Skip to main content

Cascades and Networks of Regulatory Genes That Control Antibiotic Biosynthesis

  • Chapter
  • First Online:

Part of the book series: Subcellular Biochemistry ((SCBI,volume 64))

Abstract

Onset of the biosynthesis of bioactive secondary metabolites in batch cultures of actinomycetes occurs after the rapid growth phase, following a transition phase which involves complex metabolic changes. This transition is triggered by nutrient starvation or by other environmental stress signals. Expression of genes encoding bioactive secondary metabolites is governed by cascades of pathway specific regulators and networks of cross-talking global regulators. Pathway specific regulators such as Streptomyces antibiotic regulatory proteins, LAL-type and LysR-type regulators respond to autoregulatory proteins that act in concert with their cognate ligands (e.g. γ-butyrolactone receptor proteins and their cognate γ-butyrolactone ligands). Global regulators such as PhoR-PhoP and other two component systems and orphan response regulators, such as GlnR, control set of genes affecting primary and secondary metabolism. GlnR and, therefore, nitrogen metabolism genes are under phosphate control exerted by binding of PhoP to PHO boxes located in the promoter region of GlnR. A few pleiotropic regulatory genes, such as areB (ndgR), dmdR1 or dasR connect primary metabolism (amino acid biosynthesis, N-acetylglucosamine or iron levels) with antibiotic biosynthesis. Some atypical response regulators that require specific small ligands appear to be involved in feedback control of antibiotic production. All these mechanisms together modulate, in a coordinated manner, different aspects of Streptomyces metabolism as a real “protection net” that prevents drastic changes in metabolism that may be deleterious for cell survival.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

ARE:

autoregulatory element

ARR:

atypical response regulators

BRP:

butyrolactone receptor protein

CDA:

calcium-dependent antibiotic

EMSA:

electrophoretic mobility shift assay

GlcNac:

N-acetyl-glucosamine

HTH:

helix-turn-helix

i-TRAQ:

isobaric tags for relative and absolute quantification

LAL:

large ATP-binding regulators of the LuxR family

LC-MS/MS:

liquid chromatography mass spectrometry

PHO box:

sequence for PhoP binding

Q-RT-PCR:

quantitative reverse polymerase chain reaction

SARP:

Streptomyces antibiotic regulatory protein

TCS:

two component systems

References

  • Aínsa JA, Parry HD, Chater KF (1999) A response regulator-like protein that functions at an intermediate stage of sporulation in Streptomyces coelicolor A3(2). Mol Microbiol 34:607–619

    PubMed  Google Scholar 

  • Antón N, Mendes MV, Martín JF, Aparicio JF (2004) Identification of PimR as a positive regulator of pimaricin biosynthesis in Streptomyces natalensis. J Bacteriol 186:2567–2575

    PubMed  Google Scholar 

  • Antón N, Santos-Aberturas J, Mendes MV, Guerra SM, Martín JF, Aparicio JF (2007) PimM, a PAS domain positive regulator of pimaricin biosynthesis in Streptomyces natalensis. Microbiology 153:3174–3183

    PubMed  Google Scholar 

  • Aparicio JF, Molnár I, Schwecke T, König A, Haydock SF, Khaw LE, Staunton J, Leadlay PF (1996) Organization of the biosynthetic gene cluster for rapamycin in Streptomyces hygroscopicus: analysis of the enzymatic domains in the modular polyketide synthase. Gene 169:9–16

    PubMed  CAS  Google Scholar 

  • Apel AK, Sola-Landa A, Rodríguez-García A, Martín JF (2007) Phosphate control of phoA, phoC and phoD gene expression in Streptomyces coelicolor reveals significant differences in binding of PhoP to their promoter regions. Microbiology 153:3527–3537

    PubMed  CAS  Google Scholar 

  • Arias P, Fernández-Moreno MA, Malpartida F (1999) Characterization of the pathway-specific positive transcriptional regulator for actinorhodin biosynthesis in Streptomyces coelicolor A3(2) as a DNA-binding protein. J Bacteriol 181:6958–6968

    PubMed  CAS  Google Scholar 

  • Barona-Gómez F, Wong U, Giannakopulos AE, Derrick PJ, Challis GL (2004) Identification of a cluster of genes that directs desferrioxamine biosynthesis in Streptomyces coelicolor M145. J Am Chem Soc 126:16282–16283

    PubMed  Google Scholar 

  • Bentley SD, Chater KF, Cerdeno-Tarraga AM, Challis GL, Thomson NR, James KD, Harris DE, Quail MA, Kieser H, Harper D et al (2002) Complete genome sequence of the model actinomycete Streptomyces coelicolor A3 (2). Nature 417:141–147

    PubMed  Google Scholar 

  • Bibb MJ (2005) Regulation of secondary metabolism in streptomycetes. Curr Opin Microbiol 8:208–215

    PubMed  CAS  Google Scholar 

  • Bignell DR, Tahlan K, Colvin KR, Jensen SE, Leskiw BK (2005) Expression of ccaR, encoding the positive activator of cephamycin C and clavulanic acid production in Streptomyces clavuligerus, is dependent on bldG. Antimicrob Agents Chemother 49:1529–1541

