Skip to main content

Role of ER Stress in Dysfunction of the Nervous System

  • Chapter
  • First Online:
Endoplasmic Reticulum Stress in Health and Disease
  • 1527 Accesses

Abstract

Recent clinical, genetic and experimental evidence indicates that dysregulation of endoplasmic reticulum (ER) homeostasis plays an important role in the pathogenesis of neurodegenerative diseases and psychiatric illness. Protein flux through the ER must be carefully monitored to prevent dysregulation of ER homeostasis and stress. ER stress elicits a signaling cascade known as the unfolded protein response (UPR) which functions in influencing both cellular life and death decisions. In this chapter, we address the transition from the physiological ER stress response to the pathological response and explore the mechanisms of ER stress-mediated dysfunction and death of neurons during the progression of neurodegenerative diseases and psychiatric illness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ER:

Endoplasmic reticulum

UPR:

Unfolded protein response

PERK:

PKR-like ER kinase

CHOP:

C/EBP Thomologous protein

eIF2a:

Eukaryotic initiation factor 2a

PD:

Parkinson’s disease

AJ-PD:

Autosomal recessive juvenile-onset Parkinson’s disease

Pael-R:

Pael-receptor

SPG:

Spastic paraplegia

BSCL2:

Berardinelli-Seip congenital lipodystrophy 2

ALS:

Amyotrophic lateral sclerosis

SOD1:

Superoxide dismutase 1

PDI:

Protein disulfide isomerase

PUMA:

P53-upregulated mediator of apoptosis

RP:

Retinitis pigmentosa

ERAD:

ER associated degradation

AD:

Alzheimer’s disease

PS:

Presenilin

IRE1:

Inositol-requiring enzyme 1

NMDA:

N-methy D-aspartate

NOS:

nitric oxide synthase

XBP1:

X-box binding protein 1

CHOP:

CCAAT/enhancer binding protein homologous protein

MSS:

Marinesco-Sjogren syndrome

IBMPFD:

Inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia

αSyn:

α-synuclein

SERCA:

Sarco-endoplasmic reticulum Ca2 + ATPase pump

IP3 receptor:

Inositol triphosphate-gated channel

SCA:

Spinocerebeller atrophy

OASIS:

Old astrocyte specifically-induced substrate

ATF6:

Activating transcription factor 6

CLN1:

Neuronal ceroid lipofuscinosis 1

PPT1:

Palmitoyl protein thioesterase 1

TMAO:

Trimethylamine N-oxide

TUDCA:

Tauroursodeoxycholic acid

PMD:

Pelizaeus Merzbacher disease

PLP1:

Proteolipid protein-1

P0:

Myelin protein zero

VWMD:

Vanishing White Matter Disease

GEF:

Guanine nucleotide exchanging factor

ASD:

Autism spectrum disorder

CADM1:

Cell adhesion molecule-1

DIDMOAD:

Diabetes Insipidus, Diabetes Mellitus, Optic Atrophy and Deafness

WFS1:

Wolfram syndrome 1

CISD2:

CDGSH iron sulfur domain 2

MRI:

Magnetic resonance imaging

4PBA:

4-phenylbutylate

References

  1. Ross CA, Poirier MA (2004) Protein aggregation and neurodegenerative disease. Nat Med 10:10–7

    Article  CAS  Google Scholar 

  2. Tong J, Wong H, Guttman M et al (2010) Brain alpha-synuclein accumulation in multiple system atrophy, Parkinson’s disease and progressive supranuclear palsy: a comparative investigation. Brain 133:172–88

    Article  PubMed  Google Scholar 

  3. Bennett EJ, Shaler TA, Woodman B et al (2007) Global changes to the ubiquitin system in Huntington’s disease. Nature 448:704–708

    Article  PubMed  CAS  Google Scholar 

  4. O’Brien L, Shelley K, Towfighi J et al (1980) Crystalline ribosomes are present in brains from senile humans. Proc Natl Acad Sci USA 77:2260–2264

    Article  PubMed  Google Scholar 

  5. Douglas PM, Dillin A (2010) Protein homeostasis and aging in neurodegenration. J Cell Biol 190:719–729

    Article  PubMed  CAS  Google Scholar 

  6. Zabel C, Nguyen HP, Hin SC et al (2010) Proteasome and oxidative phosphorylation changes may explain why aging is a risk factor for neurodegenerative disorders. J Proteomics 73:2230–2238

    Article  PubMed  CAS  Google Scholar 

  7. Naidoo N, Ferber M, Master M et al (2008) Aging impairs the unfolded protein response to sleep deprivation and leads to proapoptotic signaling. J Neurosci 28:6539–65348

