Skip to main content

Algebraic Flux Correction II

Compressible Flow Problems

  • Chapter
Flux-Corrected Transport

Part of the book series: Scientific Computation ((SCIENTCOMP))

Abstract

Flux limiting for hyperbolic systems requires a careful generalization of the design principles and algorithms introduced in the context of scalar conservation laws. In this chapter, we develop FCT-like algebraic flux correction schemes for the Euler equations of gas dynamics. In particular, we discuss the construction of artificial viscosity operators, the choice of variables to be limited, and the transformation of antidiffusive fluxes. An a posteriori control mechanism is implemented to make the limiter failsafe. The numerical treatment of initial and boundary conditions is discussed in some detail. The initialization is performed using an FCT-constrained L 2 projection. The characteristic boundary conditions are imposed in a weak sense, and an approximate Riemann solver is used to evaluate the fluxes on the boundary. We also present an unconditionally stable semi-implicit time-stepping scheme and an iterative solver for the fully discrete problem. The results of a numerical study indicate that the nonlinearity and non-differentiability of the flux limiter do not inhibit steady state convergence even in the case of strongly varying Mach numbers. Moreover, the convergence rates improve as the pseudo-time step is increased.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Angrand, F., Dervieux, A.: Some explicit triangular finite element schemes for the Euler equations. Int. J. Numer. Methods Fluids 4, 749–764 (1984)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. Arminjon, P., Dervieux, A.: Construction of TVD-like artificial viscosities on 2-dimensional arbitrary FEM grids. INRIA Research Report 1111 (1989)

    Google Scholar 

  3. Athena test suite. http://www.astro.virginia.edu/VITA/ATHENA/dmr.html

  4. Balakrishnan, N., Fernandez, G.: Wall boundary conditions for inviscid compressible flows on unstructured meshes. Int. J. Numer. Methods Fluids 28, 1481–1501 (1998)

    Article  ADS  MATH  Google Scholar 

  5. Banks, J.W., Henshaw, W.D., Shadid, J.N.: An evaluation of the FCT method for high-speed flows on structured overlapping grids. J. Comput. Phys. 228, 5349–5369 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. Barth, T.J.: Numerical aspects of computing viscous high Reynolds number flows on unstructured meshes. AIAA Paper 91-0721 (1991)

    Google Scholar 

  7. Behr, M.: On the application of slip boundary condition on curved boundaries. Int. J. Numer. Methods Fluids 45, 43–51 (2004)

    Article  ADS  MATH  Google Scholar 

  8. De Zeeuw, D., Powell, K.G.: An adaptive refined Cartesian mesh solver for the Euler equations. J. Comput. Phys. 104, 56–68 (1993)

    Article  ADS  MATH  Google Scholar 

  9. Dolejší, V., Feistauer, M.: A semi-implicit discontinuous Galerkin finite element method for the numerical solution of inviscid compressible flow. J. Comput. Phys. 198, 727–746 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. Donea, J., Selmin, V., Quartapelle, L.: Recent developments of the Taylor-Galerkin method for the numerical solution of hyperbolic problems. In: Numerical Methods for Fluid Dynamics III, pp. 171–185. Oxford University Press, Oxford (1988)

    Google Scholar 

  11. Engelman, M.S., Sani, R.L., Gresho, P.M.: The implementation of normal and/or tangential boundary conditions in finite element codes for incompressible fluid flow. Int. J. Numer. Methods Fluids 2, 225–238 (1982)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. Farrell, P.E., Piggott, M.D., Pain, C.C., Gorman, G.J., Wilson, C.R.: Conservative interpolation between unstructured meshes via supermesh construction. Comput. Methods Appl. Mech. Eng. 198, 2632–2642 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. Feistauer, M., Felcman, J., Straškraba, I.: Mathematical and Computational Methods for Compressible Flow. Clarendon Press, Oxford (2003)

    MATH  Google Scholar 

  14. Feistauer, M., Kučera, V.: On a robust discontinuous Galerkin technique for the solution of compressible flow. J. Comput. Phys. 224, 208–231 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. Fezoui, L., Stoufflet, B.: A class of implicit upwind schemes for Euler simulations with unstructured meshes. J. Comput. Phys. 84, 174–206 (1989)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. Fletcher, C.A.J.: The group finite element formulation. Comput. Methods Appl. Mech. Eng. 37, 225–243 (1983)

    Article  MathSciNet  ADS  Google Scholar 

  17. Ghidaglia, J.-M., Pascal, F.: On boundary conditions for multidimensional hyperbolic systems of conservation laws in the finite volume framework. Technical Report, ENS de Cachan (2002)