    PubMed  CAS  Google Scholar 

  • Brautaset T, Sekurova ON, Sletta H, Ellingsen TE, StrŁm AR, Valla S, Zotchev SB (2000) Biosynthesis of the polyene antifungal antibiotic nystatin in Streptomyces noursei ATCC 11455: analysis of the gene cluster and deduction of the biosynthetic pathway. Chem Biol 7:395–403

    PubMed  CAS  Google Scholar 

  • Bunet R, Brock A, Rexer UH, Takano A (2006) Identification of genes involved in siderophore transport in Streptomyces coelicolor A3 (2). FEMS Microbiol Lett 262:57–64

    PubMed  CAS  Google Scholar 

  • Challis G (2005) A widely distributed bacterial pathway for siderophore biosynthesis independent of non ribosomal peptide. ChemBioChem 6:601–611

    PubMed  CAS  Google Scholar 

  • Choi SU, Lee CK, Hwang YI, Kinosita H, Nihira T (2003) γ-Butyrolactone autoregulators and receptor proteins in non-Streptomyces actinomycetes producing commercially important secondary metabolites. Arch Microbiol 180:303–307

    PubMed  CAS  Google Scholar 

  • Colson S, van Wezel GP, Craig M, Noens EE, Nothaft H, Mommaas AM, Titgemeyer F, Joris B, Rigali S (2008) The chitobiose-binding protein, DasA, acts as a link between chitin utilization and morphogenesis in Streptomyces coelicolor. Microbiol 154:373–382

    CAS  Google Scholar 

  • Crosa JH (1997) Signal transduction and transcriptional and post-transcriptional control or iron-regulated genes in bacteria. Microbiol Mol Biol Rev 61:319–336

    PubMed  CAS  Google Scholar 

  • Cundliffe E (2008) Control of tylosin biosynthesis in Streptomyces fradiae. J Microbiol Biotechnol 18:1485–1491

    PubMed  CAS  Google Scholar 

  • Cundliffe E, Demain AL (2010) Avoidance of suicide in antibiotic-producing microbes. J Ind Microbiol Biotechnol 37:643–672

    PubMed  CAS  Google Scholar 

  • Davies J (2007) Small molecules: the lexicon of biodiversity. J Biotechnol 29:3–5

    Google Scholar 

  • Demain AL (2009) Antibiotics: natural products essential to human health. Med Res Rev 29:821–842

    PubMed  CAS  Google Scholar 

  • Dimkpa C, Svatos A, Merten D, Büchel G, Kothe E (2008) Hydroxamate siderophores produced by Streptomyces acidiscabies E13 bind nickel and promote growth in cowpea (Vigna unguiculata L.) under nickel stress. Can J Microbiol 54:163–172

    PubMed  CAS  Google Scholar 

  • Flores FJ, Martín JF (2004) Iron-regulatory proteins DmdR1 and DmdR2 of Streptomyces coelicolor form two different DNA-protein complexes with iron boxes. Biochem J 380:497–503

    PubMed  CAS  Google Scholar 

  • Flores FJ, Barreiro C, Coque JJR, Martín JF (2005) Functional analysis of Two divalent metal-dependent genes dmdR1 and dmdR2 in Streptomyces coelicolor and proteome changes in deletion mutants. FEBS J 272:725–735

    PubMed  CAS  Google Scholar 

  • Floriano B, Bibb M (1996) afsR is a pleiotropic but conditionally required regulatory gene for antibiotic production in Streptomyces coelicolor A3(2). Mol Microbiol 21:385–396

    PubMed  CAS  Google Scholar 

  • Folcher M, Gaillard H, Nguyen LT, Nguyen KT, Lacroix P, Bamas-Jacques N, Rinkel M, Thompson CJ (2001) Pleiotropic functions of a Streptomyces pristinaespiralis autoregulator receptor in development, antibiotic biosynthesis, and expression of a superoxide dismutase. J Biol Chem 276:44297–44306

    PubMed  CAS  Google Scholar 

  • Galaris D, Pantopoulos K (2008) Oxidative stress and iron homeostasis: mechanistic and health aspects. Crit Rev Clin Lab Sci 45:1–23

    PubMed  CAS  Google Scholar 

  • Galperin MY (2006) Structural classification of bacterial response regulators: diversity of output domains and domain combinations. J Bacteriol 188:4169–4182

    PubMed  CAS  Google Scholar 

  • Garg RP, Parry RJ (2010) Regulation of valanimycin biosynthesis in Streptomyces viridifaciens: characterization of VlmI as a Streptomyces antibiotic regulatory protein (SARP). Microbiol 156:472–483

    CAS  Google Scholar 

  • Ghorbel S, Kormanec J, Artus A, Virolle MJ (2006) Transcriptional studies and regulatory interactions between the phoR-phoP operon and the phoU, mtpA and ppk genes of Streptomyces lividans TK24. J Bacteriol 188:677–686