    Article  PubMed  CAS  Google Scholar 

  8. Samii A, Nutt JG, Ransom BR (2004) Parkinson’s disease. Lancet 363: 1783–1793

    Article  PubMed  CAS  Google Scholar 

  9. Reichmann H (2010) Clinical criteria for the diagnosis of Parkinson’s disease. Neurodegener Dis 7:284–290

    Article  PubMed  Google Scholar 

  10. Kitada T, Asakawa S, Hattori N et al (1988) Mutations in parkin gene cause autosomal recessive juvenile parkinsonism. Nature 392:605–608

    Google Scholar 

  11. Imai Y, Soda M, Inoue H et al (2000) An unfolded putative transmembrane polypeptide, which can lead to endoplasmic reticulum stress, is a substrate of Parkin. Cell 105:891–902

    Article  Google Scholar 

  12. Murakami T, Shoji M, Imai Y et al (2004) Pael-R is accumulated in Lewy bodies of Parkinson’s disease. Ann Neurol 55: 439–442

    Article  PubMed  CAS  Google Scholar 

  13. Fei W, Du X, Yang H (2011) Seipin, adipogenesis and lipid droplets. Trends Endocrinol Metab 22:204–210

    Article  PubMed  CAS  Google Scholar 

  14. Windpassinger C, Auer-Grumbach M, Irobi J et al (2004) Heterozygous missense mutations in BSCL2 are associated with distal hereditary motor neuropathy and Silver syndrome. Nat Genet 36:271–276

    Article  PubMed  CAS  Google Scholar 

  15. Braakman I, Bulleid NJ (2011) Protein folding and modification in the mammalian endoplasmic reticulum. Annu Rev Biochem 80:71–99

    Article  PubMed  CAS  Google Scholar 

  16. Ito D, Suzuki N (2007) Molecular pathogenesis of seipin/BSCL-2-related motor neuron diseases. Ann Neurol 61: 237–250

    Article  PubMed  CAS  Google Scholar 

  17. Ito D, Fujisawa T, Iida H et al (2008) Characterization of seipin/BSCL2, a protein associated with spastic paraplegia 17. Neurobiol Dis 31:266–277

    Article  PubMed  CAS  Google Scholar 

  18. Kiernan MC, Vucic S, Cheah BC et al (2011) Amyotrophic lateral sclerosis. Lancet 377:942–955

    Article  PubMed  CAS  Google Scholar 

  19. Rosen DR, Siddique T, Patterson D et al (1993) Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 362: 59–62

    Article  PubMed  CAS  Google Scholar 

  20. Buettner GR (2011) Superoxide dismutase in redox biology: the roles of superoxide and hydrogen peroxide. Anticancer Agents Med Chem 11:341–346

    Article  PubMed  CAS  Google Scholar 

  21. ALSOD ALS online genetics database. http://alsod.iop.kcl.ac.uk/. Accessed 26 April 2012

    Google Scholar 

  22. Shefner JM, Reaume AG, Flood DG et al (1999) Mice lacking cytosolic copper/zinc superoxide dismutase display a distinctive motor axonopathy. Neurology 53:1239–1246

    Article  PubMed  CAS  Google Scholar 

  23. Gurney ME, Pu H, Chiu AY et al (1994) Motor neuron degeneration in mice that express a human Cu, Zn superoxide dismutase mutation. Science 264:1772–1175

    Article  PubMed  CAS  Google Scholar 

  24. Kikuchi H, Almer G, Yamashita S et al (2006) Spinal cord endoplasmic reticulum stress associated with a microsomal accumulation of mutant superoxide dismutase-1 in an ALS model. Proc Natl Acad Sci USA 103:6025–6030

    Article  PubMed  CAS  Google Scholar 

  25. Atkin JD, Farg MA, Turner BJ et al (2006) Induction of the unfolded protein response in familial amyotrophic lateral sclerosis and association of protein-disulfide isomerase with superoxide dismutase 1. J Biol Chem 281:30152–30165

    Article  PubMed  CAS  Google Scholar 

  26. Kieran D, Woods I, Villunger A et al (2007) Deletion of the BH3-only protein puma protects motoneurons from ER stress-induced apoptosis and delays motoneuron loss in ALS mice. Proc Natl Acad Sci USA 104:20606–20611

    Article  PubMed  CAS  Google Scholar 

  27. Reimertz C, Kögel D, Rami A et al (2003) Gene expression during ER stress-induced apoptosis in neurons: induction of the BH3-only protein Bbc3/PUMA and activation of the mitochondrial apoptosis pathway. J Cell Biol 162:587–597

