Skip to main content

Anaerobic Degradation of Lindane and Other HCH Isomers

  • Chapter
Management of Microbial Resources in the Environment

Abstract

Lindane (γ-HCH) is a pesticide that has mainly been used in agriculture. Lindane and the other HCH isomers are highly chlorinated hydrocarbons. The presence of a large number of electron withdrawing chlorine groups makes some of the HCH isomers rather recalcitrant in oxic environments. Especially β-HCH is poorly degraded by aerobic bacteria. The chlorine groups make HCH isomers more accessible for an initial reductive attack, a common mechanism in anoxic environments. Among the HCH isomers, γ-HCH is degraded most easily while β-HCH is most persistent. Little is known about the diversity of the microorganisms involved in anaerobic HCH degradation. Thus far, species within the genera Clostridium and Bacillus, two Desulfovibrio species, and one species each of Desulfococcus, Desulfobacter, Citrobacter and Dehalobacter have been found to metabolize lindane and other HCH isomers. Benzene and monochlorobenzene are the end products of anaerobic degradation, while in some studies pentachlorocyclohexane, tetrachlorocyclohexene, chlorobenzenes and chlorophenols have been detected as intermediates. Enzymes and coding genes involved in the reductive dechlorination of HCH isomers are largely unknown. Recently, a metagenomic analysis has indicated the presence of numerous putative reductive dehalogenase genes in the genome of β-HCH degrading Dehalobacter sp. High-throughput omics techniques can help to explore the key players and enzymes involved in the reductive dehalogenation of lindane and other HCH isomers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bachmann A, de Bruin W, Jumelet JC, Rijnaarts HHM, Zehnder AJB (1988a) Aerobic biomineralization of alphahexachlorocyclohexane in contaminated soil. Appl Environ Microbiol 54:548–554

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bachmann A, Wijnen P, de Bruin W, Huntjens JLM, Roelofsen W, Zehnder AJB (1988b) Biodegradation of alpha- and beta-hexachlorocyclohexane in a soil slurry under different redox conditions. Appl Environ Microbiol 54:143–149

    CAS  PubMed  PubMed Central  Google Scholar 

  • Baczynski TP, Pleissner D, Grotenhuis T (2010) Anaerobic biodegradation of organochlorine pesticides in contaminated soil-significance of temperature and availability. Chemosphere 78:22–28

    Article  CAS  PubMed  Google Scholar 

  • Badea S-L, Vogt C, Weber S, Danet A-F, Richnow H-H (2009) Stable isotope fractionation of γ-hexachlorocyclohexane (lindane) during reductive dechlorination by two strains of sulfate-reducing bacteria. Environ Sci Technol 43:3155–3161

    Article  CAS  PubMed  Google Scholar 

  • Baker MT, Nelson RM, van Dijke RA (1985) The formation of chlorobenzene and benzene by the reductive metabolism of lindane in rat liver microsomes. Arch Biochem Biophys 236:506–514

    Article  CAS  PubMed  Google Scholar 

  • Benezet HJ, Matsumura F (1973) Isomerization of γ-BHC to α -BHC in the environment. Nature 243:480–481

    Article  CAS  Google Scholar 

  • Berg T, Kallenborn R, Manø S (2004) Challenges in arctic-alpine environmental research. Arct Antarct Alp Res 36:284–291

    Article  Google Scholar 

  • Beurskens JEM, Stams AJM, Zehnder AJB, Bachmann A (1991) Relative biochemical reactivity of three hexachlorocyclohexane isomers. Ecotoxicol Environ Safety 21:128–136

    Article  CAS  PubMed  Google Scholar 

  • Bhat P, Kumar MS, Mudliar SN, Chakrabarti T (2006) Biodegradation of tech-hexachlorocyclohexane in a upflow anaerobic sludge blanket (UASB) reactor. Bioresour Technol 97:824–830

