, SE Spain) and their environmental conditions. Arch Hydrobiol Suppl Algol Stud 96:59–78

    Google Scholar 

  • Asencio AD, Aboal M (2001) Biodeterioration of wall paintings in caves of Murcia (SE Spain) by epilithic and chasmoendolithic algae. Arch Hydrobiol Suppl Algol Stud 103:131–142

    Google Scholar 

  • Asencio AD, Aboal M (2004) Cell inclusions in the chasmoendolithic Cyanophytes from cave-like environments in Murcia (SE Spain). Arch Hydrobiol Suppl Algol Stud 113:117–127

    Google Scholar 

  • Asencio AD, Aboal M, Hoffmann L (1996) A new cave-inhabiting blue-green alga: Symphyonema cavernicolum sp. nov. (Mastigocladaceae, Stigonematales). Arch Hydrobiol Suppl Algol Stud 83:73–82

    Google Scholar 

  • Azevedo MT, Kováčik L (1996) Rhabdogloea brasilica sp. nov. (Chroococcales, Synechococcaceae): morphological and morphometric variability under cross-gradient cultures. Arch Hydrobiol Suppl Algol Stud 83:83–92

    Google Scholar 

  • Barberousse H, Lombardo RJ, Tell G, Couté A (2006a) Factors involved in the colonisation of building façades by algae and cyanobacteria in France. Biofouling 22:69–77

    PubMed  Google Scholar 

  • Barberousse H, Tell G, Yéprémian C, Couté A (2006b) Diversity of algae and cyanobacteria growing on building façades in France. Arch Hydrobiol Suppl Algol Stud 120:81–105

    Google Scholar 

  • Bastian F, Alabouvette C (2009) Lights and shadows on the conservation of a rock art cave: the case of Lascaux Cave. Int J Speleol Spec Issue Cave Microbiol 38:55–60

    Google Scholar 

  • Bellezza S, Albertano P (2003) A Chroococcalean species from Roman hypogean sites: characterisation of Gloeothece membranacea (cyanobacteria, Synechoccaceae). Arch Hydrobiol Suppl Algol Stud 109:103–112

    Google Scholar 

  • Bellezza S, Paradossi G, De Philippis R, Albertano P (2003) Leptolyngbya strains from Roman hypogea: cytochemical and physico-chemical characterisation of exopolysaccharides. J Appl Phycol 15:193–200

    CAS  Google Scholar 

  • Bellezza S, Albertano P, De Philippis R, Paradossi G (2005) Exopolysaccharides in cyanobacterial biofilms from Roman catacombs. Arch Hydrobiol Suppl Algol Stud 117:117–132

    Google Scholar 

  • Bellezza S, De Philippis R, Paradossi G, Albertano P (2006) Exopolysaccharides of two cyanobacterial strains from Roman hypogea. Geomicrobiol J 23:301–310

    CAS  Google Scholar 

  • Beltrán JA, Asencio AD (2009) Cyanophytes from the L’Aigua cave (Alicante, SE Spain) and their environmental conditions. Algol Stud 132:21–34

    Google Scholar 

  • Billi D (2009) Subcellular integrities in Chroococcidiopsis sp. CCMEE 029 survivors after prolonged desiccation revealed by molecular probes and genome stability assays. Extremophiles 13:49–57

    PubMed  CAS  Google Scholar 

  • Billi D (2012) Anhydrobiotic rock- inhabiting cyanobacteria: potential for astrobiology and biotechnology. In: Stan-Lotter H, Fendrihan F (eds) Adaptation of microbial life organisms in extreme environments: research and application. Springer, Wien New York, pp 119–132

    Google Scholar 

  • Billi D, Potts M (2000) Life without water: responses of prokaryotes to desiccation. In: Storey KB, Storey JM (eds) Cell and molecular response to stress: environmental stressors and gene responses. Elsevier, Amsterdam, pp 181–192

    Google Scholar 

  • Billi D, Potts M (2002) Life and death of dried prokaryotes. Res Microbiol 153:7–12

    PubMed  CAS  Google Scholar 

  • Billi D, Viaggiu E, Cockell CS, Rabbow E, Horneck G, Onofri S (2011) Damage escape and repair in dried Chroococcidiopsis spp. from hot and cold deserts exposed to simulated space and Martian conditions. Astrobiology 11:65–73

    Google Scholar 

  • Bruno L, Albertano P (1999) Photoacclimation of sciaphilous epilithic cyanobacteria isolated from Roman hypogea. Arch Hydrobiol Suppl Algol Stud 94:89–103

    Google Scholar 

  • Bruno L, Piermarini S, Albertano P (2001) Characterisation of spectral emission by cyanobacterial biofilms in the Roman Catacombs of Priscilla in Rome (Italy). Nova Hedwig 123:229–236

    Google Scholar 

  • Bruno L, Billi D, Urzì C, Albertano P (2006) Genetic characterisation of epilithic cyanobacteria and their associated bacteria. Geomicrobiol J 23:293–299

    CAS  Google Scholar 

  • Bruno L, Billi D, Bellezza S, Albertano P (2009) Cytomorphological and genetic characterization of troglophilic Leptolyngbya strains isolated from Roman hypogea. Appl Environ Microbiol 75:608–617

    PubMed  CAS  Google Scholar 

  • Büdel B (1999) Ecology and diversity of rock-inhabiting cyanobacteria in tropical regions. Eur J Phycol 34:361–370

    Google Scholar 

  • Büdel B, Weber B, Kühl M, Pfanz H, Sültemeyer D, Wessels D (2004) Reshaping of sandstone surfaces by cryptoendolithic cyanobacteria: bioalkalization causes chemical weathering in arid landscapes. Geobiology 2:261–268