    Google Scholar 

  18. Gurris, M.: Implicit finite element schemes for compressible gas and particle-laden gas flows. PhD Thesis, Dortmund University of Technology (2010)

    Google Scholar 

  19. Gurris, M., Kuzmin, D., Turek, S.: Implicit finite element schemes for the stationary compressible Euler equations. Int. J. Numer. Methods Fluids (2011). doi:10.1002/fld.2532

    Google Scholar 

  20. Harten, A.: On a class of high-resolution total-variation-stable finite-difference schemes. SIAM J. Numer. Anal. 21, 1–23 (1984)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. Harten, A., Hyman, J.M.: Self adjusting grid methods for one-dimensional hyperbolic conservation laws. J. Comput. Phys. 50, 235–269 (1983)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. Hartmann, R.: Homepage http://www.numerik.uni-hd.de/~hartmann/

  23. Hartmann, R., Houston, P.: Adaptive discontinuous Galerkin finite element methods for the compressible Euler equations. J. Comput. Phys. 183, 508–532 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. Hirsch, C.: Numerical Computation of Internal and External Flows. Vol. II: Computational Methods for Inviscid and Viscous Flows. Wiley, Chichester (1990)

    Google Scholar 

  25. Krivodonova, L., Berger, M.: High-order accurate implementation of solid wall boundary conditions in curved geometries. J. Comput. Phys. 211, 492–512 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  26. Kuzmin, D.: Linearity-preserving flux correction and convergence acceleration for constrained Galerkin schemes. J. Comput. Appl. Math. (2012, to appear)

    Google Scholar 

  27. Kuzmin, D.: A Guide to Numerical Methods for Transport Equations. University Erlangen-Nuremberg, Erlangen (2010). http://www.mathematik.uni-dortmund.de/~kuzmin/Transport.pdf

    Google Scholar 

  28. Kuzmin, D.: Explicit and implicit FEM-FCT algorithms with flux linearization. J. Comput. Phys. 228, 2517–2534 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  29. Kuzmin, D.: Algebraic flux correction for finite element discretizations of coupled systems. In: Oñate, E., Papadrakakis, M., Schrefler, B. (eds.) Computational Methods for Coupled Problems in Science and Engineering II, pp. 653–656. CIMNE, Barcelona (2007)

    Google Scholar 

  30. Kuzmin, D., Möller, M.: Goal-oriented mesh adaptation for flux-limited approximations to steady hyperbolic problems. J. Comput. Appl. Math. 233, 3113–3120 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  31. Kuzmin, D., Möller, M.: Algebraic flux correction I. Scalar conservation laws. In: Kuzmin, D., et al. (eds.) Flux-Corrected Transport: Principles, Algorithms and Applications, pp. 155–206. Springer, Berlin (2005). Chapter 6 in the first edition of this book

    Chapter  Google Scholar 

  32. Kuzmin, D., Möller, M.: Algebraic flux correction II. Compressible Euler equations. In: Kuzmin, D., et al. (eds.) Flux-Corrected Transport: Principles, Algorithms and Applications, pp. 207–250. Springer, Berlin (2005). Chapter 7 in the first edition of this book

    Chapter  Google Scholar 

  33. Kuzmin, D., Möller, M., Shadid, J.N., Shashkov, M.: Failsafe flux limiting and constrained data projections for equations of gas dynamics. J. Comput. Phys. 229, 8766–8779 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  34. Kuzmin, D., Möller, M., Turek, S.: High-resolution FEM-FCT schemes for multidimensional conservation laws. Comput. Methods Appl. Mech. Eng. 193, 4915–4946 (2004)

    Article  ADS  MATH  Google Scholar 

  35. LeVeque, R.J.: Numerical Methods for Conservation Laws. Birkhäuser, Basel (1992)

    Book  MATH  Google Scholar 

  36. LeVeque, R.J.: Simplified multi-dimensional flux limiting methods. In: Numerical Methods for Fluid Dynamics, vol. IV, pp. 175–190. Oxford University Press, Oxford (1993)