    Article  CAS  PubMed  Google Scholar 

  • Bhatt P, Kumar MS, Mudliar SN, Chakrabarti T (2008) Enhanced biodegradation of hexachlorocyclohexane in upflow anaerobic sludge blanket reactor using methanol as an electron donor. Bioresour Technol 99:2594–2602

    Article  CAS  PubMed  Google Scholar 

  • Boyle AW, Haggblom MM, Young LY (1999) Dehalogenation of lindane (γ-hexachlorocyclohexane) by anaerobic bacteria from marine sediments and by sulfate-reducing bacteria. FEMS Microbiol Ecol 29:379–387

    CAS  Google Scholar 

  • Breitenstein A, Wiegel J, Haertig C, Weiss N, Andreesen JR, Lechner U (2002) Reclassification of Clostridium hydroxybenzoicum as Sedimentibacter hydroxybenzoicus gen. nov., comb. nov., and description of Sedimentibacter saalensis sp. nov. Int J Sys Evol Microbiol 52:801–807

    CAS  Google Scholar 

  • Breivik K, Pacyna JM, Munch J (1999) Use of α, β and γ-hexachlorocyclohexane in Europe, 1970–1996. Sci Total Environ 239:151–163

    Article  CAS  Google Scholar 

  • Buser H-R, Müller MD (1995) Isomer and enantioselective degradation of hexachlorocyclohexane isomers in sewage sludge under anaerobic conditions. Environ Sci Technol 29:664–672

    Article  CAS  Google Scholar 

  • Camacho-Pérez B, Ríos-Leal E, Esparza-García F, Cortes JB, Fava F, Poggi-Varaldo HM (2010) Bioremediation of an agricultural soil polluted with lindane in triphasic, sequential methanogenic-sulfate reducing slurry bioreactors. J Biotechnol 150:S561–S562

    Article  Google Scholar 

  • Camacho-Pérez B, Ríos-Leal E, Rinderknecht-Seijas N, Poggi-Varaldo HM (2012) Enzymes involved in the biodegradation of hexachlorocyclohexane: a mini review. J Environ Manag 95:S306–S318

    Article  Google Scholar 

  • Castro TF, Yoshida T (1974) Effect of organic matter on the biodegradation of some organochlorine insecticides in submerged soils. Soil Sci Plant Nutr 20:363–370

    Article  CAS  Google Scholar 

  • Cui Z, Meng F, Hong J, Li X, Ren X (2012) Effects of electron donors on the microbial reductive dechlorination of hexachlorocyclohexane and on the environment. J Biosci Bioeng 113:765–770

    Article  CAS  Google Scholar 

  • Deo PG, Karanth NG, Karanth NGK (1994) Biodegradation of hexachlorocyclohexane isomers in soil and food environment. CRC Crit Rev Microbiol 20:57–78

    Article  CAS  Google Scholar 

  • Doelman P, Haanstra L, deRuiter E, Slange J (1985) Rate of microbial degradation of high concentrations of a-hexachlorocyclohexane in soil under aerobic and anaerobic conditions. Chemosphere 14:565–570

    Article  CAS  Google Scholar 

  • Doelman P, Haanstra L, Vos A (1988) Microbial degradation by the autochthonous soil population of alpha and beta HCH under anaerobic field conditions in temperate regions. Chemosphere 17:481–487

    Article  CAS  Google Scholar 

  • Dogra C, Raina V, Pal R, Suar M, Lal S, Gartemann KH, van der Meer JR, Holliger C, Lal R (2004) Organization of lin genes and IS6100 among different strains of hexachlorocyclohexane degrading Sphingomonas paucimobilis: evidence for natural horizontal transfer. J Bacteriol 186:2225–2235

    Article  CAS  PubMed Central  Google Scholar 

  • Elango V, Kurtz HD, Anderson C, Freedman DL (2011) Use of γ-hexachlorocyclohexane as a terminal electron acceptor by an anaerobic enrichment culture. J Hazard Mater 197:204–210