    PubMed  CAS  Google Scholar 

  • Gomez-Escribano JP, Martín JF, Hesketh A, Bibb MJ, Liras P (2008) Streptomyces clavuligerus relA-null mutants overproduce clavulanic acid and cephamycin C: negative regulation of secondary metabolism by (p)ppGpp. Microbiol 154:744–755

    CAS  Google Scholar 

  • Goranovič D, Kosec G, Mrak P, Fujs S, Horvat J, Kuščer E, Kopitar G, Petković H (2010) Origin of the allyl group in FK506 biosynthesis. J Biol Chem 285:14292–14300

    PubMed  Google Scholar 

  • Guthrie EP, Flaxman CS, White J, Hodgson DA, Bibb MJ, Chater KF (1998) A response-regulator-like activator of antibiotic synthesis from Streptomyces coelicolor A3(2) with an amino-terminal domain that lacks a phosphorylation pocket. Microbiol 144:727–738

    CAS  Google Scholar 

  • Hara H, Ohnishi Y, Horinouchi S (2009) DNA microarray analysis of global gene regulation by A-factor in Streptomyces griseus. Microbiol 155:2197–2210

    CAS  Google Scholar 

  • He W, Lei J, Liu Y, Wang Y (2008) The LuxR family members GdmRI and GdmRII are positive regulators of geldanamycin biosynthesis in Streptomyces hygroscopicus 17997. Arch Microbiol 189:501–510

    PubMed  CAS  Google Scholar 

  • Henikoff S, Haughn GW, Calvo JM, Wallace JC (1988) A large family of bacterial activator proteins. Proc Natl Acad Sci USA 85:6602–6606

    PubMed  CAS  Google Scholar 

  • Hesketh A, Chen WJ, Ryding J, Chang S, Bibb M (2007) The global role of ppGpp synthesis in morphological differentiation and antibiotic production in Streptomyces coelicolor A3(2). Genome Biol 8:R161

    PubMed  Google Scholar 

  • Hesketh A, Bucca G, Laing E, Flett F, Hotchkiss G, Smith CP, Chater KF (2008) New pleiotropic effects of eliminating a rare tRNA from Streptomyces coelicolor, revealed by combined proteomic and transcriptomic analysis of liquid cultures. BMC Genomics 8:261

    Google Scholar 

  • Horinouchi S (2007) Mining and polishing of the treasure trove in the bacterial genus Streptomyces. Biosci Biotechnol Biochem 71:283–299

    PubMed  CAS  Google Scholar 

  • Horinouchi S, Beppu T (2007) Hormonal control by A-factor of morphological development and secondary metabolism in Streptomyces. Proc Jpn Acad 83:277–295

    CAS  Google Scholar 

  • Huang J, Lih CJ, Pan KH, Cohen SN (2001) Global analysis of growth phase responsive gene expression and regulation of antibiotic biosynthetic pathways in Streptomyces coelicolor using DNA microarrays. Genes Dev 15:3183–3192

    PubMed  CAS  Google Scholar 

  • Huang J, Shi J, Molle V, Sohlberg B, Weaver D, Bibb MJ, Karoonuthaisiri N, Lih CJ, Kao CM, Buttner MJ, Cohen SN (2005) Cross-regulation among disparate antibiotic biosynthetic pathways of Streptomyces coelicolor. Mol Microbiol 58:1276–1287

    PubMed  CAS  Google Scholar 

  • Hutchings MI (2007) Unusual two-component signal transduction pathways in the actinobacteria. Adv Appl Microbiol 61:1–26

    PubMed  CAS  Google Scholar 

  • Hutchings MI, Hoskisson PA, Chandra G, Buttner MJ (2004) Sensing and responding to diverse extracellular signals? Analysis of the sensor kinases and response regulators of Streptomyces coelicolorA3(2). Microbiol 150:2795–2806

    CAS  Google Scholar 

  • Imbert M, Béchet M, Blondeau R (1995) Comparison of the main siderophores produced by some species of Streptomyces. Curr Microbiol 31:129–133

    CAS  Google Scholar 

  • Kato JY, Funa N, Watanabe H, Ohnishi Y, Horinouchi S (2007) Biosynthesis of gamma-butyrolactone autoregulators that switch on secondary metabolism and morphological development in Streptomyces. Proc Natl Acad Sci USA 104:2378–2383

    PubMed  CAS  Google Scholar 

  • Kim HS, Lee YJ, Lee CK, Choi SU, Yeo SH, Hwang YI, Yu TS, Kinoshita H, Nihira T (2004) Cloning and characterization of a gene encoding the gamma-butyrolactone autoregulator receptor from Streptomyces clavuligerus. Arch Microbiol 182:44–50

    PubMed  CAS  Google Scholar 

  • Kitani S, Miyamoto KT, Takamatsu S, Herawati E, Iguchi H, Nishitomi K, Uchida M, Nagamitsu T, Omura S, Ikeda H, Nihira T (2011) Avenolide, a Streptomyces hormone controlling antibiotic production in Streptomyces avermitilis. Proc Natl Acad Sci USA 108:16410–16415

    PubMed  CAS  Google Scholar 

  • Kolter R, Siegele DA, Tormo A (1993) The stationary phase of the bacterial life cycle. Annu Rev Microbiol 47:855–874