    Google Scholar 

  • Büdel B, Bendix J, Bicker FR, Allan Green TG (2008) Dewfall as a water source frequently activates the endolithic cyanobacterial communities in the granites of Taylor Valley, Antarctica. J Phycol 44:1415–1424

    Google Scholar 

  • Büdel B, Darienko T, Deutschewitz K, Stephanie Dojani S, Friedl T, Mohr KI, Salisch M, Reisser W, Weber B (2009) Southern African biological soil crusts are ubiquitous and highly diverse in drylands, being restricted by rainfall frequency. Microb Ecol 57:229–247

    PubMed  Google Scholar 

  • Calvo Quintana J, Piermarini S, Albertano P, Palleschi G, Moscone D (2002) Potentiometric microsensors for cyanobacterial biofilms monitoring in hypogean environments. In: Di Natale C, D’amico A, Dori L, Cardinali GC, Nicoletti S (eds) Sensors and microsystems. World Scientific, River Edge, pp 270–274

    Google Scholar 

  • Calvo Quintana J, Idrissi L, Palleschi G, Albertano P, Amine A, El Rhazi M, Moscone D (2004) Investigation of amperometric detection of phosphate. Application in seawater and cyanobacterial biofilm samples. Talanta 63:567–574

    Google Scholar 

  • Cañaveras JC, Sanchez-Moral S, Soler V, Saiz-Jimenez C (2001) Microorganisms and microbially induced fabrics in cave walls. Geomicrobiol J 18:1521–1529

    Google Scholar 

  • Caneva G, Nugari MP, Salvadori O (2009) Plant biology for cultural heritage. Getty Conservation Institute, Los Angeles, 408 pp

    Google Scholar 

  • Cappitelli F, Abbruscato P, Foladori P, Zanardini E, Ranalli G, Principi P, Villa F, Polo A, Sorlini C (2009) Detection and elimination of cyanobacteria from frescoes: the case of the St. Brizio Chapel (Orvieto Cathedral, Italy). Microb Ecol 57:633–639

    PubMed  CAS  Google Scholar 

  • Castenholz RW, Garcia-Pichel F (2000) Responses to UV-radiation. In: Whitton BA, Potts M (eds) The ecology of cyanobacteria: their diversity in time and space. Kluwer Academic Publishers, Dordrecht, pp 591–611, 669 pp

    Google Scholar 

  • Ciferri O (1999) Microbial degradation of paintings. Appl Environ Microbiol 65:879–885

    PubMed  CAS  Google Scholar 

  • Clarelli F, Di Russo C, Natalini R, Ribot M (2009) Mathematical models for biofilms on the surface of monuments. In: De Bernardis E, Spigler R, Valente V (eds) Advances in mathematics for applied science 82. World Scientific Publication, Singapore, pp 220–231

    Google Scholar 

  • Compagnone D, Di Carlo V, Bruno L, Albertano P, Palleschi G (1999) Development of oxygen microsensor for monitoring cyanobacterial photosynthesis in Roman hypogea. Anal Lett 32:213–222

    CAS  Google Scholar 

  • Crispim CA, Gaylarde CC (2005) Cyanobacteria and biodeterioration of cultural heritage: a review. Microb Ecol 49:1–9

    PubMed  CAS  Google Scholar 

  • Crispim CA, Gaylarde PM, Gaylarde CC (2003) Algal and cyanobacterial biofilms on calcareous historic buildings. Curr Microbiol 46:79–82

    PubMed  CAS  Google Scholar 

  • Cuezva S, Sanchez-Moral S, Saiz-Jimenez C, Canaveras JC (2009) Microbial communities and associated mineral fabrics in Altamira caves. Int J Speleol 38:83–92

    Google Scholar 

  • Cuzman OA, Ventura S, Sili C, Mascalchi C, Turchetti T, D’Acqui LP, Tiano P (2010) Biodiversity of phototrophic biofilms dwelling on monumental fountains. Microb Ecol 60:81–95

    PubMed  CAS  Google Scholar 

  • Darienko T, Hoffmann L (2003) Algal growth on cultural monuments in Ukraine. Biologia 56:575–587

    Google Scholar 

  • de los Rios A, Grube M, Sancho LG, Ascaso C (2007) Ultrastructural and genetic characteristics of endolithic cyanobacterial biofilms colonizing Antarctic granite rocks. FEMS Microbiol Ecol 59:386–395

    PubMed  Google Scholar 

  • De Philippis R, Vincenzini M (1998) Exocellular polysaccharides from cyanobacteria and their possible applications. FEMS Microbiol Rev 22:151–175

    Google Scholar 

  • Dobat K (1998) Flore de la lumiére artificiélle (lampenflora-maladie verte). In: Juberthie C, Deçu V (eds) Encyclopaedia Biospeleologica, Tome 2. Société de Biospéologie, Moulis-Bucarest, pp 1325–1335

    Google Scholar 

  • Dor I, Dor Y (1999) Cyanobacterial flora of the Soreq stalactite Cave (Israel) and way of its control. Arch Hydrobiol Suppl Algol Stud 94:115–120

    Google Scholar 

  • Fassina V (2008) European Technical Committee 346 – Conservation of Cultural Property – Updating of the activity after a three-year period. In: Notea A, Shoef Y (eds) Art 2008: non-destructive testing, microanalysis and preservation in the conservation of cultural and environmental heritage. ISAS International Seminars Ltd., Jerusalem, pp 1–9

    Google Scholar 

  • Fleming ED, Castenholz RW (2007) Effects of periodic desiccation on the synthesis of the UVscreening compound, scytonemin, in cyanobacteria. Environ Microbiol 9:1448–1455

    PubMed  CAS  Google Scholar 

  • Foster JS, Green SJ, Ahrendt SR, Golubic S, Reid RP, Hetherington KL, Bebout L (2008) Molecular and morphological characterization of cyanobacterial diversity in the stromatolites of Highborne Cay, Bahamas. ISME J 3:573–587