    Article  PubMed  CAS  Google Scholar 

  28. Saxena S, Cabuy E, Caroni P (2009) A role for motoneuron subtype-selective ER stress in disease manifestations of FALS mice. Nat Neurosci 12:627–636

    Article  PubMed  CAS  Google Scholar 

  29. Sahel J, Bonnel S, Mrejen S et al (2010) Retinitis pigmentosa and other dystrophies. Dev Ophthalmol 47:160–167

    Article  PubMed  Google Scholar 

  30. Malanson KM, Lem J (2009) Rhodopsin-mediated retinitis pigmentosa. Prog Mol Biol Transl Sci 88:1–31

    Article  PubMed  CAS  Google Scholar 

  31. Lin JH, Li H, Yasumura D et al (2007) IRE1 signaling affects cell fate during the unfolded protein response. Science 318:944–949

    Article  PubMed  CAS  Google Scholar 

  32. Gorbatyuk MS, Knox T, LaVail MM et al (2010) Restoration of visual function in P23H rhodopsin transgenic rats by gene delivery of BiP/Grp78. Proc Natl Acad Sci USA 107:5961–5966

    Article  PubMed  CAS  Google Scholar 

  33. Kang MJ, Ryoo HD (2009) Suppression of retinal degeneration in Drosophila by stimulation of ER-associated degradation. Proc Natl Acad Sci USA 106:17043–17048

    Article  PubMed  CAS  Google Scholar 

  34. Villemagne VL, Pike KE, Chételat G et al (2011) Longitudinal assessment of Aβ and cognition in aging and Alzheimer disease. Ann Neurol 69:181–92

    Article  PubMed  CAS  Google Scholar 

  35. Ballard C, Gauthier S, Corbett A et al (2011) Alzheimer’s disease. Lancet 377:1019–1031

    Article  PubMed  Google Scholar 

  36. Katayama T, Imaizumi K, Sato N et al (1999) Presenilin-1 mutations downregulate the signalling pathway of the unfolded-protein response. Nat Cell Biol 1:479–485

    Article  PubMed  CAS  Google Scholar 

  37. Terro F, Czech C, Esclaire F (2002) Neurons overexpressing mutant presenilin-1 are more sensitive to apoptosis induced by endoplasmic reticulum-Golgi stress. J Neurosci Res 69:530–539

    Article  PubMed  CAS  Google Scholar 

  38. Sato N, Urano F, Yoon Leem J et al (2000) Upregulation of BiP and CHOP by the unfolded-protein response is independent of presenilin expression. Nat Cell Biol 2:863–870

    Article  PubMed  CAS  Google Scholar 

  39. Margittai E, Bánhegyi G (2010) Oxidative folding in the endoplasmic reticulum: towards a multiple oxidant hypothesis? FEBS Lett 584:2995–1998

    Article  PubMed  CAS  Google Scholar 

  40. Honjo Y, Kaneko S, Ito H et al (2011) Protein disulfide isomerase-immunopositive inclusions in patients with amyotrophic lateral sclerosis. Amyotroph Lateral Scler 12:444–450

    Article  PubMed  CAS  Google Scholar 

  41. Wilhelmus MM, Verhaar R, Andringa G et al (2011) Presence of tissue transglutaminase in granular endoplasmic reticulum is characteristic of melanized neurons in Parkinson’s disease brain. Brain Pathol 21:130–139

    Article  PubMed  CAS  Google Scholar 

  42. Uehara T, Nakamura T, Yao D et al (2006) S-nitrosylated protein-disulphide isomerase links protein misfolding to neurodegeneration. Nature 441:513–517

    Article  PubMed  CAS  Google Scholar 

  43. Gething MJ (1999) Role and regulation of the ER chaperone BiP. Semin Cell Dev Biol 10:465–472

    Article  PubMed  CAS  Google Scholar 

  44. Walter P, Ron D (2011) The unfolded protein response: from stress pathway to homeostatic regulation. Science 334:1081–1086

    Article  PubMed  CAS  Google Scholar 

  45. Alder NN, Shen Y, Brodsky JL et al (2005) The molecular mechanisms underlying BiP-mediated gating of the Sec61 translocon of the endoplasmic reticulum. J Cell Biol 168:389–399

    Article  PubMed  CAS  Google Scholar 

  46. Yan M, Li J, Sha B (2011) Structural analysis of the Sil1-Bip complex reveals the mechanism for Sil1 to function as a nucleotide-exchange factor. Biochem J 438:447–455