    Article  CAS  Google Scholar 

  • Feldmann RJ, Maibach HI (1974) Percutaneous penetration of some pesticides and herbicides in man. Toxicol Appl Pharmacol 28:126–132

    Article  CAS  Google Scholar 

  • Field JA, Stams AJM, Kato M, Schraa G (1995) Enhanced biodegradation of aromatic pollutants in cocultures of anaerobic and aerobic bacterial consortia. Antonie Van Leeuwenhoek 67:47–77

    Article  CAS  Google Scholar 

  • Geyer HJ, Scheunert I, Korte F (1987) Correlation between the bioconcentration potential of organic environmental chemicals in humans and their n-octanol/water partition coefficients. Chemosphere 16:239–252

    Article  CAS  Google Scholar 

  • Haider K (1979) Degradation and metabolization of lindane and other hexachlorocyclohexane isomers by anaerobic and aerobic soil microorganisms. Z Naturforsch 34c:1066–1069

    CAS  Google Scholar 

  • Haider K, Jagnow G (1975) Abbau von 14C-, 3H- und 36Cl-markierten γ-Hexachlorcyclohexan durch anaerobe Bodenmikroorganismen. Arch Microbiol 104:113–121

    Article  CAS  Google Scholar 

  • Heritage AD, MacRae IC (1977a) Degradation of lindane by cell-free preparations of Clostridium sphenoides. Appl Environ Microbiol 34:222–224

    CAS  PubMed Central  Google Scholar 

  • Heritage AD, MacRae IC (1977b) Identification of intermediates formed during the degradation of hexachlorocyclohexanes by Clostridium sphenoides. Appl Environ Microbiol 33:1295–1297

    CAS  PubMed Central  Google Scholar 

  • Heritage AD, MacRae IC (1979) Degradation of hexachlorocyclohexanes and structurally related substance by Clostridium sphenoides. Appl Environ Microbiol 33:1295–1297

    Google Scholar 

  • Hill DW, McCarty PL (1967) Anaerobic degradation of selected chlorinated hydrocarbon pesticides. JWPCF 39:1259–1277

    CAS  Google Scholar 

  • Jagnow G, Haider K, Ellwardt P (1977) Anaerobic dechlorination and degradation of hexachlorocyclohexane isomers by anaerobic and faculative anaerobic bacteria. Arch Microbiol 115:285–292

    Article  CAS  Google Scholar 

  • Jung D, Becher H, Edler L, Flesch-Janys D, Gurn P, Konietzko J, Manz A, Papke O (1997) Elimination of beta-hexachlorocyclohexane in occupationally exposed persons. J Toxicol Environ Health 51:23–34

    CAS  Google Scholar 

  • Krishna KR, Philip L (2008) Biodegradation of lindane, methyl parathion and carbofuran by various enriched bacterial isolates. J Environ Sci Health B 43:157–171

    Article  CAS  Google Scholar 

  • Kurihara N, Ohisa N, Nakajima M, Kakutani T, Senda M (1981) Relation between microbial degradation and polarographic half-wave potential of polychlorocyclohexenes and BHC isomers. Agric Biol Chem 45:1229–1235

    CAS  Google Scholar 

  • Lal R, Pandey G, Sharma P et al (2010) Biochemistry of microbial degradation of hexachlorocyclohexane and prospects for bioremediation. Microbiol Mol Bio Rev 74:58–80

    Article  CAS  Google Scholar 

  • Langenhoff AAM (2009) Bioremediation of areas polluted with chlorinated and non-chlorinated hydrocarbons. Land Contam Recl 17:295–302

    Google Scholar 

  • Langenhoff AAM, Staps JJM, Pijls C, Alphenaar A, Zwiep G, Rijnaarts HHM (2002) Intrinsic and stimulated in situ biodegradation of hexachlorocyclohexane (HCH). Water, Air, Soil Poll Focus 2:171–181