    Google Scholar 

  • Friedmann EI, Ocampo-Friedmann R (1984) Endolithic microorganisms in extreme dry environments: analysis of alithobiontic microbial habitat. In: Klug MJ, Reddy CA (eds) Microbial ecology. American Society for Microbiology, Washington, DC, pp 177–185

    Google Scholar 

  • Fusey P, Hyvert G (1964) Les altérations physico-chimiques et biologiques des gres des monuments Khmers. Compt Rend Hebd Séances Groupes 13, 258(26):6573–6575 (in French)

    Google Scholar 

  • Garbacki N, Ector L, Kostikov I, Hoffmann L (1999) Contribution à l’étude de la flore des grottes de Belgique. Belg J Bot 132:43–76

    Google Scholar 

  • Gaylarde PM, Gaylarde CC (2000) Algae and cyanobacteria on painted buildings in Latin America. Int Biodeter Biodegr 46:93–97

    Google Scholar 

  • Gaylarde PM, Gaylarde CC (2005) A comparative study of the major microbial biomass of biofilms on exteriors of buildings in Europe and Latin America. Int Biodeter Biodegr 55:131–139

    Google Scholar 

  • Gaylarde CC, Morton LHG (2003) Biodeterioration of mineral materials. In: Bitton G (ed) Encyclopedia of environmental microbiology. Wiley, New York, pp 516–527

    Google Scholar 

  • Gaylarde PM, Gaylarde CC, Guiamet P, Gomez de Saravia S, Videla H (2001) Biodeterioration of Mayan buildings at Uxmal and Tulum, Mexico. Biofouling 17:41–45

    Google Scholar 

  • Giordano M, Mobili F, Pezzoni V, Hein MK, Davis JS (2000) Photosynthesis in the caves of Frasassi (Italy). Phycologia 39:384–389

    Google Scholar 

  • Golubic S (1967) Algenvegetation der Felsen, eine ökologische Algenstudie im dinarischen Karstgebiet. In: Elster HJ, Ohle W (eds) Die Binnengewässer, vol 23. Schweizerbart’sche Verlagsbuchhandlung, Stuttgart, p 183

    Google Scholar 

  • Golubic S, Friedmann I, Schneider J (1981) The lithobiontic ecologicalniche, with special reference to microorganisms. J Sediment Petrol 5:475–478

    Google Scholar 

  • Gonzalez JM, Saiz-Jimenez C (2005) Application of molecular nucleic acid-based techniques for the study of microbial communities in monuments and artworks. Int Microbiol 8:189–194

    PubMed  CAS  Google Scholar 

  • Gonzalez I, Laiz L, Hermosin B, Caballero B, Incerti C, Saiz-Jimenez C (1999) Bacteria isolated from rock art paintings: the case of Atlanterra shelter (South Spain). J Microbiol Methods 36:123–127

    PubMed  CAS  Google Scholar 

  • Gorbushina AA (2007) Life on the rocks. Environ Microbiol 9:1613–1631

    PubMed  CAS  Google Scholar 

  • Gorbushina AA, Broughton WJ (2009) Microbiology of the atmosphere-rock interface: how biological interactions and physical stresses modulate a sophisticated microbial ecosystem. Annu Rev Microbiol 63:431–450

    PubMed  CAS  Google Scholar 

  • Grbič ML, Vukojevič J, Subakov Simič G, Krizmanič J, Stupar M (2010) Biofilm-forming cyanobacteria, algae and fungi on two historic buildings in Belgrade, Serbia. Arch Biol Sci Belgrad 62:625–631

    Google Scholar 

  • Grilli Caiola M, Billi D (2007) Chroococcidiopsis from desert to Mars. In: Seckbach J (ed) Algae and cyanobacteria in extreme environments. Springer, Dordrecht, pp 555–568

    Google Scholar 

  • Hernández-Mariné M, Canals T (1994) Herpyzonema pulverulentum (Mastigocladaceae), a new cavernicolous atmophytic and lime-incrusted cyanophyte. Arch Hydrobiol Algol Stud Suppl 75:123–136

    Google Scholar 

  • Hernández-Mariné M, Asencio AD, Canals A, Ariño X, Aboal M, Hoffmann L (1999) Discovery of populations of the lime-encrusting genus Loriella (Stigonematales) in Spanish caves. Arch Hydrobiol Algol Stud Suppl 94:121–138

    Google Scholar 

  • Hernández-Mariné M, Roldán M, Clavero E, Canals A, Ariño X (2001) Phototrophic biofilm morphology in dim light. The case of the Puigmoltó sinkhole. Nova Hedwig 123:237–253

    Google Scholar 

  • Hernández-Mariné M, Clavero E, Roldán M (2003) Why there is such luxurious growth in the hypogean environments. Arch Hydrobiol Suppl Algol Stud 109:229–240

    Google Scholar 

  • Hernanz A, Mas M, Gavilán B, Hernández B (2006) Raman microscopy and IR spectroscopy of prehistoric paintings from Los Murciélagos cave (Zuheros, Córdoba, Spain). J Raman Spectrosc 37:492–497

    CAS  Google Scholar 

  • Hoffmann L (1989) Algae of terrestrial habitats. Bot Rev 55:77–105

    Google Scholar 

  • Hoffmann L (2002) Caves and other low-light environments: aerophytic photoautotrophic microorganisms. In: Bitton G (ed) Encyclopedia of environmental microbiology. Wiley, New York, pp 835–843

    Google Scholar 

  • Imperi F, Caneva G, Laura Cancellieri L, Ricci MA, Sodo A, Visca P (2007) The bacterial aetiology of rosy discoloration of ancient wall paintings. Environ Microbiol 8:2894–2902

