Skip to main content

Carbon Storage and Sequestration in Subsoil Horizons: Knowledge, Gaps and Potentials

  • Chapter
  • First Online:
Recarbonization of the Biosphere

Abstract

Carbon (C) sequestered in subsoils generally contributes to more than half of the total stocks within a soil profile. In contrast to topsoil, organic matter (OM) stored in subsoil horizons is characterised by high mean residence times. While the mechanisms and controls of OM stabilisation in topsoils are fairly well understood, processes and dynamics of subsoil OM stabilisation appear to be controlled by other factors. We summarize the available data on C quantities, chemical composition as well as decomposition and stabilisation dynamics in subsoils and discuss the relevance of these processes for longterm carbon storage. Moreover, the importance of spatial dist ribution of SOM and its degraders is addressed. The objective of this chapter was to discuss the controls of carbon sequestration in subsoil horizons in order to explore the possibility to increase soil carbon stocks by carbonising subsoil horizons. Subsoil C is characterised by much higher solubility after destruction of the mineral phase compared to topsoil C suggesting that much of it consists of small molecules stabilised by interaction with the mineral phase. The chemical composition of OM stabilised by mineral interactions in subsoil ­horizons is different from those of topsoils. Precursors of this C may be root-derived and microbially processed organic matter as well as organic matter transported in dissolved form or by bioturbation. The reports about the environmental controls of subsoil OM degradation are conflicting, most likely due to site-specificity. The lower dynamics of temperature and soil moisture in subsoils may thus enhance or reduce OM mineralization, while low nutrient availability is a more common limiting factor. Spatial distribution of OM may determine the likelihood of its stabilisation at long time scales, which may be most related to absence of energy-rich material needed for decomposition. Therefore a suitable strategy for increasing C stocks in deep horizons may be the addition of highly stable OM such as biochar or highly aliphatic material.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

qCO2 :

biomass-specific respiration rates

C:

carbon

DOC:

dissolved organic carbon

DOM:

dissolved organic matter

MRTs:

mean residence time

SOC:

soil organic carbon

SOM:

oil organic matter

OM:

organic matter

References

  • Agnelli A, Ascher J, Corti G et al (2004) Distribution of microbial communities in a forest soil profile investigated by microbial biomass, soil respiration and DGGE of total and extracellular DNA. Soil Biol Biochem 36:859–868

    Article  CAS  Google Scholar 

  • Ajwa HA, Rice CW, Sotomayor D (1988) Carbon and nitrogen mineralization in tallgrass prairie and agricultural soil profiles. Soil Sci Soc Am J 62:942–951

    Article  Google Scholar 

  • Anderson T, Domsch KH (1989) Ratios of microbial biomass carbon to total organic-carbon in arable soils. Soil Biol Biochem 21:471–479

    Article  Google Scholar 

  • Baisden WT, Parfitt RL (2007) Bomb C-14 enrichment indicates decadal C pool in deep soil? Biogeochemistry 85:59–68

    Article  Google Scholar 

  • Bardy M, Bonhomme C, Fritsch E et al (2007) Al speciation in tropical podzols of the upper Amazon Basin: a solid-state 27Al MAS and MQMAS NMR study. Geochim Cosmochim Acta 71:3211–3222

    Article  CAS  Google Scholar 

  • Batjes NH (1996) Total carbon and nitrogen in the soils of the world. Eur J Soil Sci 47:151–163

    Article  CAS  Google Scholar 

  • Bernhardt ES, Barber JJ, Pippen JS, Taneva L, Andrews JA, Schlesinger WH (2006) Long-term effects of free air CO2 enrichment (FACE) on soil respiration. Biogeochemistry 77:91–116

    Article  CAS  Google Scholar 

  • Blume E, Bischoff M, Reichert J et al (2002) Surface and subsurface microbial biomass, community structure and metabolic activity as a function of soil depth and season. Appl Soil Ecol 20:171–181

    Article  Google Scholar 

  • Boström B, Comstedt C, Ekblad A (2007) Isotope fractionation and 13C enrichment in soil profiles during the decomposition of soil organic matter. Oecologia 153:89–98