    Article  CAS  Google Scholar 

  • Law SA, Bidleman TF, Martin MJ, Ruby MV (2004) Evidence of enantioselective degradation of α-hexachlorocyclohexane in groundwater. Environ Sci Technol 38:1633–1638

    Article  CAS  Google Scholar 

  • Li YF (1999) Global technical hexachlorocyclohexane usage and its contamination consequences in the environment: from 1948 to 1997. Sci Total Environ 232:121–158

    Article  CAS  Google Scholar 

  • Lichtenstein EP, Polivka JB (1959) Persistence of some chlorinated hydrocarbon insecticides in turf soils. J Econ Ent 52:289–293

    Article  CAS  Google Scholar 

  • Lichtenstein EP, Schulz KR, Skrentny RF, Tsukano Y (1966) Toxicity and fate of insecticide residues in water. Arch Environ Health 12:199–212

    Article  CAS  Google Scholar 

  • Lodha B, Bhat P, Kumar SM, Vaidya AN, Mudliar S, Killedar DJ, Chakrabarti T (2007) Bioisomerization kinetics of γ-HCH and biokinetics of Pseudomonas aeruginosa degrading technical HCH. Biochem Eng J 35:12–19

    Article  CAS  Google Scholar 

  • MacRae IC, Raghu K, Castro TF (1967) Persistence and biodegradation of four common isomers of benzene hexachloride in submerged soils. J Agric Food Chem 15:911–914

    Article  CAS  Google Scholar 

  • MacRae IC, Raghu K, Bautista EM (1969) Anaerobic degradation of the insecticide lindane by Clostridium sp. Nature 221:859–860

    Article  CAS  Google Scholar 

  • MacRae IC, Yamaya Y, Yoshida T (1984) Persistence of hexachlorocyclohexane isomers in soil suspensions. Soil Biol Biochem 16:285–286

    Article  CAS  Google Scholar 

  • Malaiyandi M, Shah SM, Lee P (1982) Fate of alpha- and gamma-hexachlorocyclohexane isomers under simulated environmental conditions. J Environ Sci Health A A17:283–297

    CAS  Google Scholar 

  • Maphosa F (2010) Chasing organohalide respirers: ecogenomics approaches to assess the bioremediation capacity of soils. PhD dissertation, Wageningen University, The Netherlands

    Google Scholar 

  • Marks TS, Allpress JD, Maule A (1989) Dehalogenation of lindane by a variety of porphyrins and corrins. Appl Environ Microbiol 55:1258–1261

    CAS  PubMed Central  Google Scholar 

  • Mathur SP, Saha JG (1975) Microbial degradation of lindane-C14 in a flooded sandy loam soil. Soil Sci 120:301–307

    Article  CAS  Google Scholar 

  • Maule A, Plyte S, Quirk AV (1987) Dehalogenation of organochlorine insecticides by mixed anaerobic microbial populations. Pestic Biochem Physiol 27:229–236

    Article  CAS  Google Scholar 

  • Mehboob F, Weelink S, Saia FT, Junca H, Stams AJM, Schraa G (2010) Microbial degradation of aliphatic and aromatic hydrocarbons with (per)chlorate as electron acceptor. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology. Springer, Berlin/Heidelberg

    Google Scholar 

  • Metcalf RL (1955) Organic insecticides, their chemistry and mode of action. Interscience, New York

    Google Scholar 

  • Middeldorp PJ, Jaspers M, Zehnder AJB, Schraa G (1996) Biotransformation of α-, β-, γ-, δ-hexachlorocyclohexane under methaonogenic conditions. Environ Sci Technol 30:2345–2349

    Article  CAS  Google Scholar 

  • Middeldorp PJ, van Doesburg W, Schraa G, Stams AJ (2005) Reductive dechlorination of hexachlorocyclohexane (HCH) isomers in soil under anaerobic conditions. Biodegradation 16:283–290