    PubMed  CAS  Google Scholar 

  47. Senderek J, Krieger M, Stendel C et al (2005) Mutations in SIL1 cause Marinesco-Sjögren syndrome, a cerebellar ataxia with cataract and myopathy. Nat Genet 37:1312–1314

    Article  PubMed  CAS  Google Scholar 

  48. Anttonen AK, Mahjneh I, Hämäläinen RH et al (2005) The gene disrupted in Marinesco-Sjögren syndrome encodes SIL1, an HSPA5 cochaperone. Nat Genet 37:1309–1311

    Article  PubMed  CAS  Google Scholar 

  49. Zhao L, Longo-Guess C, Harris BS et al (2005) Protein accumulation and neurodegeneration in the woozy mutant mouse is caused by disruption of SIL1, a cochaperone of BiP. Nat Genet 37:974–979

    Article  PubMed  CAS  Google Scholar 

  50. Bernasconi R, Molinari M (2011) ERAD and ERAD tuning: disposal of cargo and of ERAD regulators from the mammalian ER. Curr Opin Cell Biol 23:176–183

    Article  PubMed  CAS  Google Scholar 

  51. Oda Y, Okada T, Yoshida H et al (2006) Derlin-2 and Derlin-3 are regulated by the mammalian unfolded protein response and are required for ER-associated degradation. J Cell Biol 172:383–393

    Article  PubMed  CAS  Google Scholar 

  52. Nishitoh H, Kadowaki H, Nagai A et al (2008) ALS-linked mutant SOD1 induces ER stress- and ASK1-dependent motor neuron death by targeting Derlin-1. Genes Dev 22:1451–1464

    Article  PubMed  CAS  Google Scholar 

  53. Mori A, Yamashita S, Uchino K et al (2011) Derlin-1 overexpression ameliorates mutant SOD1-induced endoplasmic reticulum stress by reducing mutant SOD1 accumulation. Neurochem Int 58:344–353

    Article  PubMed  CAS  Google Scholar 

  54. Wang Q, Song C, Li CC (2004) Molecular perspectives on p97-VCP: progress in understanding its structure and diverse biological functions. J Struct Biol 146:44–57

    Article  PubMed  CAS  Google Scholar 

  55. Wójcik C, Rowicka M, Kudlicki A et al (2006) Valosin-containing protein (p97) is a regulator of endoplasmic reticulum stress and of the degradation of N-end rule and ubiquitin-fusion degradation pathway substrates in mammalian cells. Mol Biol Cell 17:4606–4618

    Article  PubMed  CAS  Google Scholar 

  56. Watts GD, Wymer J, Kovach MJ et al (2004) Inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia is caused by mutant valosin-containing protein. Nat Genet 36:377–381

    Article  PubMed  CAS  Google Scholar 

  57. Johnson JO, Mandrioli J, Benatar M et al (2010) Exome sequencing reveals VCP mutations as a cause of familial ALS. Neuron 68:857–864

    Article  PubMed  CAS  Google Scholar 

  58. Weihl CC, Dalal S, Pestronk A et al (2006) Inclusion body myopathy-associated mutations in p97/VCP impair endoplasmic reticulum-associated degradation. Hum Mol Genet 15:189–199

    Article  PubMed  CAS  Google Scholar 

  59. Cummings CJ, Zoghbi HY (2000) Trinucleotide repeats: mechanisms and pathophysiology. Annu Rev Genomics Hum Genet 1:281–328

    Article  PubMed  CAS  Google Scholar 

  60. Nishitoh H, Matsuzawa A, Tobiume K et al (2002) ASK1 is essential for endoplasmic reticulum stress-induced neuronal cell death triggered by expanded polyglutamine repeats. Genes Dev 16:1345–1355

    Article  PubMed  CAS  Google Scholar 

  61. Price BD, Mannheim-Rodman LA, Calderwood SK (1992) Brefeldin A, thapsigargin, and AIF4- stimulate the accumulation of GRP78 mRNA in a cycloheximide dependent manner, whilst induction by hypoxia is independent of protein synthesis. J Cell Physiol 152:545–552

    Article  PubMed  CAS  Google Scholar 

  62. Cooper AA, Gitler AD, Cashikar A et al (2006) Alpha-synuclein blocks ER-Golgi traffic and Rab1 rescues neuron loss in Parkinson’s models. Science 313:324–328

    Article  PubMed  CAS  Google Scholar 

  63. Polymeropoulos MH, Lavedan C, Leroy E et al (1997) Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science 276:2045–2047

    Article  PubMed  CAS  Google Scholar 

  64. Ono K, Ikeda T, Takasaki J et al (2011) Familial Parkinson disease mutations influence α-synuclein assembly. Neurobiol Dis 43:715–724