    Google Scholar 

  • Jaag O (1945) Untersuchungen über die Vegetation und Biologie der Algen des näckten Gesteins in den Alpen, im Jura und im schweizerischen Mittelland. Beitr Kryptogamenflora Schweiz 9:1–560

    Google Scholar 

  • Jurado V, Fernandez-Cortes A, Cuezva S, Laiz L, Canaveras JC, Sanchez-Moral S, Saiz-Jimenez C (2009) The fungal colonisation of rock-art caves: experimental evidence. Naturwissenschaften 96:1027–1034

    PubMed  CAS  Google Scholar 

  • Karsten U, Schumann R, Mostaert AS (2007) Aeroterrestrial algae growing on man-made surfaces. In: Seckbach J (ed) Algae and cyanobacteria in extreme environments. Springer, Dordrecht, pp 585–597, 811 pp

    Google Scholar 

  • Kaštovsky J, Hauer T, Komárek J, Skácelová O (2010) The list of cyanobacterial species of the Czech Republic at the end of 2009. Fottea 10:235–249

    Google Scholar 

  • Komárek J (2010) Recent changes (2008) in cyanobacteria taxonomy based on a combination of molecular background with phenotype and ecological consequences (genus and species concept). Hydrobiologia 639:245–259

    Google Scholar 

  • Komárek J, Anagnostidis K (1998) Cyanoprokaryota I. Teil: Chroococcales. In: Ettl H, Gärtner G, Heynig H, Mollenhauer D (eds) Süsswasserflora von Mitteleuropa 19/1. Gustav Fischer, Jena/Stuttgart/Lübeck/Ulm, 548 pp

    Google Scholar 

  • Komárek J, Anagnostidis K (2005) Cyanoprokaryota 2. Teil: Oscillatoriales. In: Büdel B, Krienitz L, Gärtner G, Schagerl M (eds) Süsswasserflora von Mitteleuropa 19/2. Elsevier GmbH, Spektrum Akademischer Verlag, Heidelberg, 759 pp

    Google Scholar 

  • Komárek J, Hauer T (2010) CyanoDB.cz – On-line database of cyanobacterial genera. –World-wide electronic publication, University of South Bohemia and Institute of Botany ASCR. htpp://www.cyanodb.cz

    Google Scholar 

  • Kovácik L (2000) Cyanobacteria and algae as agents of biodeterioration of stone substrata of historical buildings and other cultural monuments. In: Choi S, Suh M (eds) New millenium international forum on conservation of cultural property. Institute of Conservation Science for Cultural Heritage, Kongiu, pp 44–58

    Google Scholar 

  • Kumar R, Kumar AV (1999) Biodeterioration of stone in tropical environments – an overview. J. Paul Getty Trust, Los Angeles, 85 pp

    Google Scholar 

  • Kumar NS, Kumar R, Singh S, Brown RM Jr (2007) Airborne algae: their present status and relevance. J Phycol 43:615–627

    Google Scholar 

  • La Cono V, Urzì C (2003) Fluorescent in situ hybridization (FISH) applied on samples taken with adhesive tape strips. J Microbiol Methods 55:65–71

    PubMed  Google Scholar 

  • Lakshmi KS, Adhikary SP (2008) Diversity of microalgae and cyanobacteria on building facades and monuments of India. Algae 23:91–114

    Google Scholar 

  • Lakshmi KS, Jnanendra R, Adhikary SP (2008) Growth response and protein profile of two different Scytonema species from cave walls and soil crusts in light and dark. Algol Stud 127:49–60

    Google Scholar 

  • Lamenti G, Tiano P, Tomaselli L (2000) Biodeterioration of ornamental marble statues in the Boboli Garden (Florence, Italy). J Appl Phycol 12:427–433

    Google Scholar 

  • Lamprinou V, Pantazidou A, Papadogiannaki G, Radea C, Economou-Amilli A (2009) Cyanobacteria and associated invertebrates in Leontari Cave, Attica (Greece). Fottea 9:155–164

    Google Scholar 

  • Lamprinou V, Hernández-Mariné M, Canals T, Kormas K, Economou-Amilli A, Pantazidou A (2011) Two new Stigonematalean cyanobacteria: Iphinoe spelaeobios gen. nov., sp. nov. and Loriellopsis cavernicola gen. nov., sp. nov. from Greek and Spanish caves. Morphology and molecular evaluation. Int J Syst Evol Microbiol. doi:10.1099/ijs.0.029223-0

  • Lan W, Hui Li H, Wang W-D, Katayama Y, Gu J-D (2010) Microbial community analysis of fresh and old microbial biofilms on Bayon Temple Sandstone of Angkor Thom, Cambodia. Microb Ecol 60:105–115

    PubMed  Google Scholar 

  • Leclerc JC, Couté A, Dupuy P (1983) Le climat annuel de deux grottes et d’une église du Poitou, ou vivent des colonies pures d’algues sciaphiles. Cryptogam Algol 4:1–19

    Google Scholar 

  • Lefèvre M (1974) La maladie verte de Lascaux. Stud Conserv 19:126–156

    Google Scholar 

  • Lefèvre M, Laporte G, Bauer J (1964) Sur les microorganismes envahissant les peintures rupestres de la grotte préhistorique de Lascaux. C R Acad Sci 258:5116–5118

    Google Scholar 

  • Macedo MF, Miller AZ, Dioniso A, Saiz-Jimenez C (2009) Biodiversity of cyanobacteria and green algae on monuments in the Mediterranean Basin: an overview. Microbiology 155:3476–3490

    PubMed  CAS  Google Scholar 

  • Martınez A, Asencio AD (2010) Distribution of cyanobacteria at the Gelada Cave (Spain) by physical parameters. J Cave Karst Stud 72:11–20

    Google Scholar 

  • May E, Jones M, Mitchell J (2008) Heritage microbiology and science: microbes, monuments and maritime materials. Cambridge RCS Publishing, Cambridge, 305 pp