    PubMed  CAS  Google Scholar 

  • Kuscer E, Coates N, Challis I, Gregory M, Wilkinson B, Sheridan R, Petković H (2007) Roles of rapH and rapG in positive regulation of rapamycin biosynthesis in Streptomyces hygroscopicus. J Bacteriol 189:4756–4763

    PubMed  CAS  Google Scholar 

  • Lautru S, Deeth R, Bailey L, Challis G (2005) Discovery of a new peptide natural product by Streptomyces coelicolor genome mining. Nat Chem Biol 1:265–269

    PubMed  CAS  Google Scholar 

  • Lian W, Jayapal KP, Charaniya S, Mehra S, Glod F, Kyung YS, Sherman DH, Hu WS (2008) Genome-wide transcriptome analysis reveals that a pleiotropic antibiotic regulator, AfsS, modulates nutritional stress response in Streptomyces coelicolor A3(2). BMC Genomic 9:56

    Google Scholar 

  • Liras P, Gomez-Escribano JP, Santamarta I (2008) Regulatory mechanisms controlling antibiotic production in Streptomyces clavuligerus. J Ind Microbiol Biotechnol 35:667–676

    PubMed  CAS  Google Scholar 

  • López-García MT, Santamarta I, Liras P (2010) Morphological differentiation and clavulanic acid formation are affected in a Streptomyces clavuligerus adpA-deleted mutant. Microbiol 156:2354–2365

    Google Scholar 

  • Maddocks SE, Oyston PC (2008) Structure and function of the LysR-type transcriptional regulator (LTTR) family proteins. Microbiol 154:3609–3623

    CAS  Google Scholar 

  • Manteca A, Sánchez J, Jung HR, Schwämmle V, Jensen ON (2010a) Quantitative proteomics analysis of Streptomyces coelicolor development demonstrates that onset of secondary metabolism coincides with hypha differentiation. Mol Cell Proteomics 9:1423–1436

    PubMed  CAS  Google Scholar 

  • Manteca A, Jung HR, Schwämmle V, Jensen ON, Sánchez J (2010b) Quantitative proteome analysis of Streptomyces coelicolor Nonsporulating liquid cultures demonstrates a complex differentiation process comparable to that occurring in sporulating solid cultures. J Proteome Res 3:4801–4811

    Google Scholar 

  • Martín JF (2004) Phosphate control of the biosynthesis of antibiotics and other secondary metabolites is mediated by the PhoR–PhoP system: an unfinished story. J Bacteriol 186:5197–5201

    PubMed  Google Scholar 

  • Martín JF, Demain AL (1980) Control of antibiotic biosynthesis. Microbiol Rev 44:230–251

    PubMed  Google Scholar 

  • Martín JF, Liras P (1989) Organization and expression of genes involved in the biosynthesis of antibiotics and other secondary metabolites. Ann Rev Microbiol 43:173–206

    Google Scholar 

  • Martín JF, Liras P (2010) Engineering of regulatory cascades and networks controlling antibiotic biosynthesis in Streptomyces. Curr Opin Microbiol 13:263–273

    PubMed  Google Scholar 

  • Martín JF, Sola-Landa A, Santos-Beneit F, Fernández-Martínez LT, Prieto C, Rodríguez-García A (2011) Cross-talk of global nutritional regulators in the control of primary and secondary metabolism in Streptomyces. Microb Biotechnol 4:165–174

    PubMed  Google Scholar 

  • Martín JF, Sola-Landa A, Rodríguez-García A (2012a) Two-component systems in Streptomyces. In: Gross R (ed) Two component systems in Bacteria. Horizon Sci Press, Norfolk, pp 315–331

    Google Scholar 

  • Martín JF, Santos-Beneit F, Rodríguez-García A, Sola-Landa A, Smith MCM, Ellingsen TE, Nieselt K, Burroughs NJ, Wellington EMH (2012b) Transcriptomic studies of phosphate control of primary and secondary metabolism in Streptomyces coelicolor. Appl Microb Biotechnol 95:61–75

    Google Scholar 

  • Matsumoto A, Ishizuka H, Beppu T, Horinouchi S (1995) Involvement of a small ORF downstream of the afsR gene in the regulation of secondary metabolism in Streptomyces coelicolor A3(2). Actinomycetologica 9:37–43

    Google Scholar 

  • McKenzie NL, Nodwell JR (2007) Phosphorylated AbsA2 negatively regulates antibiotic production in Streptomyces coelicolor through interactions with pathway-specific regulatory gene promoters. J Bacteriol 189:5284–5292

    PubMed  CAS  Google Scholar 

  • Mo S, Yoo YJ, Ban YH, Lee SK, Kim E, Suh JW, Yoon YJ (2012) Roles of fkbN in Positive Regulation and tcs7 in Negative Regulation of FK506 Biosynthesis in Streptomyces sp. strain KCTC 11604BP. Appl Environ Microbiol 78:2249–2255

    PubMed  CAS  Google Scholar 

  • Molnár I, Aparicio JF, Haydock SF, Khaw LE, Schwecke T, König A, Staunton J, Leadlay PF (1996) Organisation of the biosynthetic gene cluster for rapamycin in Streptomyces hygroscopicus: analysis of genes flanking the polyketide synthase. Gene 169:1–7