    Article  PubMed  Google Scholar 

  • Briones MJI, Garnett MH, Ineson P (2011) Soil biology and warming play a key role in the release of ‘old C’ from organic soils. Soil Biol Biochem 42:960–967

    Article  Google Scholar 

  • Brodowski S, Amelung W, Haumaier L et al (2007) Black carbon contribution to stable humus in German arable soils. Geoderma 139:220–228

    Article  CAS  Google Scholar 

  • Bundt M, Widmer F, Pesaro M, Zeyer J, Blaser P (2001) Preferential flow paths: biological ‘hot spots’ in soils. Soil Biol Biochem 33:729–738

    Article  CAS  Google Scholar 

  • Chabbi A, Kögel-Knabner I, Rumpel C (2009) Stabilised carbon in subsoil horizons is located in spatially distinct parts of the soil profile. Soil Biol Biochem 41:256–271

    Article  CAS  Google Scholar 

  • Charnay MP, Tuis S, Coquet Y (2005) Spatial variability in C-14-herbicide degradation in surface and subsurface soils. Pest Manage Sci 61:845–855

    Article  CAS  Google Scholar 

  • Dodds WK, Banks MK, Clenan CS et al (1996) Biological properties of soil and subsurface sediments under abandoned pasture and cropland. Soil Biol Biochem 28:837–846

    Article  CAS  Google Scholar 

  • Don A, Schulze E (2008) Controls on fluxes and export of dissolved organic carbon in grasslands with contrasting soil types. Biogeochemistry 91:117–131

    Article  Google Scholar 

  • Don A, Steinberg B, Schoening I et al (2008) Organic carbon sequestration in earthworm burrows. Soil Biol Biochem 40:1803–1812

    Article  CAS  Google Scholar 

  • Dong S, Brooks D, Jones MD et al (2007) A method for linking in situ activities of hydrolytic enzymes to associated organisms in forest soils. Soil Biol Biochem 39:2414–2419

    Article  CAS  Google Scholar 

  • Ekelund F, Ronn R, Christensen S (2001). Distribution with depth of protozoa, bacteria and fungi in soil profiles from three Danish forest sites. Soil Biol Biochem 33:475–481

    Article  CAS  Google Scholar 

  • Ekschmitt K, Kandeler E, Poll C, Brune A, Buscot F, Friedrich M, Gleixner G, Hartmann A, Kastner M, Marhan S, Miltner A, Scheu S, Wolters V (2008) Soil-carbon preservation through habitat constraints and biological limitations on decomposer activity. J Plant Nutri and Soil Sci 171:27–35

    Google Scholar 

  • Ellenberg H, Leuschner CH (2010) Vegetation mitteleuropas mit den alpen. Ulmer Verlag, Stuttgart

    Google Scholar 

  • Eusterhues K, Rumpel C, Kleber M et al (2003) Stabilisation of soil organic matter by interactions with minerals as revealed by mineral dissolution and oxidative degradation. Org Geochem 34:1591–1600

    Article  CAS  Google Scholar 

  • Eusterhues K, Rumpel C, Kögel-Knabner I (2007) Composition and radiocarbon age of HF-resistant soil organic matter in a Podzol and a Cambisol. Org Geochem 38:1356–1372

    Article  CAS  Google Scholar 

  • Fang C, Moncrieff JB (2005) The variation of soil microbial respiration with depth in relation to soil carbon composition. Plant Soil 268:243–253

    Article  CAS  Google Scholar 

  • Fierer N, Allen AS, Schimel JP et al (2003) Controls on microbial CO2 production: a comparison of surface and subsurface soil horizons. Glob Change Biol 9:1322–1332

    Article  Google Scholar 

  • Flessa H, Amelung W, Helfrich M et al (2008) Storage and stability of organic matter in a Luvisol and Phaeozem with continuous maize cropping: a synthesis. J Plant Nutr Soil Sci 171:36–51

    Article  CAS  Google Scholar 

  • Fontaine S, Barot S, Barré P et al (2007) Stability of organic carbon in deep soil layers controlled by fresh carbon supply. Nature 450:277–281