    Google Scholar 

  • McNamara CJ, Mitchell R (2005) Microbial deterioration of historic stone. Front Ecol Environ 3:445–451

    Google Scholar 

  • McNamara CJ, Perry TD, Bearce KA, Hernandez-Duque G, Mitchell R (2006) Epilithic and endolithic bacterial communities in limestone from a Maya archaeological site. Microb Ecol 51:51–64

    PubMed  Google Scholar 

  • Miller A, Dioniso A, Macedo MF (2006) Primary bioreceptivity: a comparative study of different Portuguese lithotypes. Int Biodeter Biodegr 57:136–142

    CAS  Google Scholar 

  • Miller AZ, Laiz L, Gonzalez JM, Dionísio A, Macedo MF, Saiz-Jimenez C (2008) Reproducing stone monument photosynthetic-based colonization under laboratory conditions. Sci Total Environ 405:278–285

    PubMed  CAS  Google Scholar 

  • Miller AZ, Laiz L, Dionísio A, Macedo MF, Saiz-Jimenez C (2009) Growth of phototrophic biofilms from limestone monuments under laboratory conditions. Int Biodeter Biodegr 63:860–867

    CAS  Google Scholar 

  • Mohammadi P, Krumbein WE (2008) Biodeterioration of ancient stone materials from the Persepolis monuments (Iran). Aerobiologia 24:27–33

    Google Scholar 

  • Mulec J, Kosi G (2009) Lampenflora algae and methods of growth control. J Cave Karst Stud 71:109–115

    CAS  Google Scholar 

  • Mulec J, Kosi G, Vrhovšek D (2008) Characterization of cave aerophytic algal communities and effects of irradiance levels on production of pigments. J Cave Karst Stud 70:3–12

    CAS  Google Scholar 

  • Nugari MP, Ricci S, Roccardi A, Monte M (2003) Churches and hypogea. In: Mandrioli P, Caneva G, Sabbioni C (eds) Cultural heritage and aerobiology, methods and measuring techniques for biodeterioration monitoring. Kluwer Academic Publishers, Dordrecht, pp 207–244

    Google Scholar 

  • Nugari MP, Pietrini AM, Caneva G, Imperi F, Visca P (2009) Biodeterioration of mural paintings in a rocky habitat: the Crypt of the Original Sin (Matera, Italy). Int Biodeter Biodegr 63:705–711

    CAS  Google Scholar 

  • Nuhoglu Y, Oguz E, Uslu H, Ozbek A, Ipekoglu B, Ocak I, Hasenekoglu I (2006) The accelerating effects of the microorganisms on biodeterioration of stone monuments under air pollution and continental-cold climatic conditions in Erzurum, Turkey. Sci Total Environ 364:272–283

    PubMed  CAS  Google Scholar 

  • Ortega-Calvo JJ, Hernández-Mariné M, Saiz-Jiménez C (1991) Biodeterioration of building materials by cyanobacteria and algae. Int Biodeter 28:165–185

    Google Scholar 

  • Ortega-Calvo JJ, Hernandez-Mariné M, Saiz-Jimenez C (1993) Cyanobacteria and algae on historic building and monuments. In: Garg KL, Garg N, Mukerji KG (eds) Récent advances in biodeterioration and biodégradation, vol 1. Naya Prokash, Calcutta, pp 173–203

    Google Scholar 

  • Ortega-Calvo JJ, Arifto X, Stal LJ, Saiz-Jimenez C (1994) Cyanobacterial sulfate accumulation from black crust of a historic building. Geomicrobiol J 12:15–22

    CAS  Google Scholar 

  • Ortega-Calvo JJ, Ariño X, Hernandez-Mariné M, Saiz-Jimenez C (1995) Factors affecting the weathering and colonization of monuments by phototrophic microorganisms. Sci Total Environ 167:329–341

    CAS  Google Scholar 

  • Ortega-Morales O (2006) Cyanobacterial diversity and ecology on historic monuments in Latin America. Rev Latinoam Microbiol 48:188–195

    PubMed  Google Scholar 

  • Ortega-Morales O, Guezennec J, Hernandez-Duque G, Gaylarde CC, Gaylarde PM (2000) Phototrophic biofilms on ancient Mayan buildings in Yucatan, Mexico. Curr Microbiol 40:81–85

    PubMed  CAS  Google Scholar 

  • Ortega-Morales O, Gaylarde CC, Englert GE, Gaylarde PM (2005) Analysis of salt-containing biofilms on limestone buildings of the Mayan culture at Edzna, Mexico. Geomicrobiol J 22:261–268

    CAS  Google Scholar 

  • Pattanaik B, Adhikary SP (2002a) Blue green algal flora at some archaeological sites and monuments in India. Feddes Repert 113:289–300

    Google Scholar 

  • Pattanaik B, Adhikary SP (2002b) Blue green algal flora on archaeological monuments of India. Bull Bot Surv India 44:61–74

    Google Scholar 

  • Pattanaik B, Sahu JK, Adhikary SP (2004) Changes in the protein profile of cyanobacteria from terrestrial habitats in response to heat and UV-B radiation. Archiv Hydrobiol Algol Stud 113:175–182

    Google Scholar 

  • Pattanaik B, Schumann R, Karsten U (2007) Effects of ultraviolet radiation on cyanobacteria and their protective mechanisms. In: Seckbach J (ed) Algae and cyanobacteria in extreme environments. Springer, Dordrecht, pp 31–45, 811 pp

    Google Scholar 

  • Pentecost A (1992) Growth and distribution of endolithic algae in some North Yorkshire streams (UK). Br Phycol J 27:145–151

    Google Scholar 

  • Pentecost A, Whitton BA (2000) Limestones. In: Whitton BA, Potts M (eds) The ecology of cyanobacteria: their diversity in time and space. Kluwer Academic Publisher, Dordrecht, pp 257–279, 669 pp