    PubMed  Google Scholar 

  • Muller G, Raymond KN (1984) Specificity and mechanism of ferrioxamine-mediated iron transport in Streptomyces pilosus. J Bacteriol 160:304–312

    PubMed  CAS  Google Scholar 

  • Natsume R, Ohnishi Y, Senda T, Horinouchi S (2004) Crystal structure of a gamma-butyrolactone autoregulator receptor protein in Streptomyces coelicolor A3(2). J Mol Biol 336:409–419

    PubMed  CAS  Google Scholar 

  • Neilands JB (1995) Siderophores: structure and function of microbial iron-transport compounds. J Biol Chem 270:26723–26726

    PubMed  CAS  Google Scholar 

  • Nieselt K, Battke F, Herbig A, Bruheim P, Wentzel A, Jakobsen OM, Sletta H, Alam MT, Merlo ME, Moore J et al (2010) The dynamic architecture of the metabolic switch in Streptomyces coelicolor. BMC Genomic 11:10

    Google Scholar 

  • Nishida H, Ohnishi Y, Beppu T, Horinouchi S (2007) Evolution of gamma-butyrolactone synthases and receptors in Streptomyces. Environ Microbiol 9:1986–1994

    PubMed  CAS  Google Scholar 

  • Ohnishi Y, Kameyama S, Onaka H, Horinouchi S (1999) The A-factor regulatory cascade leading to streptomycin biosynthesis in Streptomyces griseus: identification of a target gene of the A-factor receptor. Mol Microbiol 34:102–111

    PubMed  CAS  Google Scholar 

  • Omura S, Ikeda H, Ishikawa J, Hanamoto A, Takahashi C, Shinose M, Takahashi Y, Horikawa H, Nakazawa H, Osonoe T, Kikuchi H, Shiba T, Sakaki Y, Hattori M (2001) Genome sequence of an industrial microorganism Streptomyces avermitilis: deducing the ability of producing secondary metabolites. Proc Natl Acad Sci USA 98:12215–12220

    PubMed  CAS  Google Scholar 

  • Pérez-Llarena FJ, Liras P, Rodriguez-García A, Martín JF (1997) A regulatory gene (ccaR) required for cephamycin and clavulanic acid productionin Streptomyces clavuligerus: amplification results in overproduction of both beta-lactam compounds. J Bacteriol 179:2053–2059

    PubMed  Google Scholar 

  • Pérez-Redondo R, Rodríguez-García A, Martín JF, Liras P (1998) The claR gene of Streptomyces clavuligerus, encoding a LysR-type regulatory protein controlling clavulanic acid biosynthesis, is linked to the clavulanate-9-aldehyde reductase (car) gene. Gene 211:311–321

    PubMed  Google Scholar 

  • Pflock M, Bathon M, Schär J, Müller S, Mollenkopf H, Meyer TF, Beier D (2007) The orphan response regulator HP1021 of Helicobacter pylori regulates transcription of a gene cluster presumably involved in acetone metabolism. J Bacteriol 189:2339–2349

    PubMed  CAS  Google Scholar 

  • Pullan ST, Chandra G, Bibb MJ, Merrick M (2011) Genome-wide analysis of the role of GlnR in Streptomyces venezuelae provides new insights into global nitrogen regulation in actinomycetes. BMC Genomic 12:175–189

    CAS  Google Scholar 

  • Recio E, Colinas A, Rumbero A, Aparicio JF, Martín JF (2004) PI factor, a novel type quorum-sensing inducer elicits pimaricin production in Streptomyces natalensis. J Biol Chem 279:41586–41593

    PubMed  CAS  Google Scholar 

  • Reuther J, Wohlleben W (2007) Nitrogen metabolism in Streptomyces coelicolor: transcriptional and post-translational regulation. J Mol Microbiol Biotechnol 12:139–146

    PubMed  CAS  Google Scholar 

  • Rigali S, Nothaft H, Noens EE, Schlicht M, Colson S, Müller M, Joris B, Koerten HK, Hopwood DA, Titgemeyer F, van Wezel GP (2006) The sugar phosphotransferase system of Streptomyces coelicolor is regulated by the GntR-family regulator DasR and links N-acetylglucosamine metabolism to the control of development. Mol Microbiol 61:1237–1251

    PubMed  CAS  Google Scholar 

  • Rigali S, Titgemeyer F, Barends S, Mulder S, Thomae AW, Hopwood DA, van Wezel GP (2008) Feast or famine: the global regulator DasR links nutrient stress to antibiotic production by Streptomyces. EMBO Rep 9:670–675

    PubMed  CAS  Google Scholar 

  • Rodríguez-García A, Barreiro C, Santos-Beneit F, Sola-Landa A, Martín JF (2007) Genome-wide transcriptomic and proteomic analysis of the primary response to phosphate limitation in Streptomyces coelicolor M145 and in a ∆phoP mutant. Proteomics 7:2410–2429