    Article  CAS  Google Scholar 

  • Miyauchi K, Adachi Y, Nagata Y, Takagi M (1999) Cloning and sequencing of a novel meta-cleavage dioxygenase gene whose product is involved in degradation of γ-hexachlorocyclohexane in Sphingomonas paucimobilis. J Bacteriol 181:6712–6719

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nagasawa S, Kikuchi R, Nagata Y, Takagi M, Matsuo M (1993) Aerobic mineralization of gamma-HCH by Pseudomonas paucimobilis UT26. Chemosphere 26:1719–1728

    Article  CAS  Google Scholar 

  • Nagata YT, Hatta IR, Kimbara K, Fukuda M, Yano K, Takagi M (1993) Purification and characterization of γ-hexachlorocyclohexane (γ-HCH) dehydrochlorinase (LinA) from Pseudomonas paucimobilis. Biosci Biotechnol Biochem 59:1582–1583

    Article  Google Scholar 

  • Nagata YT, Ohtomo R, Miyauchi K, Fukuda M, Yano K, Takagi M (1994) Cloning and sequencing of a 2,5-dichloro-2,5-cyclohexadiene-1,4-diol dehydrogenase gene involved in the degradation of γ-hexachlorocyclohexane in Pseudomonas paucimobilis. J Bacteriol 176:3117–3125

    CAS  PubMed Central  Google Scholar 

  • Nagata K, Huang CS, Hamilton BJ, Carter DB, Narahashi T (1996) Differential effects of hexachlorocyclohexane on the GABA receptor subunits expressed in human embryonic kidney-cell line. Brain Res 738:131–137

    Article  CAS  Google Scholar 

  • Nagata YT, Miyauchi K, Takagi M (1999) Complete analysis of genes and enzymes for γ-hexachlorocyclohexane degradation in Sphingomonas paucimobilis UT26. J Ind Microbiol Biotechnol 23:380–390

    Article  CAS  PubMed  Google Scholar 

  • Nagata YT, Prokop Z, Sato Y, Jerabek P, Kumar A, Ohtsubo Y, Tsuda M, Damborsky J (2005) Degradation of γ-hexachlorocyclohexane by haloalkane dehalogenase LinB from Sphingomonas paucimobilis UT26. Appl Environ Microbiol 71:2183–2185

    Article  CAS  PubMed Central  Google Scholar 

  • Neujahr HY, Rossi-Ricci G (1960) On vitamins in sewage sludge XII. Production of vitamin B12 by certain Clostridia. Acta Chem Scand 14:43–47

    Article  CAS  Google Scholar 

  • Newland LW, Chesters G, Lee GB (1969) Degradation of γ-BHC in simulated lake impoundments as affected by aeration. JWPCF 41:R174–R188

    CAS  Google Scholar 

  • Ohisa N, Yamaguchi M (1978a) Degradation of gamma-BHC in flooded soils enriched with peptone. Agric Biol Chem 42:1983–1987

    CAS  Google Scholar 

  • Ohisa N, Yamaguchi M (1978b) Gamma-BHC degradation accompanied by the growth of Clostridium rectum isolated from paddy field soil. Agric Biol Chem 42:1819–1823

    CAS  Google Scholar 

  • Ohisa N, Yamaguchi M (1979) Clostridium species and γ-BHC degradation in paddy soil. Soil Biol Biochem 11:645–649

    Article  CAS  Google Scholar 

  • Ohisa N, Yamaguchi M, Kurihara N (1980) Lindane degradation by cell-free extracts of Clostridium rectum. Arch Microbiol 125:221–225

    Article  CAS  PubMed  Google Scholar 

  • Ohisa N, Kurihara N, Yamaguchi M (1982) ATP synthesis associated with the conversion of hexachlorocyclohexane related compounds. Arch Microbiol 131:330–333

    Article  CAS  PubMed  Google Scholar 

  • Okey RW, Bogan RH (1965) Apparent involvement of electron mechanism in limiting metabolism of pesticides. JWPCF 37:692–712