    Google Scholar 

  • Pereira S, Zille A, Micheletti E, Modaras-Ferreira P, De Philippis R (2009) Complexity of cyanobacterial exoploysaccharides: composition, structures, inducing factors and putative genes involved in their biosynthesis and assembly. FEMS Microbiol Rev 33:917–941

    PubMed  CAS  Google Scholar 

  • Pietrini AM, Ricci S (1993) Occurrence of a calcareous blue-green alga, Scytonema julianum (Kütz) Meneghini, on the frescoes of a church carved from the rock in Matera, Italy. Cryptogamic Bot 3:290–295

    Google Scholar 

  • Pietrini AM, Ricci S (2009) Problems of biodeterioration in relation to particular types of environments. – Fountains and Nynphaea. In: Caneva G, Nugari MP, Salvadori O (eds) Plant biology for cultural heritage. Getty Conservation Institute, Los Angeles, pp 200–205

    Google Scholar 

  • Pietrini AM, Ricci S, Nugari MP (2009) Churches and crypts. In: Caneva G, Nugari MP, Salvadori O (eds) Plant biology for cultural heritage. Biodeterioration and conservation. Getty Conservation Institute, New York, pp 179–183

    Google Scholar 

  • Polerecky L, Bissett A, Al-Najjar M, Faerber P, Osmers H, Suci PA, Stoodley P, de Beer D (2009) Modular spectral imaging system for discrimination of pigments in cells and microbial communities. Appl Environ Microbiol 75:758–771

    PubMed  CAS  Google Scholar 

  • Poulíčková A, Hašler P (2007) Aerophytic diatoms from caves in central Moravia (Czech Republic). Preslia 79:185–204

    CAS  Google Scholar 

  • Prieto B, Silva B (2005) Estimation of the potential bioreceptivity of granitic rocks from their intrinsic properties. Int Biodeter Biodegr 56:206–215

    CAS  Google Scholar 

  • Pulido-Bosch A, Martin-rosales W, Lopez-Chicano M, Rodriguez-Navarro CM, Vellejos A (1997) Human impact in a tourist karstic cave (Aracena, Spain). Environ Geol 31:142–149

    Google Scholar 

  • Raimondi V, Cecchi G, Lognoli D, Palombi L, Grőnlund A, Johansen A, Svanberg S, BarupK HJ (2009) The fluorescence LIDAR technique for the remote sensing of photoautotrophic biodeteriogens in the outdoor cultural heritage: a decade of in situ experiments. Int Biodeter Biodegr 63:823–835

    CAS  Google Scholar 

  • Raistrick A, Gilbert OL (1963) Malham Tarn House: its building materials, their weathering and colonization by plants. Field Stud Counc 1:89–115

    Google Scholar 

  • Rajaniemi P, Hrouzek P, Kaštovská K, Willame R, Rantala A, Hoffmann L, Komárek J, Sivonen K (2005) Phylogenetic and morphological evaluation of the genera Anabaena, Aphanizomenon, Trichormus and Nostoc (Nostocales, Cyanobacteria). Int J Syst Evol Microbiol 55:11–26

    PubMed  CAS  Google Scholar 

  • Ramírez M, Hernández-Mariné M, Novelo E, Roldán M (2010) Cyanobacteria-containing biofilms from a Mayan monument in Palenque, Mexico. Biofouling 26:399–409

    PubMed  Google Scholar 

  • Rickard AH, Gilbert P, High NJ, Kolenbrander PE, Handley PS (2003) Bacterial co-aggregation: an integral process in the development of multi-species biofilms. Trends Microbiol 2:94–100

    Google Scholar 

  • Riding R (2006) Cyanobacterial calcification, carbon dioxide concentrating mechanisms, and Proterozoic–Cambrian changes in atmospheric composition. Geobiology 4:299–316

    CAS  Google Scholar 

  • Rindi F (2007) Diversity, distribution and ecology of green algae and cyanobacteria in urban habitats. In: Seckbach J (ed) Algae and cyanobacteria in extreme environments. Springer, Dordrecht, pp 621–638, 811 pp

    Google Scholar 

  • Rodea-Palomares I, Boltes K, Fernández-Piñas F, Leganés F, García-Calvo E, Santiago J, Rosal R (2010) Physicochemical characterization and ecotoxicological assessment of CeO2 nanoparticles using two aquatic microorganisms. Toxicol Sci 119:135–145

    PubMed  Google Scholar 

  • Roldán M, Hernández-Mariné M (2008) The influence of green light on cyanobacterial fine structure: applicability for dim environments. Algol Stud 126:159–171

    Google Scholar 

  • Roldán M, Hernández-Mariné M (2009) Exploring the secrets of the three-dimensional architecture of phototrophic biofilms in caves. Int J Speleol 38:41–53

    Google Scholar 

  • Roldán M, Clavero E, Canals A, Gómez-Bolea A, Ariño X, Hernández-Mariné M (2004) Distribution of phototrophic biofilms in cavities (Garraf, Spain). Nova Hedwig 78:329–351

    Google Scholar 

  • Roldan M, Oliva F, Gonzalez del Valle MA, Saiz-Jimenez C, Hernandez-Marine M (2006) Does green light influence the fluorescence properties and structure of phototrophic biofilms? Appl Environ Microbiol 72:3026–3031

    PubMed  CAS  Google Scholar 

  • Rossi F, Micheletti E, Bruno L, Adhykary SP, Albertano P, De Philippis R (2012) Characteristics and role of the exocellular polysaccharides produced by five cyanobacteria isolated from phototrophic biofilms growing on stone monuments. Biofouling 28:215–224

    Google Scholar 

  • Roy A, Tripathy P, Adhikary SP (1997) Epilithic blue-green algae/cyanobacteria from temples of India and Nepal. II. Presence of UV sunscreen pigments. Arch Hydrobiol Algol Stud 86:147–161