    PubMed  Google Scholar 

  • Rodríguez-García A, Sola-Landa A, Apel K, Santos-Beneit F, Martín JF (2009) Phosphate control over nitrogen metabolism in Streptomyces coelicolor: direct and indirect negative control of glnR, glnA, glnII and amtB expression by the response regulator PhoP. Nucleic Acids Res 37:3230–3242

    PubMed  Google Scholar 

  • Ryding NJ, Anderson TB, Champness WC (2002) Regulation of the Streptomyces coelicolor calcium-dependent antibiotic by absA, encoding a cluster-linked two-component system. J Bacteriol 184:794–805

    PubMed  CAS  Google Scholar 

  • Salehi-Najafabadi Z, Barreiro C, Martínez-Castro M, Solera E, Martín JF (2011) Characterization of a γ-butyrolactone receptor of Streptomyces tacrolimicus: effect on sporulation and tacrolimus biosynthesis. Appl Microbiol Biotechnol 92:971–984

    PubMed  CAS  Google Scholar 

  • Santamarta I, Rodríguez-Garcia A, Pérez-Redondo R, Martín JF, Liras P (2002) CcaR is an Autoregulatory Protein that binds to the ccaR and the cefD-cmcI promoters of the cephamycin C-clavulanic acid cluster in Streptomyces clavuligerus. J Bacteriol 184:3106–3113

    PubMed  CAS  Google Scholar 

  • Santamarta I, Pérez-Redondo R, Lorenzana LM, Martín JF, Liras P (2005) Different proteins bind to the butyrolactone receptor protein ARE sequence located upstream of the regulatory ccaR gene of Streptomyces clavuligerus. Mol Microbiol 56:824–835

    PubMed  CAS  Google Scholar 

  • Santamarta I, López-García MT, Pérez-Redondo R, Koekman B, Martín JF, Liras P (2007) Connecting primary and secondary metabolism: AreB, an IclR-like protein, binds the ARE(ccaR) sequence of S. clavuligerus and modulates leucine biosynthesis and cephamycin C and clavulanic acid production. Mol Microbiol 66:511–524

    PubMed  CAS  Google Scholar 

  • Santamarta I, López-García MT, Kurt A, Nárdiz N, Alvarez-Álvarez R, Pérez-Redondo R, Martín JF, Liras P (2011) Characterization of DNA-binding sequences for CcaR in the cephamycin-clavulanic acid supercluster of Streptomyces clavuligerus. Mol Microbiol 81:968–981

    PubMed  CAS  Google Scholar 

  • Santos-Aberturas J, Payero TD, Vicente CM, Guerra SM, Cañibano C, Martín JF, Aparicio JF (2011a) Functional conservation of PAS-LuxR transcriptional regulators in polyene macrolide biosynthesis. Metab Eng 13:756–767

    PubMed  CAS  Google Scholar 

  • Santos-Aberturas J, Vicente CM, Guerra SM, Payero TD, Martín JF, Aparicio JF (2011b) Molecular control of polyene macrolide biosynthesis: direct binding of the regulator PimM to eight promoters of pimaricin genes and identification of binding boxes. J Biol Chem 286:9150–9161

    PubMed  CAS  Google Scholar 

  • Santos-Beneit F, Rodríguez-García A, Sola-Landa A, Martín JF (2009) Cross-talk between two global regulators in Streptomyces: PhoP and AfsR interact in the control of afsS, pstS and phoRP transcription. Mol Microbiol 72:53–68

    PubMed  CAS  Google Scholar 

  • Santos-Beneit F, Barriuso-Iglesias M, Fernández-Martínez LT, Martínez-Castro M, Sola-Landa A, Rodríguez-García A, Martín JF (2011a) The RNA polymerase omega factor RpoZ is regulated by PhoP and has an important role in antibiotic biosynthesis and morphological differentiation in Streptomyces coelicolor. Appl Environ Microbiol 77:7586–7594

    PubMed  CAS  Google Scholar 

  • Santos-Beneit F, Rodríguez-García A, Martín JF (2011b) Complex transcriptional control of the antibiotic regulator afsS in Streptomyces: PhoP and AfsR are overlapping, competitive activators. J Bacteriol 193:2242–2251

    PubMed  CAS  Google Scholar 

  • Santos-Beneit F, Rodríguez-García A, Martín JF (2012) Overlapping binding of PhoP and AfsR to the promoter region of glnR in Streptomyces coelicolor. Microbiol Res (in press)

    Google Scholar 

  • Schell MA (1993) Molecular biology of the LysR family of transcriptional regulators. Annu Rev Microbiol 47:597–626

    PubMed  CAS  Google Scholar 

  • Schupp T, Waldmeier U, Divers M (1987) Biosynthesis of desferrioxamine B in Streptomyces pilosus: evidence for the involvement of lysine decarboxylase. FEMS Microbiol Lett 42:135–139

    CAS  Google Scholar 

  • Schupp T, Toupet C, Divers M (1988) Cloning and expression of two genes of Streptomyces pilosus involved in the biosynthesis of siderophore desferroxamine B. Gene 64:179–188