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Pausas J, Casals P, Camarero L et al (2008) Factors regulating carbon mineralization in the surface and subsurface soils of Pyrenean mountain grasslands. Soil Biol Biochem 40:2803–2810

    Article  CAS  Google Scholar 

  • Gillabel J, Cebrian-Lopez B, Six J et al (2010) Experimental evidence for the attenuating effect of SOM protection on temperature sensitivity of SOM decomposition. Glob Change Biol 16:2789–2798

    Article  Google Scholar 

  • Gleixner G, Poirier N, Bol R et al (2002) Molecular dynamics of organic matter in a cultivated soil. Org Geochem 33:357–366

    Article  CAS  Google Scholar 

  • Goberna M, Insam H, Klammer S et al (2005) Microbial community structure at different depths in disturbed and undisturbed semiarid Mediterranean forest soils. Microb Ecol 50:315–326

    Article  PubMed  CAS  Google Scholar 

  • Grierson PF, Comerford NB (2000) Non-destructive measurement of acid phosphatase activity in the rhizosphere using nitrocellulose membranes and image analysis. Plant Soil 218:49–57

    Article  CAS  Google Scholar 

  • Guggenberger G, Kaiser K (2003) Dissolved organic matter in soil: challenging the paradigm of sorptive preservation. Geoderma 113:3–4

    Article  Google Scholar 

  • Hagedorn F, Bundt M (2002) The age of preferential flow paths. Geoderma 108:119–132

    Article  CAS  Google Scholar 

  • Hansson K, Kleja DB, Kalbitz K et al (2010) Amounts of carbon mineralised and leached as DOC during decomposition of Norway spruce needles and fine roots. Soil Biol Biochem 42:178–185

    Article  CAS  Google Scholar 

  • Helfrich M, Flessa H, Mikutta R et al (2007) Comparison of chemical fractionation methods for isolating stable soil organic carbon pools. Eur J Soil Sci 58:1316–1329

    Article  CAS  Google Scholar 

  • Högberg P (1997) Transley review no. 95–15 N natural abundance in soil-plant systems. New Phytol 137:179–203

    Article  Google Scholar 

  • Huygens D, Denef K, Vandeweyer R et al (2008) Do nitrogen isotope patterns reflect microbial colonization of soil organic matter fractions? Biol Fertil Soil 44:955–964

    Article  CAS  Google Scholar 

  • Janzen HH (2005) Soil carbon: a measure of ecosystem response in a changing world? Can J Soil Sci 85:467–480

    Article  CAS  Google Scholar 

  • Jenkinson DS, Coleman K (2008) The turnover of organic carbon in subsoils. Part 2. Modelling carbon turnover. Eur J Soil Sci 59:400–413

    Article  Google Scholar 

  • Jobbagy EG, Jackson RB (2000) The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol Appl 10:423–436

    Article  Google Scholar 

  • Joergensen RG (2000) Ergosterol and microbial biomass in the rhizosphere of grassland soils. Soil Biol Biochem 32:647–652

    Article  CAS  Google Scholar 

  • Jones DL, Nguyen C, Finlay RD (2009) Carbon flow in the rhizosphere: carbon trading at the soil-root interface. Plant Soil 321:5–33

    Article  CAS  Google Scholar 

  • Jueschke E, Marscner B, Tarchitzky J et al (2008) Effects of treated wastewater irrigation on the dissolved and soil organic carbon in Israeli soils. Water Sci Technol 57:727–733

    Article  PubMed  CAS  Google Scholar 

  • Kaiser K, Guggenberger G (2000) The role of DOM sorption to mineral surfaces in the preservation of organic matter in soils. Org Geochem 31:711–725

    Article  CAS  Google Scholar 

  • Kalbitz K, Kaiser K (2008) Contribution of dissolved organic matter to carbon storage in forest mineral soils. J Plant Nutr Soil Sci 171:52–60

    Article  CAS  Google Scholar 

  • Kalbitz K, Schwesig D, Rethemeyer J et al (2005) Stabilization of dissolved organic matter by sorption to the mineral soil. Soil Biol Biochem 37:1319–1331