    Article  PubMed  CAS  Google Scholar 

  65. Ahn TB, Kim SY, Kim JY et al (2008) alpha-Synuclein gene duplication is present in sporadic Parkinson disease. Neurology 70:43–49

    Article  PubMed  CAS  Google Scholar 

  66. Gleichmann M, Mattson MP (2011) Neuronal calcium homeostasis and dysregulation. Antioxid Redox Signal 14:1261–1273

    Article  PubMed  CAS  Google Scholar 

  67. Michalak M, Robert Parker JM, Opas M (2002) Ca2+ signaling and calcium binding chaperones of the endoplasmic reticulum. Cell Calcium 32:269–278

    Article  PubMed  CAS  Google Scholar 

  68. Li WW, Alexandre S, Cao X et al (1993) Transactivation of the grp78 promoter by Ca2+ depletion. A comparative analysis with A23187 and the endoplasmic reticulum Ca(2+)-ATPase inhibitor thapsigargin. J Biol Chem 268:12003–12009

    PubMed  CAS  Google Scholar 

  69. Mikoshiba K (2011) Role of IP3 receptor in development. Cell Calcium 49:331–340

    Article  PubMed  CAS  Google Scholar 

  70. Matsumoto M, Nakagawa T, Inoue T et al (1996) Ataxia and epileptic seizures in mice lacking type 1 inositol 1,4,5-trisphosphate receptor. Nature 379:168–171

    Article  PubMed  CAS  Google Scholar 

  71. van de Leemput J, Chandran J, Knight MA et al (2007) Deletion at ITPR1 underlies ataxia in mice and spinocerebellar ataxia 15 in humans. PLoS Genet 3:e108

    Google Scholar 

  72. Hara K, Shiga A, Nozaki H et al (2008) Total deletion and a missense mutation of ITPR1 in Japanese SCA15 families. Neurology 71:547–551

    Article  PubMed  CAS  Google Scholar 

  73. Higo T, Hamada K, Hisatsune C et al (2010) Mechanism of ER stress-induced brain damage by IP(3) receptor. Neuron 68:865–878

    Article  PubMed  CAS  Google Scholar 

  74. Cheung KH, Shineman D, Müller M et al (2008) Mechanism of Ca2+ disruption in Alzheimer’s disease by presenilin regulation of InsP3 receptor channel gating. Neuron 58:871–883

    Article  PubMed  CAS  Google Scholar 

  75. Cheung KH, Mei L, Mak DO et al (2010) Gain-of-function enhancement of IP3 receptor modal gating by familial Alzheimer’s disease-linked presenilin mutants in human cells and mouse neurons. Sci Signal 3:ra22

    Article  PubMed  CAS  Google Scholar 

  76. Nave KA, Trapp BD (2008) Axon-glial signaling and the glial support of axon function. Annu Rev Neurosci 31: 535–561

    Article  PubMed  CAS  Google Scholar 

  77. Pechan PA, Chowdhury K, Seifert W (1992) Free radicals induce gene expression of NGF and bFGF in rat astrocyte culture. Neuroreport 3:469–472

    Article  PubMed  CAS  Google Scholar 

  78. Kondo S, Murakami T, Tatsumi K et al (2005) OASIS, a CREB/ATF-family member, modulates UPR signalling in astrocytes. Nat Cell Biol 7:186–194

    Article  PubMed  CAS  Google Scholar 

  79. Murakami T, Kondo S, Ogata M et al (2006) Cleavage of the membrane-bound transcription factor OASIS in response to endoplasmic reticulum stress. J Neurochem 96:1090–1100

    Article  PubMed  CAS  Google Scholar 

  80. Jalanko A, Braulke T(2009) Neuronal ceroid lipofuscinoes. Biochim Biophys Acta 1793:697–709

    Article  PubMed  CAS  Google Scholar 

  81. Mitchison HM, Hofmann SL, Becerra CH et al (1998) Mutations in the palmitoyl-protein thioesterase gene (PPT; CLN1) causing juvenile neuronal ceroid lipofuscinosis with granular osmiophilic deposits. Hum Mol Genet 7:291–297

    Article  PubMed  CAS  Google Scholar 

  82. Zhang Z, Lee YC, Kim SJ et al (2006) Palmitoyl-protein thioesterase-1 deficiency mediates the activation of the unfolded protein response and neuronal apoptosis in INCL. Hum Mol Genet 15:337–346