    PubMed  CAS  Google Scholar 

  • Sheeler NL, MacMillan SV, Nodwell JR (2005) Biochemical activities of the absA two-component system of Streptomyces coelicolor. J Bacteriol 187:687–696

    PubMed  CAS  Google Scholar 

  • Sheldon PJ, Busarow SB, Hutchinson CR (2002) Mapping the DNA-binding domain and target sequences of the Streptomyces peucetius daunorubicin biosynthesis regulatory protein. DnrI Mol Microbiol 44:449–460

    CAS  Google Scholar 

  • Sola-Landa A, Moura RS, Martín JF (2003) The two-component PhoR–PhoP system controls both primary metabolism and secondary metabolite biosynthesis in Streptomyces lividans. Proc Natl Acad Sci U S A 100:6133–6318

    PubMed  CAS  Google Scholar 

  • Sola-Landa A, Rodríguez-García A, Franco-Domínguez E, Martín JF (2005) Binding of PhoP to promoters of phosphate regulated genes in Streptomyces coelicolor: identification of PHO boxes. Mol Microbiol 56:1373–1385

    PubMed  CAS  Google Scholar 

  • Sola-Landa A, Rodríguez-García A, Apel AK, Martín JF (2008) Target genes and structure of the direct repeats in the DNA binding sequences of the response regulator PhoP in Streptomyces coelicolor. Nucleic Acids Res 36:1358–1368

    PubMed  CAS  Google Scholar 

  • Stewart RC (2010) Protein histidine kinases: assembly of active sites and their 981 regulation in signaling pathways. Curr Opin Microbiol 13:133–141

    PubMed  CAS  Google Scholar 

  • Stratigopoulos G, Gandecha AR, Cundliffe E (2002) Regulation of tylosin production and morphological differentiation in Streptomyces fradiae by TylP, a deduced gamma-butyrolactone receptor. Mol Microbiol 45:735–744

    PubMed  CAS  Google Scholar 

  • Tahlan K, Anders C, Wong A, Mosher RH, Beatty PH, Brumlik MJ, Griffin A, Hughes C, Griffin J, Barton B, Jensen SE (2007) 5 S clavam biosynthetic genes are located in both the clavam and paralog gene clusters in Streptomyces clavuligerus. Chem Biol 14:131–142

    PubMed  CAS  Google Scholar 

  • Takano E (2006) γ-Butyrolactones: Streptomyces signalling molecules regulating antibiotic production and differentiation. Curr Opin Microbiol 9:287–294

    PubMed  CAS  Google Scholar 

  • Tanaka A, Takano Y, Ohnishi Y, Horinouchi S (2007) AfsR recruits RNA polymerase to the afsS promoter: a model for transcriptional activation by SARPs. J Mol Biol 369:322–333

    PubMed  CAS  Google Scholar 

  • Thomas L, Hodgson DA, Wentzel A, Nieselt K, Ellingsen TE, Moore J, Morrissey ER, Legaie R, STREAM Consortium, Wohlleben W, Rodríguez-García A, Martín JF, Burroughs NJ, Wellington EM, Smith MC (2012) Metabolic switches and adaptations deduced from the proteomes of Streptomyces coelicolor wild type and phoP mutant grown in batch culture. Mol Cell Proteomic 11:M111.013797

    Google Scholar 

  • Tian Y, Fowler K, Findlay K, Tan H, Chater KF (2007) An unusual response regulator influences sporulation at early and late stages in Streptomyces coelicolor. J Bacteriol 189:2873–2885

    PubMed  CAS  Google Scholar 

  • Tierrafría VH, Ramos-Aboites HE, Gosset G, Barona-Gómez F (2011) Disruption of the siderophore-binding desE receptor gene in Streptomyces coelicolor A3(2) results in impaired growth in spite of multiple iron-siderophore transport systems. Microb Biotechnol 4:275–285

    PubMed  Google Scholar 

  • Tiffert Y, Supra P, Wurm R, Wohlleben W, Wagner R, Reuther J (2008) The Streptomyces coelicolor GlnR regulon: identification of new GlnR targets and evidence for a central role of GlnR in nitrogen metabolism in actinomycetes. Mol Microbiol 67:861–880

    PubMed  CAS  Google Scholar 

  • Tiffert Y, Franz-Wachtel M, Fladerer C, Nordheim A, Reuther J, Wohlleben W, Mast Y (2011) Proteomic analysis of the GlnR-mediated response to nitrogen limitation in Streptomyces coelicolor M145. Appl Microbiol Biotechnol 89:1149–1159

    PubMed  CAS  Google Scholar 

  • Tunca S, Barreiro C, Sola-Landa A, Coque JJ, Martín JF (2007) Transcriptional regulation of the desferrioxamine gene cluster of Streptomyces coelicolor is mediated by binding of DmdR1 to an iron box in the promoter of the desA gene. FEBS J 274:1110–1122

    PubMed  CAS  Google Scholar 

  • Tunca S, Barreiro C, Coque JJ, Martín JF (2009) Two overlapping antiparallel genes encoding the iron regulator DmdR1 and the Adm proteins control siderophore and antibiotic biosynthesis in Streptomyces coelicolor A3(2). FEBS J 276:4814–4827