    Google Scholar 

  • Saarela M, Halakomi HL, Suihko ML, Maunuksela L, Raaska L, Mattila-Sandholm T (2004) Heterotrophic microorganisms in air and biofilm samples from Roman catacombs, with special emphasis on actinobacteria and fungi. Int Biodeter Biodegr 54:27–37

    Google Scholar 

  • Saiz-Jimenez C, Garcia-Rowe J, Garcia del Cura MA, Ortega-Calvo JJ, Roekens E, van Grieken R (1990) Endolithic cyanobacteria in Maastricht limestone. Sci Total Environ 94:209–220

    CAS  Google Scholar 

  • Salkinoja-Salonen MS, Peltola J, Andersson MA (2003) Microbial toxins in moisture damaged indoor environment and cultural assets. In: Saiz-Jimenez C (ed) Molecular biology and cultural heritage. Swets and Zeitlinger BV, Lisse, pp 93–105

    Google Scholar 

  • Sánchez-Antón F, Asencio-Martínez AD (2007) Participation of Cyanophyceae in the biodeterioration of the stones of the Santo Domingo College in Orihuela, Alicante (SE Spain). Algol Stud 124:95–108

    Google Scholar 

  • Sanchez-Moral S, Luque L, Cuezva S, Soler V, Benavente D, Laiz L, Gonzalez JM, Saiz-Jimenez C (2005) Deterioration of building materials in Roman catacombs: the influence of visitors. Sci Total Environ 349:260–276

    PubMed  CAS  Google Scholar 

  • Scheerer S, Ortega-Morales O, Gaylarde C (2009) Microbial deterioration of stone monuments -an updated overview. Appl Microbiol 66:97–139

    CAS  Google Scholar 

  • Sigler WV, Bachofen R, Zeyer J (2003) Molecular characterization of endolithic cyantobacteria inhabiting exposed dolomite in central Switzerland. Environ Microbiol 5:618–627

    PubMed  CAS  Google Scholar 

  • Smith T, Olson R (2007) A taxonomic survey of Lamp Flora (Algae and Cyanobacteria) in electrically lit passages within Mammoth Cave National Park, Kentuky. Int J Speleol 36:105–114

    Google Scholar 

  • Stal LJ (2000) Cyanobacterial mats and stromatolites. In: Whitton BA, Potts M (eds) The ecology of cyanobacteria: their diversity in time and space. Kluwer Academic Publishers, Dordrecht, pp 61–120, 669 pp

    Google Scholar 

  • Stal LJ (2007) Cyanobacteria: diversity and versatility, clues to life in extreme environments. In: Seckbach J (ed) Algae and cyanobacteria in extreme environments. Springer, Dordrecht, pp 661–680, 811 pp

    Google Scholar 

  • Stal LJ (2010) Microphytobenthos as a biogeomorphological force in intertidal sediment stabilization. Ecol Eng 36:236–245

    Google Scholar 

  • Taton A, Grubisic S, Balthasart P, Hodgson DA, Laybourn-Parry J, Wilmotte A (2006) Biogeographical distribution and ecological ranges of benthic cyanobacteria in East Antarctic lakes. FEMS Microbiol Ecol 57:272–289

    PubMed  CAS  Google Scholar 

  • Tomaselli L, Lamenti G, Bosco M, Tiano P (2000) Biodiversity of photosynthetic microorganisms dwelling on stone monuments. Int Biodeter Biodegr 46:251–258

    Google Scholar 

  • Tripathi SN, Chung IK, Lee JA (2007) Diversity and characteristics of terrestrial cyanobacteria near Gimhae City, Korea. J Plant Biol 50:50–59

    Google Scholar 

  • Tripathy P, Roy A, Adhikary SP (1997) Survey of epilithic blue-green algae (Cyanobacteria) from temples of India and Nepal. Arch Hydrobiol Suppl Algol Stud 87:43–57

    Google Scholar 

  • Tripathy P, Roy A, Anand N, Adhikary SP (1999) Blue green algal flora on the rock surface of temples and monuments of India. Feddes Reper 110:133–144

    Google Scholar 

  • Uher B, Aboal M, Kovacik L (2005) Epilithic and chasmoendolithic phycoflora of monuments and buildings in South-Estern Spain. Crypt Algol 26:275–358

    Google Scholar 

  • Urzì C (2004) Microbial deterioration of rocks and marble monuments of the Mediterranean basin: a review. Corros Rev 22:441–459

    Google Scholar 

  • Urzì C, Albertano P (2001) Studying phototrophic and heterotrophic microbial communities on stone monuments. Methods Enzymol 336:340–355. Academic Press, San Diego

    Google Scholar 

  • Urzi C, De Leo F (2001) Sampling with adhesive tape strips: an easy and rapid method to monitor microbial colonization on monument surfaces. J Microbiol Methods 44:1–11

    PubMed  CAS  Google Scholar 

  • Urzì C, De Leo F (2007) Evaluation of the efficiency of water-repellent and biocide compounds against microbial colonization of mortars. Int Biodeter Biodegr 60:25–34

    Google Scholar 

  • Urzì C, Krumbein WE, Warscheid T (1992) On the question of biogenic colour changes of Mediterranean monuments (coating, crust, micro-stromatolite, patina, scialbatura, skin, rock varnish). In: Decrouez D, Chamay J, Zezza F (eds) Proceedings of the 3rd international symposium on the conservation of stone. Musée d’Art et d’Histoire, Genève, pp 397–420

    Google Scholar 

  • Urzì C, De Leo F, Schumann P (2008) Kribbella catacumbae sp. nov. and Kribbella sancticallisti sp. nov., isolated from whitish-grey patinas in the Catacombs of St Callistus in Rome, Italy. Int J Syst Evol Microbiol 58:2090–2097