    Article  PubMed  CAS  Google Scholar 

  83. Wei H, Kim SJ, Zhang Z et al (2008) ER and oxidative stresses are common mediators of apoptosis in both neurodegenerative and non-neurodegenerative lysosomal storage disorders and are alleviated by chemical chaperones. Hum Mol Genet 17:469–477

    Article  PubMed  CAS  Google Scholar 

  84. Woodward KJ (2008) The molecular and cellular defects underlying Pelizaeus-Merzbacher disease. Expert Rev Mol Med 10:e14

    Article  PubMed  Google Scholar 

  85. Dhaunchak AS, Nave KA (2007) A common mechanism of PLP/DM20 misfolding causes cysteine-mediated endoplasmic reticulum retention in oligodendrocytes and Pelizaeus-Merzbacher disease. Proc Natl Acad Sci U S A 104:17813–17818

    Article  PubMed  CAS  Google Scholar 

  86. Gow A, Southwood CM, Lazzarini RA (1998) Disrupted proteolipid protein trafficking results in oligodendrocyte apoptosis in an animal model of Pelizaeus-Merzbacher disease. J Cell Biol 140:925–934

    Article  PubMed  CAS  Google Scholar 

  87. Southwood CM, Garbern J, Jiang W et al (2002) The unfolded protein response modulates disease severity in Pelizaeus-Merzbacher disease. Neuron 36:585–596

    Article  PubMed  CAS  Google Scholar 

  88. Hübner CA, Orth U, Senning A et al (2005) Seventeen novel PLP1 mutations in patients with Pelizaeus-Merzbacher disease. Hum Mutat 25:321–322

    Article  PubMed  Google Scholar 

  89. Roboti P, Swanton E, High S (2009) Differences in endoplasmic-reticulum quality control determine the cellular response to disease-associated mutants of proteolipid protein. J Cell Sci 122:3942–3953

    Article  PubMed  CAS  Google Scholar 

  90. Berger P, Niemann A, Suter U (2006) Schwann cells and the pathogenesis of inherited motor and sensory neuropathies (Charcot-Marie-Tooth disease). Glia 54:243–257

    Article  PubMed  Google Scholar 

  91. Giese KP, Martini R, Lemke G et al (1992) Mouse P0 gene disruption leads to hypomyelination, abnormal expression of recognition molecules, and degeneration of myelin and axons. Cell 71:565–576

    Article  PubMed  CAS  Google Scholar 

  92. Xu W, Manichella D, Jiang H et al (2000) Absence of P0 leads to the dysregulation of myelin gene expression and myelin morphogenesis. J Neurosci Res 60(6):714–724

    Article  PubMed  CAS  Google Scholar 

  93. Kulkens T, Bolhuis PA, Wolterman RA et al (1993) Deletion of the serine 34 codon from the major peripheral myelin protein P0 gene in Charcot-Marie-Tooth disease type 1B. Nat Gnet 5:35–39

    Article  CAS  Google Scholar 

  94. Pennuto M, Tinelli E, Malaguti M et al (2008) Ablation of the UPR-mediator CHOP restores motor function and reduces demyelination in Charcot-Marie-Tooth 1B mice. Neuron 57:393–405

    Article  PubMed  CAS  Google Scholar 

  95. Asano K, Clayton J, Shalev A et al (2000) A multifactor complex of eukaryotic initiation factors, eIF1, eIF2, eIF3, eIF5, and initiator tRNA(Met) is an important translation initiation intermediate in vivo. Genes Dev 14:2534–2546

    Article  PubMed  CAS  Google Scholar 

  96. Mohammad-Qureshi SS, Jennings MD et al (2008) Clues to the mechanism of action of eIF2B, the guanine-nucleotide-exchange factor for translation initiation. Biochem Soc Trans 36:658–664

    Article  PubMed  CAS  Google Scholar 

  97. Harding HP, Zhang Y, Ron D (1999) Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase. Nature 397:271–274

    Article  PubMed  CAS  Google Scholar 

  98. Sheikh MS, Fornace AJ Jr (1999) Regulation of translation initiation following stress. Oncogene 18:6121–6128

    Article  PubMed  CAS  Google Scholar 

  99. Van Der Knaap MS, Pronk JC et al (2006) Vanishing white matter disease. Lancet Neurol 5:413–423

    Article  PubMed  CAS  Google Scholar 

  100. Kantor L, Pinchasi D, Mintz M et al (2008) A point mutation in translation initiation factor 2B leads to a continuous hyper stress state in oligodendroglial-derived cells. PLoS One 3:e3783