    PubMed  CAS  Google Scholar 

  • Ulijasz AT, Andes DR, Glasner JD, Weisblum B (2004) Regulation of iron 1007 transport in Streptococcus pneumoniae by RitR, an orphan response regulator. J Bacteriol 186:8123–8136

    PubMed  CAS  Google Scholar 

  • van Wezel GP, McDowall KJ (2011) The regulation of the secondary metabolism of Streptomyces: new links and experimental advances. Nat Prod Rep 28:1311–1333

    PubMed  Google Scholar 

  • van Wezel GP, McKenzie NL, Nodwell JR (2009) Applying the genetics of secondary metabolism in model actinomycetes to the discovery of new antibiotics. Methods Enzymol 458:117–141

    PubMed  Google Scholar 

  • Vicente CM, Santos-Aberturas J, Guerra SM, Payero TD, Martín JF, Aparicio JF (2009) PimT: an amino acid exporter controls polyene production via secretion of the quorum sensing pimaricin-inducer PI-factor in Streptomyces natalensis. Microb Cell Fact 8:8–33

    Google Scholar 

  • Vögtli M, Chang PC, Cohen SN (1994) afsR2: a previously undetected gene encoding a 63-amino acid protein that stimulates antibiotic production in Streptomyces lividans. Mol Microbiol 14:643–653

    PubMed  Google Scholar 

  • Wang L, Tian X, Wang J, Yang H, Fan K, Xu G, Yang K, Tan H (2009) Autoregulation of antibiotic biosynthesis by binding of the end product to an atypical response regulator. Proc Natl Acad Sci U S A 106:8617–8622

    PubMed  CAS  Google Scholar 

  • Ward JM, Hodgson JE (1993) The biosynthetic genes for clavulanic acid and cephamycin production occur as a ‘super-cluster’ in three Streptomyces. FEMS Microbiol Lett 110:239–242

    PubMed  CAS  Google Scholar 

  • Wietzorrek A, Bibb M (1997) A novel family of proteins that regulates antibiotic production in streptomycetes appears to contain an OmpR-like DNA-binding fold. Mol Microbiol 25:1181–1184

    PubMed  CAS  Google Scholar 

  • Wilson DJ, Xue Y, Reynolds KA, Sherman DH (2001) Characterization and analysis of the PikD regulatory factor in the pikromycin biosynthetic pathway of Streptomyces venezuelae. J Bacteriol 183:3468–3475

    PubMed  CAS  Google Scholar 

  • Wray LV, Fisher SH (1993) The Streptomyces coelicolorglnR gene encodes a protein similar to other bacterial response regulators. Gene 130:145–150

    PubMed  CAS  Google Scholar 

  • Wu K, Chung L, Revill WP, Katz L, Reeves CD (2000) The FK520 gene cluster of Streptomyces hygroscopicus var. ascomyceticus (ATCC 14891) contains genes for biosynthesis of unusual polyketide extender units. Gene 251:81–90

    PubMed  CAS  Google Scholar 

  • Xu G, Wang J, Wang L, Tian X, Yang H, Fan K, Yang K, Tan H (2010) “Pseudo” γ-butyrolactone receptors respond to antibiotic signals to coordinate antibiotic biosynthesis. J Biol Chem 285:27440–27448

    PubMed  CAS  Google Scholar 

  • Yamada Y (1999) Autoregulatory factors and regulation of antibiotic production in Streptomyces. In: England R, Hobbs G, Bainton N, McRoberts DL (eds) Microbial signalling and communication society for general microbiology. Cambridge University Press, Cambridge, pp 177–196

    Google Scholar 

  • Yamanaka K, Oikawa H, Ogawa HO, Hosono K, Shinmachi F, Takano H, Sakuda S, Beppu T, Ueda K (2005) Desferrioxamine E produced by Streptomyces griseus stimulates growth and development of Streptomyces tanashiensis. Microbiology 151:2899–2905

    PubMed  CAS  Google Scholar 

  • Yang YH, Song E, Kim EJ, Lee K, Kim WS, Park SS, Hahn JS, Kim BG (2009) NdgR, an IclR-like regulator involved in amino-acid-dependent growth, quorum sensing, and antibiotic production in Streptomyces coelicolor. Appl Microbiol Biotechnol 82:501–511

    PubMed  CAS  Google Scholar 

  • Yim G, Wang HH, Davies J (2007) Antibiotics as signalling molecules. Philos Trans R Soc Lond B Biol Sci 362:1195–1200

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This article was supported by Grants BIO2009-09820 to P. Liras and BIO2010-16094 to Juan F. Martín, of the CICYT, Spanish Ministry of Economy and Competitivity, and by the European ERA-IB2 Project PIM2010EE1-00677 “INMUNOTEC” to both authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan F. Martín .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Martín, J.F., Liras, P. (2012). Cascades and Networks of Regulatory Genes That Control Antibiotic Biosynthesis. In: Wang, X., Chen, J., Quinn, P. (eds) Reprogramming Microbial Metabolic Pathways. Subcellular Biochemistry, vol 64. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5055-5_6

Download citation

Publish with us

Policies and ethics