    Google Scholar 

  37. LeVeque, R.J.: Finite Volume Methods for Hyperbolic Problems. Cambridge University Press, Cambridge (2003)

    Google Scholar 

  38. LeVeque, R.J.: CLAWPACK—Conservation LAWs PACKage. http://www.amath.washington.edu/~claw/

  39. Liska, R., Shashkov, M., Váchal, P., Wendroff, B.: Optimization-based synchronized Flux-Corrected Conservative interpolation (remapping) of mass and momentum for Arbitrary Lagrangian-Eulerian methods. J. Comput. Phys. 229, 1467–1497 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  40. Löhner, R.: Applied CFD Techniques: An Introduction Based on Finite Element Methods, 2nd edn. Wiley, New York (2008)

    Google Scholar 

  41. Löhner, R., Baum, J.D.: 30 years of FCT: Status and directions. In: Kuzmin, D., et al. (eds.) Flux-Corrected Transport: Principles, Algorithms and Applications, pp. 131–154. Springer, Berlin (2005). Chapter 5 in the first edition of this book

    Chapter  Google Scholar 

  42. Löhner, R., Morgan, K., Peraire, J., Vahdati, M.: Finite element flux-corrected transport (FEM-FCT) for the Euler and Navier-Stokes equations. Int. J. Numer. Methods Fluids 7, 1093–1109 (1987)

    Article  MATH  Google Scholar 

  43. Löhner, R., Morgan, K., Zienkiewicz, O.C.: An adaptive finite element procedure for compressible high speed flows. Comput. Methods Appl. Mech. Eng. 51, 441–465 (1985)

    Article  ADS  MATH  Google Scholar 

  44. Luo, H., Baum, J.D., Löhner, R.: Numerical solution of the Euler equations for complex aerodynamic configurations using an edge-based finite element scheme. AIAA-93-2933 (1993)

    Google Scholar 

  45. Lyra, P.R.M., Morgan, K., Peraire, J., Peiro, J.: TVD algorithms for the solution of the compressible Euler equations on unstructured meshes. Int. J. Numer. Methods Fluids 19, 827–847 (1994)

    Article  ADS  MATH  Google Scholar 

  46. Lyra, P.R.M., Morgan, K.: A review and comparative study of upwind biased schemes for compressible flow computation. I: 1-D first-order schemes. Arch. Comput. Methods Eng. 7(1), 19–55 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  47. Lyra, P.R.M., Morgan, K.: A review and comparative study of upwind biased schemes for compressible flow computation. II: 1-D higher-order schemes. Arch. Comput. Methods Eng. 7(3), 333–377 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  48. Lyra, P.R.M., Morgan, K.: A review and comparative study of upwind biased schemes for compressible flow computation. III: Multidimensional extension on unstructured grids. Arch. Comput. Methods Eng. 9(3), 207–256 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  49. Möller, M.: Adaptive high-resolution finite element schemes. PhD thesis, Dortmund University of Technology (2008)

    Google Scholar 

  50. Möller, M.: Efficient solution techniques for implicit finite element schemes with flux limiters. Int. J. Numer. Methods Fluids 55, 611–635 (2007)

    Article  MATH  Google Scholar 

  51. Morgan, K., Peraire, J.: Unstructured grid finite element methods for fluid mechanics. Rep. Prog. Phys. 61(6), 569–638 (1998)

    Article  ADS  Google Scholar 

  52. Nejat, A.: A higher-order accurate unstructured finite volume Newton-Krylov algorithm for inviscid compressible flows. PhD Thesis, Vancouver (2007)

    Google Scholar 

  53. Peraire, J., Vahdati, M., Peiro, J., Morgan, K.: The construction and behaviour of some unstructured grid algorithms for compressible flows. In: Numerical Methods for Fluid Dynamics, vol. IV, pp. 221–239. Oxford University Press, Oxford (1993)

    Google Scholar 

  54. Roe, P.L.: Approximate Riemann solvers, parameter vectors and difference schemes. J. Comput. Phys. 43, 357–372 (1981)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  55. Rohde, A.: Eigenvalues and eigenvectors of the Euler equations in general geometries. AIAA Paper 2001-2609 (2001)

    Google Scholar 

  56. Selmin, V.: Finite element solution of hyperbolic equations. I. One-dimensional case. INRIA Research Report 655 (1987)

    Google Scholar 

  57. Selmin, V.: Finite element solution of hyperbolic equations. II. Two-dimensional case. INRIA Research Report 708 (1987)

    Google Scholar 

  58. Selmin, V.: The node-centred finite volume approach: bridge between finite differences and finite elements. Comput. Methods Appl. Mech. Eng. 102, 107–138 (1993)

    Article  ADS  MATH  Google Scholar 

  59. Selmin, V., Formaggia, L.: Unified construction of finite element and finite volume discretizations for compressible flows. Int. J. Numer. Methods Eng. 39, 1–32 (1996)