    Article  PubMed  CAS  Google Scholar 

  101. Van Der Voorn JP, van Kollenburg B, Bertrand G et al (2005) The unfolded protein response in vanishing white matter disease. J Neuropathol Exp Neurol 64:770–775

    Article  PubMed  CAS  Google Scholar 

  102. Li W, Wang X, Van Der Knaap MS et al (2004) Mutations linked to leukoencephalopathy with vanishing white matter impair the function of the eukaryotic initiation factor 2B complex in diverse ways. Mol Cell Biol 24:3295–3306

    Article  PubMed  CAS  Google Scholar 

  103. WHO International Consortium in Psychiatric Epidemiology (2000) Cross-national comparisons of the prevalences and correlates of mental disorders. Bull World Health Organ 78:413–426

    Google Scholar 

  104. Al-Qabandi M, Gorter JW, Rosenbaum P (2011) Early autism detection: are we ready for routine screening? Pediatrics 128:e211–217

    Google Scholar 

  105. Newschaffer CJ, Croen LA, Daniels J et al (2007) The Epidemiology of Autism Spectrum Disorders. Annu Rev Public Health 28:235–258

    Article  PubMed  Google Scholar 

  106. Zhiling Y, Fujita E, Tanabe Y et al (2008) Mutations in the gene encoding CADM1 are associated with Autism spectrum disorder. Biochem Biophys Res Commun 377:926–929

    Article  PubMed  CAS  Google Scholar 

  107. Fujita E, Dai H, Tanabe Y et al (2010) Autism spectrum disorder is related to endoplasmic reticulum stress induced by mutations in the synaptic cell adhesion molecule, CADM1. Cell Death Dis 1:e47

    Article  PubMed  CAS  Google Scholar 

  108. Momoi T, Fujita E, Senoo H et al (2009) Genetic factors and epigenetic factors for autism: endoplasmic reticulum stress and impaired synaptic function. Cell Biol Int 34:13–19

    PubMed  Google Scholar 

  109. Frye MA (2011) Bipolar disorder—A Focus on Depression. N Engl J Med 364:51–59

    Article  PubMed  CAS  Google Scholar 

  110. Yoshida H, Matsui T, Yamamoto A et al (2001) XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell 107:881–891

    Article  PubMed  CAS  Google Scholar 

  111. Kakiuchi C, Iwamoto K, Ishiwata M et al (2003) Impaired feedback regulation of XBP1 as a genetic risk factor for bipolar disorder. Nat Genet 35:171–175

    Article  PubMed  CAS  Google Scholar 

  112. Cichon S, Buervenich S, Kirov G et al (2004) Lack of support for a genetic association of the XBP1 promoter polymorphism with bipolar disorder in probands of European origin. Nat Genet 36:783–784

    Article  PubMed  CAS  Google Scholar 

  113. Kakiuchi C, Ishiwata M, Nanko S et al (2005) Functional polymorphisms of HSPA5: possible association with bipolar disorder. Biochem Biophys Res Commun 336:1136–1143

    Article  PubMed  CAS  Google Scholar 

  114. Wolfram DJ, Wagener HP (1938) Diabetes mellitus and simple optic atrophy among siblings: report of four cases. Mayo Clin Proc 13:715–718

    Google Scholar 

  115. Barrett TG, Bundey SE, Macleod AF (1995) Neurodegeneration and diabetes: UK nationwide study of Wolfram (DIDMOAD) syndrome. Lancet 346:1458–1463

    Article  PubMed  CAS  Google Scholar 

  116. Fraser FC, Gunn T (1977) Diabetes mellitus, diabetes insipidus, and optic atrophy. An autosomal recessive syndrome? J Med Genet 14:190–193

    Article  PubMed  CAS  Google Scholar 

  117. Inoue H, Tanizawa Y, Wasson J et al (1998) A gene encoding a transmembrane protein is mutated in patients with diabetes mellitus and optic atrophy (Wolfram syndrome). Nat Genet 20:143–148

    Article  PubMed  CAS  Google Scholar 

  118. Amr S, Heisey C, Zhang M et al (2007) A homozygous mutation in a novel zinc-finger protein, ERIS, is responsible for Wolfram syndrome 2. Am J Hum Genet 81:673–683

    Article  PubMed  CAS  Google Scholar 

  119. Fonseca SG, Fukuma M, Lipson KL et al (2005) WFS1 is a novel component of the unfolded protein response and maintains homeostasis of the endoplasmic reticulum in pancreatic beta-cells. J Biol Chem 280:39609–39615

    Article  PubMed  CAS  Google Scholar 

  120. Fonseca SG, Ishigaki S, Oslowski CM et al (2010) Wolfram syndrome 1 gene negatively regulates ER stress signaling in rodent and human cells. J Clin Invest 120:744–755