    PubMed  Google Scholar 

  • Urzì C, De Leo F, Bruno L, Albertano P (2010) Microbial diversity in Paleolithic caves: a study case on the phototrophic biofilms of the Cave of Bats (Zuheros, Spain). Microb Ecol 60:116–129

    PubMed  Google Scholar 

  • Uzunov BA, Stoyneva MP, Gärtner G (2007) Review of the studies on aero-terrestrial cyanoprokaryotes and algae in Bulgaria with a checklist of the recorded species.1. Phytol Balc 13:65–73

    Google Scholar 

  • Vincent W (2007) Cold tolerance in cyanobacteria and life in the cryosphere. In: Seckbach J (ed) Algae and cyanobacteria in extreme environments. Springer, Dordrecht, pp 289–301, 811 pp

    Google Scholar 

  • Vinogradova ON, Kovalenko OV, Wasser SP, Nevo E, Weinstein-Eviron M (1998) Species diversity gradient to darkness stress in blue-green algae/cyanobacteria: a microscale test in a prehistoric cave, Mount Carmel, Israel. Isr J Sci 46:229–238

    Google Scholar 

  • Vinogradova ON, Nevo E, Wasser SP (2009) Algae of the Sefunum Cave (Israel): species diversity affected by light, humidity and rock stresses. Int J Algae 11:99–116

    Google Scholar 

  • Warscheid T, Braams J (2000) Biodeterioration of stone: a review. Int Biodeter Biodegr 46:343–368

    CAS  Google Scholar 

  • Wilmotte A (1994) Molecular evolution and taxonomy of the cyanobacteria. In: Bryant DA (ed) The molecular biology of cyanobacteria. Kluwer Academic Publishers, Boston, pp 1–25

    Google Scholar 

  • Wilmotte A, Herdmann M (2001) Phylogenetic relationships among the cyanobacteria based on 16S rRNA sequencing. In: Boone DR, Castenholz RW (eds) Bergey’s manual of systematic bacteriology, vol I. Springer, New York, pp 487–493

    Google Scholar 

  • Wynn-Williams DD (2000) Cyanobacteria in deserts – life at the limits? In: Whitton BA, Potts M (eds) The ecology of cyanobacteria: their diversity in time and space. Kluwer Academic Publishers, Dordrecht, pp 341–366, 669 pp

    Google Scholar 

  • Zakhis F, Jungblut A-D, Taton A, Vincent WF, Wilmotte A (2008) Cyanobacteria in cold ecosystems. In: Margesin R, Schinner F, Marx J-C, Gerday C (eds) Psychrophiles: from biodiversity to ­biotechnology. Springer, Dordrecht, pp 121–128

    Google Scholar 

  • Zammit G, Psaila P, Albertano P (2008) An investigation into biodeterioration caused by microbial communities colonising Maltese Palaeo-Christian Catacombs. In: Notea A, Shoef Y (eds) Art 2008: non-destructive testing, microanalysis and preservation in the conservation of cultural and environmental heritage. ISAS International Seminars Ltd., Jerusalem, pp 1–10

    Google Scholar 

  • Zammit G, Kastovsky J, Albertano P (2010) A first cytomorphological and molecular characterization of a new Stigonematalean cyanobacterial morphotype isolated from Maltese catacombs. Algol Stud 135:1–14

    CAS  Google Scholar 

  • Zammit G, Billi D, Shubert ET, Kastovsky J, Albertano P (2011a) The biodiversity of subaeorophytic phototrophic biofilms from Maltese hypogea. Fottea 11:187–201

    Google Scholar 

  • Zammit G, Sanchez-Moral S, Albertano P (2011b) Bacterially mediated mineralisation processes lead to biodeterioration of artworks in Maltese catacombs. Sci Total Environ 409:2773–2782

    PubMed  CAS  Google Scholar 

  • Zammit G, Billi D, Albertano P (2012) The subaerophytic cyanobacterium Oculatella subterranea (Oscillatoriales, Cyanophyceae) gen. et sp. nov: a cytomorphological and molecular description. Euro J Phycol 47 (in press)

    Google Scholar 

  • Zanardini E, Abbruscato P, Ghedini N, RealiniM SC (2000) Influence of atmospheric pollutants on biodeterioration of stone. Int Biodeter Biodegr 45:35–42

    CAS  Google Scholar 

  • Zimmerman J, Gonzales JM, Ludwig W, Saiz-Jimenez C (2005) Detection and phylogenetic relationships of highly diverse uncultured acidobacterial communities in Altamira cave using 23S rRNA sequence. Geomicrobiol J 22:379–388

    Google Scholar 

  • Zimmerman J, Gonzales JM, Saiz-Jimenez C (2006) Epilithic biofilms in Saint Callixtus Catacombs (Rome) harbour a broad spectrum of Acidobacteria. Antonie Van Leeuwenhoek 89:203–208

    Google Scholar 

Download references

Acknowledgements

I thank Laura Bruno and the students of the Laboratory of Biology of Algae of Tor Vergata who contributed to the studies on biodeterioration, Clara Urzì, Roberto De Philippis and Siba Prasad Adhikary for their friendly and fruitful collaboration, and Raffaella Giuliani of the Pontificia Commissione di Archeologia Sacra (CdV) for the helpful assistance during the years spent working inside the Christian catacombs of Rome. Acknowledgements are also due the National Research Council of Italy, the European Commission DGXII Environment and the University of “Tor Vergata” for supporting these studies during the last two decades. Many thanks also to Brian Whitton for suggestions during the writing of this chapter and to my husband for the time subtracted to our personal life.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Albertano, P. (2012). Cyanobacterial Biofilms in Monuments and Caves. In: Whitton, B. (eds) Ecology of Cyanobacteria II. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-3855-3_11

Download citation

Publish with us

Policies and ethics