    CAS  Google Scholar 

  • Panda S, Sharmila M, Ramanand K, Panda D, Sethunathan N (1988) Persistence of hexachlorocyclohexane isomers and carbofuran applied to surface and sub-surface layers of a flooded soil. Pestic Sci 23:199–207

    Article  CAS  Google Scholar 

  • Phillips TM, Seech AG, Lee H, Trevors JT (2005) Biodegradation of hexachlorocyclohexane (HCH) by microorganisms. Biodegradation 16:363–392

    Article  CAS  PubMed  Google Scholar 

  • Quintero JC, Moreira MT, Feijoo G, Lema JM (2005) Anaerobic degradation of hexachlorocyclohexane isomers in liquid and soil slurry systems. Chemosphere 61:528–536

    Article  CAS  PubMed  Google Scholar 

  • Quintero JC, Moreira MT, Lema JM, Feijoo G (2006) An anaerobic bioreactor allows the efficient degradation of HCH isomers in soil slurry. Chemosphere 63:1005–1013

    Article  CAS  PubMed  Google Scholar 

  • Raghu K, MacRae IC (1966) Biodegradation of the gamma isomer of benzene hexachloride in submerged soils. Science 154:263–264

    Article  CAS  PubMed  Google Scholar 

  • Rijnaarts HHM, Bachmann A, Jumelet JC, Zehnder AJB (1990) Effect of desorption and intraparticle mass transfer on the aerobic biomineralization of α-hexachlorocyclohexane in a contaminated calcareous soil. Environ Sci Technol 24:1349–1354

    Article  CAS  Google Scholar 

  • Rodriguez-Garrido B, Lu-Chau TA, Feijoo G, Macias F, Monterrroso MC (2010) Reductive dechlorination of α, β-, γ-, δ-hexachlorocyclohexane isomers with hydroxocobalamin, in soil slurry systems. Environ Sci Technol 44:7063–7069

    Article  CAS  PubMed  Google Scholar 

  • Sagelsdorff P, Lutz WK, Schlatter S (1983) The relevance of covalent binding to mouse liver DNA to the carcinogenic action of hexachlorocyclohexane isomers. Carcinogenesis 4:1267–1273

    Article  CAS  PubMed  Google Scholar 

  • Sahu SK, Patnaik KK, Sharmila M, Sethunathan N (1990) Degradation of alpha-, beta-, and gamma-hexachlorocyclohexane by a soil bacterium under aerobic conditions. Appl Environ Microbiol 56:3620–3622

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sahu SK, Patnaik KK, Bhuyan S, Sreedharan B, Kurihara N, Adhya TK, Sethunathan N (1995) Mineralization of α-, γ-, and β-isomers of hexachlorocyclohexane by a soil bacterium under aerobic conditions. J Agric Food Chem 43:833–837

    Article  CAS  Google Scholar 

  • Senoo K, Wada H (1989) Isolation and identification of an aerobic gamma-HCH-decomposing bacterium from soil. Soil Sci Plant Nutr 35:79–87

    Article  CAS  Google Scholar 

  • Sharma P, Raina V, Kumari R, Malhotra S, Dogra C, Kumari H, Kohler H-PE, Buser H-R, Holliger C, Lal R (2006) Haloalkane dehalogenase LinB is responsible for beta- and delta-hexachlorocyclohexane transformation in Sphingobium indicum B90A. Appl Environ Microbiol 72:5720–5727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siddaramappa R, Sethunathan N (1975) Persistence of gamma-BHC and beta-BHC in Indian rice soils under flooded conditions. Pestic Sci 6:395–403

    Article  CAS  Google Scholar 

  • Steinmentz R, Young PCM, Caperellgrant A, Gize EA, Madhukar BV, Benjonathan N, Bigsby RM (1996) Novel estrogenic action of the pesticide residue beta-hexachlorocyclohexane in human breast cancer cells. Cancer Res 56:5403–5409

    Google Scholar 

  • Stewart DKR, Chisholm D (1971) Long-term persistence of BHC, DDT and Chlordane in a sandy loam soil. Can J Soil Sci 51:379–383