    Article  PubMed  CAS  Google Scholar 

  121. Swift RG, Sadler DB, Swift M (1990) Psychiatric findings in Wolfram syndrome homozygotes. Lancet 336: 667–669

    Article  PubMed  CAS  Google Scholar 

  122. Swift M, Swift RG (2005) Wolframin mutations and hospitalization for psychiatric illness. Mol Psychiatry 10:799–803

    Article  PubMed  CAS  Google Scholar 

  123. Chaussenot A, Bannwarth S, Rouzier C et al (2011) Neurologic features and genotype-phenotype correlation in Wolfram syndrome. Ann Neurol 69:501–508

    Article  PubMed  CAS  Google Scholar 

  124. Boyce M, Bryant KF, Jousse C (et al) A selective inhibitor of eIF2alpha dephosphorylation protects cells from ER stress. Science 307:935–939.

    Google Scholar 

  125. Oh YK, Shin KS, Yuan J et al (2008) Superoxide dismutase 1 mutants related to amyotrophic lateral sclerosis induce endoplasmic stress in neuro2a cells. J Neurochem 104:993–1005

    Article  PubMed  CAS  Google Scholar 

  126. Reijonen S, Putkonen N, Nørremølle A et al (2008) Inhibition of endoplasmic reticulum stress counteracts neuronal cell death and protein aggregation caused by N-terminal mutant huntingtin proteins. Exp Cell Res 314:950–960

    Article  PubMed  CAS  Google Scholar 

  127. Zhu Y, Fenik P, Zhan G et al (2008) Eif-2a protects brainstem motoneurons in a murine model of sleep apnea. J Neurosci 28:2168–78

    Article  PubMed  CAS  Google Scholar 

  128. Ozcan U, Yilmaz E, Ozcan L (2006) Chemical chaperones reduce ER stress and restore glucose homeostasis in a mouse model of type 2 diabetes. Science 313:1137–1140

    Article  PubMed  CAS  Google Scholar 

  129. Keene CD, Rodrigues CM Eich T et al (2002) Tauroursodeoxycholic acid, a bile acid, is neuroprotective in a transgenic animal model of Huntington’s disease. Proc Natl Acad Sci U S A 99:10671–10676

    Article  PubMed  CAS  Google Scholar 

  130. Duan WM, Rodrigues CM, Zhao LR et al (2002) Tauroursodeoxycholic acid improves the survival and function of nigral transplants in a rat model of Parkinson’s disease. Cell Transplant 11:195–205

    PubMed  Google Scholar 

  131. Fernández-Sánchez L, Lax P, Pinilla I et al (2011) Tauroursodeoxycholic acid prevents retinal degeneration in transgenic P23H rats. Invest Ophthalmol Vis Sci 52:4998–5008

    Article  PubMed  CAS  Google Scholar 

  132. Kubota K, Niinuma Y, Kaneko M et al (2006) Suppressive effects of 4-phenylbutyrate on the aggregation of Pael receptors and endoplasmic reticulum stress. J Neurochem 97:1259–1268

    Article  PubMed  CAS  Google Scholar 

  133. Chuang DM (2005) The antiapoptotic actions of mood stabilizers: molecular mechanisms and therapeutic potentials. Ann N Y Acad Sci 1053:195–204

    Article  PubMed  CAS  Google Scholar 

  134. Wang JF, Bown C, Young LT (1999) Differential display PCR reveals novel targets for the mood-stabilizing drug valproate including the molecular chaperone GRP78. Mol Pharmacol 55:521–527

    PubMed  CAS  Google Scholar 

  135. Hiroi T, Wei H, Hough C et al (2005) Protracted lithium treatment protects against the ER stress elicited by thapsigargin in rat PC12 cells: roles of intracellular calcium, GRP78 and Bcl-2. Pharmacogenomics J 5:102–111

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Work in the laboratory of F. Urano is supported by grants from NIH-NIDDK (R01DK067493), the Diabetes and Endocrinology Research Center at the University of Massachusetts Medical School (5 P30 DK32520), and the Juvenile Diabetes Research Foundation International (1-2008-593 and 40-2011-14). K.K. is supported by Japan Society for the Promotion of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fumihiko Urano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kanekura, K., Lu, S., Lipson, K., Urano, F. (2012). Role of ER Stress in Dysfunction of the Nervous System. In: Agostinis, P., Afshin, S. (eds) Endoplasmic Reticulum Stress in Health and Disease. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4351-9_13

Download citation

Publish with us

Policies and ethics