    Article  MATH  Google Scholar 

  60. Shapiro, R.A.: Adaptive Finite Element Solution Algorithm for the Euler Equations. Notes on Numerical Fluid Mechanics, vol. 32. Vieweg, Wiesbaden (1991)

    Book  MATH  Google Scholar 

  61. Smith, T.M., Hooper, R.W., Ober, C.C., Lorber, A.A.: Intelligent nonlinear solvers for computational fluid dynamics. Conference Paper, Presentation at the 44th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, January 2006

    Google Scholar 

  62. Smolarkiewicz, P.K., Grell, G.A.: A class of monotone interpolation schemes. J. Comput. Phys. 101, 431–440 (1992)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  63. Sod, G.: A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws. J. Comput. Phys. 27, 1–31 (1978)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  64. Toro, E.F.: Riemann Solvers and Numerical Methods for Fluid Dynamics. Springer, Berlin (1999)

    MATH  Google Scholar 

  65. Toro, E.F.: NUMERICA, A Library of Source Codes for Teaching, Research and Applications. Numeritek Ltd., http://www.numeritek.com (1999)

  66. Trépanier, J.-Y., Reggio, M., Ait-Ali-Yahia, D.: An implicit flux-difference splitting method for solving the Euler equations on adaptive triangular grids. Int. J. Numer. Methods Heat Fluid Flow 3, 63–77 (1993)

    Article  Google Scholar 

  67. Váchal, P., Liska, R.: Sequential flux-corrected remapping for ALE methods. In: Bermudez de Castro, A., Gomez, D., Quintela, P., Salgado, P. (eds.) Numerical Mathematics and Advanced Applications (ENUMATH 2005), pp. 671–679. Springer, Berlin (2006)

    Chapter  Google Scholar 

  68. Vogt, W.: Adaptive Verfahren zur numerischen Quadratur und Kubatur. Preprint No. M 1/06, IfMath TU Ilmenau (2006)

    Google Scholar 

  69. Wesseling, P.: Principles of Computational Fluid Dynamics. Springer, Berlin (2001)

    Book  Google Scholar 

  70. Woodward, P.R., Colella, P.: The numerical simulation of two-dimensional fluid flow with strong shocks. J. Comput. Phys. 54, 115–173 (1984)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  71. Yee, H.C.: Construction of explicit and implicit symmetric TVD schemes and their applications. J. Comput. Phys. 43, 151–179 (1987)

    Article  MathSciNet  ADS  Google Scholar 

  72. Yee, H.C., Warming, R.F., Harten, A.: Implicit Total Variation Diminishing (TVD) schemes for steady-state calculations. J. Comput. Phys. 57, 327–360 (1985)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  73. Zalesak, S.T.: The design of Flux-Corrected Transport (FCT) algorithms for structured grids. In: Kuzmin, D., et al. (eds.) Flux-Corrected Transport: Principles, Algorithms and Applications, pp. 29–78. Springer, Berlin (2005). Chapter 2 in the first edition of this book

    Chapter  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Stefan Turek (Dortmund University of Technology), John Shadid (Sandia National Laboratories), and Mikhail Shashkov (Los Alamos National Laboratory) for many stimulating discussions and useful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitri Kuzmin .

Editor information

Editors and Affiliations

Appendix

Appendix

In this appendix, we derive the artificial diffusion operator for the piecewise-linear Galerkin approximation to the one-dimensional Euler equations

$$\frac{\partial U}{\partial t}+\frac{\partial F}{\partial x}=0.$$
(118)

In the 1D case, we have

$$U=\left [ \begin{array}{c}\rho\\ \rho v\\ \rho E\end{array} \right ],\qquad F=\left [\begin{array}{c}\rho v\\\rho v^2+p\\ \rho Hv\end{array} \right ].$$
(119)

The differentiation of F by the chain rule yields the equivalent quasi-linear form

$$\frac{\partial U}{\partial t}+A\frac{\partial U}{\partial x}=0, $$
(120)

where \(A=\frac{\partial F}{\partial U}\) is the Jacobian matrix. It is easy to verify that

$$A=\left [ \begin{array}{c@{\quad}c@{\quad}c}0 & 1 & 0\\ \frac{1}{2}(\gamma-3)v^2 & (3-\gamma)v & \gamma-1\\[0.1cm]\frac{1}{2}(\gamma-1)v^3-vH\quad& H-(\gamma-1)v^2 &\gamma v\end{array} \right ]. $$
(121)