    Article  Google Scholar 

  • UNEP Stockholm Convention (2008) The new POPs under the Stockholm Convention. http://chm.pops.int. Cited 18 May 2012

  • Suar M, Hauser A, Poiger T, Buser H-R, Muller MD, Dogra C, Raina V, Holliger C, van der Meer JR, Lal R, Kohler H-PE (2005) Enantioselective transformation of chiral alpha HCH by HCH dehydrochlorinases (LinA1 and LinA2) from Sphingomonas paucimobilis B90A. Appl Environ Microbiol 71:8514–8518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sugita H, Miyajima C, Deguchi Y (1991) The vitamin B12-producing ability of the intestinal microflora of freshwater fish. Aquaculture 92:267–276

    Article  CAS  Google Scholar 

  • Tsukano Y, Kobayashi A (1972) Formation of γ -BTC in flooded rice field soils treated with γ-BHC. Agric Biol Chem 36:166–167

    Article  CAS  Google Scholar 

  • United States Food and Drug Administration (2009) Lindane shampoo and lindane lotion. http://www.fda.gov. Cited 18 May 2012

  • van Doesburg W, van Eekert MH, Middeldorp PJ, Balk M, Schraa G, Stams AJ (2005) Reductive dechlorination of β-hexachlorocyclohexane (β-HCH) by a Dehalobacter species in coculture with a Sedimentibacter sp. FEMS Microbiol Ecol 54:87–95

    Article  PubMed  Google Scholar 

  • van Eekert MHA, van Ras NJP, Mentink GH, Rijnaarts HHM, Stams AJM, Field JA, Schraa G (1998) Anaerobic transformation of β-hexachlorocyclohexane by methanogenic granular sludge and soil microflora. Environ Sci Technol 32:3299–3304

    Article  Google Scholar 

  • Vonk JW, Quirijns JK (1979) Anaerobic formation of α-hexachlorocyclohexane from γ- hexachlorocyclohexane in soil and by Escherichia coli. Pest Biochem Physiol 12:68–74

    Article  CAS  Google Scholar 

  • Walker K, Vallero DA, Lewis RG (1999) Factors influencing the distribution of lindane and other hexachlorocyclohexanes in the environment. Environ Sci Technol 33:4373–4378

    Article  CAS  Google Scholar 

  • Willett KL, Ulrich EM, Hites RA (1998) Differential toxicity and environmental fates of hexachlorocyclohexane isomers. Environ Sci Technol 32:2197–2207

    Article  CAS  Google Scholar 

  • Wu WZ, Xu Y, Schramm KW, Kettrup A (1997) Study of sorption, biodegradation and isomerization of HCH in stimulated sediment/water system. Chemosphere 35:1887–1894

    Article  CAS  Google Scholar 

  • Wu J, Hong Q, Sun Y, Hong Y, Yan Q, Li S (2007) Analysis of the role of LinA and LinB in biodegradation of δ-hexachlorocyclohexane. Environ Microbiol 9:2331–2340

    Article  CAS  Google Scholar 

  • Yoshida T, Castro TE (1970) Degradation of γ-BHC in rice soils. Soil Sci Soc Am Proc 34:440–448

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Wim van Doesburg (WUR) and Dr. Sher (AIOU) for help in making figures. We also thank the Dutch Center for Soil Quality Management and Knowledge Transfer, (SKB; www.skbodem.nl) The Netherlands, and the Wageningen Institute for Environment and Climate Research (WIMEK), The Netherlands for providing funds for the present study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farrakh Mehboob .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Mehboob, F., Langenhoff, A.A.M., Schraa, G., Stams, A.J.M. (2013). Anaerobic Degradation of Lindane and Other HCH Isomers. In: Malik, A., Grohmann, E., Alves, M. (eds) Management of Microbial Resources in the Environment. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5931-2_20

Download citation

Publish with us

Policies and ethics