    Article  CAS  Google Scholar 

  • Karhu K, Fritze H, Hamalainen K et al (2010) Temperature sensitivity of soil carbon fractions in boreal forest soil. Ecology 91:370–376

    Article  PubMed  Google Scholar 

  • Kell DB (2011) Breeding crop plants with deep roots: their role in sustainable carbon, nutrient and water sequestration. Ann Bot 108:407–418

    Article  PubMed  CAS  Google Scholar 

  • Kemmitt SJ, Wright D, Murphy DV et al (2008) Regulation of amino acid biodegradation in soil as affected by depth. Biol Fertil Soil 44:933–941

    Article  CAS  Google Scholar 

  • Kleber M, Mikutta R, Torn MS et al (2005) Poorly crystalline mineral phases protect organic matter in acid subsoil horizons. Eur J Soil Sci 56:717–725

    CAS  Google Scholar 

  • Kögel-Knabner I, Guggenberger G, Kleber M et al (2008) Organo-mineral associaltions in temperate soils: integrating biology, mineralogy and organic matter chemistry. J Plant Nutr Soil Sci 171:61–82

    Article  Google Scholar 

  • Kramer C, Gleixner G (2008) Soil organic matter in soil depth profiles: distinct carbon preferences of microbial groups during carbon transformation. Soil Biol Biochem 40:425–433

    Article  CAS  Google Scholar 

  • Krull ES, Skjemstad JO (2003) d13C and d15N profiles in 14C-dated Oxisol and Vertisols as a function of soil chemistry and mineralogy. Geoderma 112:1–29

    Article  CAS  Google Scholar 

  • Lavahun MFE, Joergensen RG, Mayer B (1996) Activity and biomass of soil microorganisms at different depths. Biol Fertil Soil 23:38–42

    Article  Google Scholar 

  • Lehmann J (2007) Bioenergy in the black. Front Ecol Environ 5:381–387

    Article  Google Scholar 

  • Liang C, Balser TC (2008) Preferential sequestration of microbial carbon in subsoils of a glacial-landscape toposequence, Dane County, WI, USA. Geoderma 148:113–119

    Article  CAS  Google Scholar 

  • Lindahl BD, Ihrmark K, Boberg J et al (2007) Spatial separation of litter decomposition and myco­rrhizal nitrogen uptake in a boreal forest. New Phytol 173:611–620

    Article  PubMed  CAS  Google Scholar 

  • Lorenz K, Lal R (2005) The depth distribution of soil organic carbon in relation to land use and management and the potential of carbon sequestration in subsoil horizons. Adv Agron 88:35–66

    Article  CAS  Google Scholar 

  • Lorenz K, Lal R, Preston CM, Nierop KGJ (2007) Strengthening the soil organic carbon pool by increasing contributions from recalcitrant aliphatic bio(macro)molecules. Geoderma 142:1–10

    Article  CAS  Google Scholar 

  • Marschner B, Brodowski X, Dreves A et al (2008) How relevant is recalcitrance for the stabilization of organic matter in soils? J Plant Nutr Soil Sci 171:91–132

    Article  CAS  Google Scholar 

  • Matus F, Amigo X, Kristiansen SM (2006) Aluminium stabilization controls organic carbon levels in Chilean volcanic soils. Geoderma 132:158–168

    Article  CAS  Google Scholar 

  • Mendez-Millan M, Dignac MF, Rumpel C et al (2012) High contribution of maize root derived-C to soil organic carbon throughout an agricultural soil profile assessed by compound-specific 13C analysis. Org Geochem 42(12):1502–1511

    Article  Google Scholar 

  • Michalzik B, Kalbitz K, Park JH et al (2001) Fluxes and concentrations of dissolved organic carbon and nitrogen: a synthesis for temperate forests. Biogeochemistry 52:173–205

    Article  Google Scholar 

  • Michalzik B, Tipping E, Mulder J, Lancho JFG, Matzner E, Bryant CL, Clarke N, Lofts S, Esteban MAV (2003) Modelling the production and transport of dissolved organic carbon in forest soils. Biogeochemistry 66:241–264