The eigenvalues and right/left eigenvectors of A satisfy the system of equations

$$A\mathbf{r}_k=\lambda_k\mathbf{r}_k,\quad \mathbf{l}_kA=\lambda_k\mathbf{l}_k,\quad k=1,2,3$$
(122)

which can be written in matrix form as AR= and R −1 A=ΛR −1. Thus,

$$A=R\varLambda R^{-1},\quad\varLambda=\mbox{diag}\{v-c,v,v+c\}$$
(123)

in accordance with (9). The matrices of eigenvalues and eigenvectors are given by

(124)
(125)

and

$$R^{-1}=\left [ \begin{array}{c@{\quad}c@{\quad}c}\frac{1}{2} (b_1+\frac{v}{c} ) &\frac{1}{2} (-b_2v-\frac{1}{c} ) & \frac{1}{2} b_2\\[0.1cm]1-b_1 & b_2v & -b_2\\[0.1cm]\frac{1}{2} (b_1-\frac{v}{c} ) &\frac{1}{2} (-b_2v+\frac{1}{c} ) & \frac{1}{2} b_2\end{array} \right ]=\left [\begin{array}{c} \mathbf{l}_1\\\mathbf{l}_2\\\mathbf{l}_3\end{array} \right ],$$
(126)

where

$$b_1=b_2\frac{v^2}{2},\qquad b_2=\frac{\gamma-1}{c^2}.$$

On a uniform mesh of linear finite elements, the coefficients of the lumped mass matrix M L and of the discrete gradient operator C are given by

$$m_i=\varDelta x,\qquad c_{ij}=\left \{ \begin{array}{l@{\quad}l}1/2, &j=i+1,\\-1/2, &j=i-1.\end{array} \right .$$
(127)

The lumped-mass Galerkin approximation is equivalent to the central difference scheme which can be written in the generic conservative form

$$\frac{\mathrm {d}\mbox {\textsc {u}}_i}{\mathrm {d}t}+\frac{\mbox {\textsc {f}}_{i+1/2}-\mbox {\textsc {f}}_{i-1/2}}{\varDelta x}=0,$$
(128)

where

$$\mbox {\textsc {f}}_{i+1/2}=\frac{\mbox {\textsc {f}}_i+\mbox {\textsc {f}}_{i+1}}{2}.$$

The numerical flux of the low-order scheme with d i+1/2 defined by (42) is

$$\mbox {\textsc {f}}_{i+1/2}=\frac{\mbox {\textsc {f}}_i+\mbox {\textsc {f}}_{i+1}}{2}- \frac{1}{2}|\mbox {\textsc {a}}_{i+1/2}|(\mbox {\textsc {u}}_{i+1}-\mbox {\textsc {u}}_i),$$
(129)

where a i+1/2 is the 1D Roe matrix. The so-defined approximation is known as Roe’s approximate Riemann solver [54]. A detailed description of this first-order scheme can be found in many textbooks on gas dynamics [24, 37, 64]. Roe’s method fails to recognize expansion waves and, therefore, may give rise to entropy-violating solutions (rarefaction shocks) in the neighborhood of sonic points. Hence, some additional numerical diffusion may need to be applied in regions where one of the characteristic speeds approaches zero [20, 21]. This trick is called an entropy fix.

The use of scalar dissipation (46) leads to a Rusanov-like low-order scheme with

$$\mbox {\textsc {f}}_{i+1/2}=\frac{\mbox {\textsc {f}}_i+\mbox {\textsc {f}}_{i+1}}{2}-\frac {a_{i+1/2}}{2}(\mbox {\textsc {u}}_{i+1}-\mbox {\textsc {u}}_i), $$
(130)

where a i+1/2 denotes the fastest characteristic speed. Zalesak [73] defines it as

$$a_{i+1/2}=\frac{|v_i|+|v_{i+1}|}{2}+\frac{c_i+c_{i+1}}{2}.$$

For reasons explained in [5], our definition of the Rusanov flux (130) is based on

$$a_{i+1/2}:=\max\{|v_{i}|+c_{i},|v_{i+1}|+c_{i+1}\}.$$

This formula yields a very robust and efficient low-order method for FCT [33].

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kuzmin, D., Möller, M., Gurris, M. (2012). Algebraic Flux Correction II. In: Kuzmin, D., Löhner, R., Turek, S. (eds) Flux-Corrected Transport. Scientific Computation. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4038-9_7

Download citation

Publish with us

Policies and ethics