    Article  CAS  Google Scholar 

  • Moni C, Rumpel C, Virto I et al (2010a) Relative importance of adsorption versus aggregation for organic matter storage in subsoil horizons of two contrasting soils. Eur J Soil Sci 61:958–969

    Article  CAS  Google Scholar 

  • Moni C, Chabbi A, Nunan N et al (2010b) Spatial dependence of organic carbon-metal relationships. A multi-scale statistical analysis, from horizon to field. Geoderma 158:120–127

    Article  CAS  Google Scholar 

  • Muneer M, Oades JM (1989) The role of Ca-organic interactions in soil aggregate stability. 2. Field studies with C-14 labelled straw, CaCO3, and CaSO42H2O. Aust J Soil Res 27:401–409

    Article  CAS  Google Scholar 

  • Nunan N, Wu KJ, Young IM et al (2003) Spatial distribution of bacterial communities and their relationships with the micro-architecture of soil. FEMS Microbiol Ecol 44:203–215

    Article  PubMed  CAS  Google Scholar 

  • Paul EA, Follett RF, Leavitt SW et al (1997) Radiocarbon dating for determination of soil organic matter pool sizes and dynamics. Soil Sci Soc Am J 61:1058–1067

    Article  CAS  Google Scholar 

  • Paul EA, Collins HP, Leavitt SW (2001) Dynamics of resistant soil carbon of Midwestern agricultural soils measured by naturally occurring 14C abundance. Geoderma 104:239–256

    Article  CAS  Google Scholar 

  • Peinemann N, Guggenberger G, Zech W (2005) Soil organic matter and its lignin component in surface horizons of salt-affected soils of the Argentinean Pampa. Catena 60:113–128

    Article  CAS  Google Scholar 

  • Preston CM, Schmidt MWI (2008) Black (pyrogenic) carbon: a synthesis of current knowledge and uncertainties with special consideration of boreal regions. Biogeoscience 3:397–420

    Article  Google Scholar 

  • Rasmussen C, Torn MS, Southard RJ (2005) Mineral assemblage and aggregates control carbon dynamics in a California conifer forest. Soil Sci Soc Am J 69:1711–1721

    Article  CAS  Google Scholar 

  • Rasse DP, Smucker AJM (1998) Root recolonization of previous root channels in corn and alfalfa rotations. Plant Soil 204:203–212

    Article  CAS  Google Scholar 

  • Rasse DP, Rumpel C, Dignac MF (2005) Is soil carbon mostly root carbon? Mechanisms for a specific stabilisation. Plant Soil 269:341–356

    Article  CAS  Google Scholar 

  • Rethemeyer J, Kramer C, Gleixner G et al (2005) Radiocarbon analysis of functional-defined and molecular organic matter fractions from agricultural soil profiles. Geoderma 128:94–105

    Article  CAS  Google Scholar 

  • Rodionov A, Amelung W, Peinemann N et al (2010) Black carbon in grassland ecosystems of the world. Glob Biogeochem Cycle 24. doi:10.1029/2009GB003669

  • Rumpel C, Kögel-Knabner I (2011) Deep soil organic matter – a key but poorly understood component of terrestrial C cycle. Plant Soil 338:143–158

    Article  CAS  Google Scholar 

  • Rumpel C, Kögel-Knabner I, Bruhn F (2002) Vertical distribution, age, and chemical composition of organic carbon in two forest soils of different pedogenesis. Org Geochem 33:1131–1142

    Article  CAS  Google Scholar 

  • Rumpel C, Eusterhues K, Kögel-Knabner I (2004) Location and chemical composition of stabilized organic carbon in topsoil and subsoil horizons of two acid forest soils. Soil Biol Biochem 36:177–190

    Article  CAS  Google Scholar 

  • Rumpel C, Ba A, Darboux F et al (2009) Erosion budget of pyrogenic carbon at meter scale and process selectivity. Geoderma 154:131–137

    Article  CAS  Google Scholar 

  • Rumpel C, Eusterhues K, Kögel-Knabner I (2010) Non-cellulosic neutral sugar contribution to mineral associated organic matter in top-and subsoil horizons of two acid forest soils. Soil Biol Biochem 42:379–382

    Article  CAS  Google Scholar 

  • Rumpel C, Rodríguez-Rodríguez A, González-Pérez JA et al (2012) Contrasting composition of free and mineral-bound organic matter in top and subsoil horizons of Andosols. Biol Fertil Soil (in press)

    Google Scholar 

  • Salomé C, Nunan N, Pouteau V et al (2010) Carbon dynamics in topsoil and in subsoil may be controlled by different regulatory mechanisms. Glob Change Biol 16:416–426

    Article  Google Scholar 

  • Sanaullah M, Chabbi A, Leifeld J et al (2011) Decomposition and stabilization of root litter in top- and subsoil horizons: what is the difference? Plant Soil 338:127–141

    Article  CAS  Google Scholar 

  • Sanderman J, Amundson R (2008) A comparative study of dissolved organic carbon transport and stabilization in California forest and grassland soils. Biogeochemistry 89:309–327

    Article  Google Scholar 

  • Schlesinger WH, Andrews JA (2000) Soil respiration and the global carbon cycle. Biogeochemistry 48:7–20

    Article  CAS  Google Scholar 

  • Sickman JO, DiGiorgio CL, Davisson ML et al (2008) Identifying sources of dissolved organic carbon in agriculturally dominated rivers using radiocarbon age dating: Sacramento-San Joaquin River Basin, California. Biogeochemistry 99:79–96

    Article  Google Scholar 

  • Spielvogel S, Prietzel J, Kögel-Knabner I (2008) Soil organic matter stabilisation in acidic forest soils is preferential and soil type-specific. Eur J Soil Sci 59:674–692

    Article  CAS  Google Scholar 

  • Syswerda SP, Corbin AT, Mokma DL et al (2011) Agricultural management and soil carbon storage in surface vs. deep layers. Soil Sci Soc Am J 75:92–101

    Article  CAS  Google Scholar 

  • Taneva L Pippen JS, Schlesinger WH, Gonzalez-Meler MA (2006) The turnover of carbon pools contributing to soil CO(2) and soil respiration in a temperate forest exposed to elevated CO(2) concentration. Glob Change Biol 12:983–994

    Article  CAS  Google Scholar 

  • Tarnocai C, Canadell JG, Schuur EAG et al (2009) Soil organic carbon pools in the northern circumpolar permafrost region. Glob Biogeochem Cycle 23:GB2023. doi:10.1029/2008GB003327

    Article  Google Scholar 

  • Taylor JP, Wilson B, Mills MS et al (2002) Comparison of microbial numbers and enzymatic activities in surface soils and subsoils using various techniques. Soil Biol Biochem 34:387–401

    Article  CAS  Google Scholar 

  • Tissot BP, Welte DH (1984) Petroleum formation and occurrence, 2nd edn. Springer, Berlin

    Google Scholar 

  • Trumbore S (2009) Radiocarbon and soil carbon dynamics. Annu Rev Earth Planet Sci 37:47–66

    Article  CAS  Google Scholar 

  • Von Lützow M, Kögel-Knabner I (2009) Temperature sensitivity of soil organic matter decomposition-what do we know? Biol Fertil Soil 46:1–15

    Article  Google Scholar 

  • Xiang SR, Doyle A, Holden PA et al (2008) Drying and rewetting effects on C and N mineralization and microbial activity in surface and subsurface California grassland soils. Soil Biol Biochem 40:2281–2289

    Article  CAS  Google Scholar 

  • Young IM, Crawford JW, Nunan N et al (2008) Microbial distribution in soil: physics and scaling. In: Sparks D (ed) Advances in agronomy, vol 100. Academic Press, Burlington, pp 81–121

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abad Chabbi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Rumpel, C., Chabbi, A., Marschner, B. (2012). Carbon Storage and Sequestration in Subsoil Horizons: Knowledge, Gaps and Potentials. In: Lal, R., Lorenz, K., Hüttl, R., Schneider, B., von Braun, J. (eds) Recarbonization of the Biosphere. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4159-1_20

Download citation

Publish with us

Policies and ethics