Skip to main content

Fission Track Dating and Thermochronology

  • Living reference work entry
  • First Online:
Book cover Encyclopedia of Scientific Dating Methods

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

Fission Track:

A linear trail of radiation damage in an insulating solid resulting from the passage of fission fragments formed by spontaneous or induced fission of a heavy nucleus, especially of isotopes of uranium.

Fission Track Dating:

A technique for geological or archaeological dating based on the accumulation of fission tracks from the spontaneous nuclear fission of 238U in natural minerals and glasses.

Fission Track Density:

The number of fission tracks counted per unit area on a given surface.

Fission Track Length:

The length of a fission track measured under a microscope after chemical enlargement.

Fission Track Annealing:

The property of fission tracks that results in the gradual repair of the radiation damage in the host material upon exposure to elevated temperatures.

Fission Track Analysis:

The measurement of different fission track parameters including track density and track length that are used to monitor the degree of fission track annealing for the purpose of reconstructing rock thermal histories.

Fission Track Thermochronology:

The reconstruction of rock thermal histories based on the fission track annealing properties of one or more constituent minerals.

Bibliography

  • Barbarand, J., Carter, A., and Hurford, A. J., 2003. Compositional and structural control of fission-track annealing in apatite. Chemical Geology, 198, 107–137.

    Article  Google Scholar 

  • Carlson, W. D., Donelick, R. A., and Ketcham, R. A., 1999. Variability of apatite fission track annealing kinetics: I. Experimental results. American Mineralogist, 84, 1212–1223.

    Google Scholar 

  • Donelick, R. A., and Miller, D. S., 1991. Enhanced TINT fission track densities in low spontaneous track density apatites using 252Cf-derived fission fragment tracks: a model and experimental observations. Nuclear Tracks and Radiation Measurements, 18, 301–307.

    Article  Google Scholar 

  • Donelick, R. A., O’Sullivan, P. B., and Ketcham, R. A., 2005. Apatite fission-track analysis. Reviews in Mineralogy and Geochemistry, 58, 49–94.

    Article  Google Scholar 

  • Fleischer, R. L., and Price, P. B., 1964. Techniques for geological dating of minerals by chemical etching of fission fragment tracks. Geochimica et Cosmochimica Acta, 28, 1705–1712.

    Article  Google Scholar 

  • Fleischer, R. L., Price, P. B., and Walker, R. M., 1965a. Tracks of charged particles in solids. Science, 149, 383–393.

    Article  Google Scholar 

  • Fleischer, R. L., Price, P. B., and Walker, R. M., 1965b. Effects of temperature, pressure, and ionization on the formation and stability of fission tracks in minerals and glasses. Journal of Geophysical Research, 70, 1497–1502.

    Article  Google Scholar 

  • Fleischer, R. L., Price, P. B., and Walker, R. M., 1975. Nuclear Tracks in Solids. Berkeley: University of California Press.

    Google Scholar 

  • Galbraith, R. F., 2005. Statistics for Fission Track Analysis. Boca Raton: Chapman & Hall.

    Book  Google Scholar 

  • Gallagher, K., 1995. Evolving thermal histories from apatite fission-track data. Earth and Planetary Science Letters, 136, 421–435.

    Article  Google Scholar 

  • Gallagher, K., 2012. Transdimensional inverse thermal history modeling for quantitative thermochronology. Journal of Geophysical Research, 117, B02408.

    Google Scholar 

  • Gallagher, K., Brown, R. W., and Johnson, C., 1998. Fission track analysis and its applications to geological problems. Annual Reviews of Earth and Planetary Sciences, 26, 519–572.

    Article  Google Scholar 

  • Gleadow, A. J. W., 1981. Fission track dating methods: what are the real alternatives? Nuclear Tracks, 5, 3–14.

    Article  Google Scholar 

  • Gleadow, A. J. W., and Duddy, I. R., 1981. A natural long-term track annealing experiment for apatite. Nuclear Tracks, 5, 169–174.

    Article  Google Scholar 

  • Gleadow, A. J. W., Duddy, I. R., Green, P. F., and Lovering, J. F., 1986. Confined fission track lengths in apatite – a diagnostic tool for thermal history analysis. Contributions to Mineralogy and Petrology, 94, 405–415.

    Article  Google Scholar 

  • Gleadow, A. J. W., Belton, D. X., Kohn, B. P., and Brown, R. W., 2002. Fission track dating of phosphate minerals and the thermochronology of apatite. Reviews in Mineralogy and Geochemistry, 48, 579–630.

    Article  Google Scholar 

  • Gleadow, A. J. W., Gleadow, S. J., Belton, D. X., Kohn, B. P., and Krochmal, M. S., 2009. Coincidence mapping a key strategy for automated counting in fission track dating. In Ventura, B., Lisker, F., and Glasmacher, U. A. (eds.), Thermochronological Methods: From Palaeotemperature Constraints to Landscape Evolution Models. Geological Society of London Special Publication, Vol. 324, pp. 25–36.

    Google Scholar 

  • Green, P. F., Duddy, I. R., Gleadow, A. J. W., Tingate, P. R., and Laslett, G. M., 1985. Fission track annealing in apatite: track length measurements and the form of the Arrhenius plot. Nuclear Tracks, 10, 323–328.

    Google Scholar 

  • Green, P. F., Duddy, I. R., Gleadow, A. J. W., Tingate, P. R., and Laslett, G. M., 1986. Thermal annealing of fission tracks in apatite 1. A qualitative description. Chemical Geology, 59, 237–253.

    Article  Google Scholar 

  • Green, P. F., Duddy, I. R., and Hegarty, K. A., 2005. Comment on “Compositional and structural control of fission track annealing in apatite”. Chemical Geology, 214, 351–358.

    Article  Google Scholar 

  • Hasebe, N., Barberand, J., Jarvis, K., Carter, A., and Hurford, A. J., 2004. Apatite fission-track chronometry using laser ablation ICP-MS. Chemical Geology, 207, 135–145.

    Article  Google Scholar 

  • Hurford, A. J., and Green, P. F., 1982. A user’s guide to fission track dating calibration. Earth and Planetary Science Letters, 59, 343–354.

    Article  Google Scholar 

  • Hurford, A. J., and Green, P. F., 1983. The zeta age calibration of fission track dating. Chemical Geology, 1, 285–317.

    Article  Google Scholar 

  • Ketcham, R. A., 2005. Forward and inverse modeling of low-temperature thermochronometry data. Reviews in Mineralogy and Geochemistry, 58, 275–314.

    Article  Google Scholar 

  • Lal, D., Rajan, R. S., and Tamhane, A. S., 1969. Chemical composition of nuclei of Z > 22 in cosmic rays using meteoritic minerals as detectors. Nature, 221, 33–37.

    Article  Google Scholar 

  • Laslett, G. M., Kendall, W. S., Gleadow, A. J. W., and Duddy, I. R., 1982. Bias in measurement of fission track length distributions. Nuclear Tracks, 6, 79–85.

    Google Scholar 

  • Laslett, G. M., Green, P. F., Duddy, I. R., and Gleadow, A. J. W., 1987. Thermal annealing of fission tracks in apatite: 2 – a quantitative analysis. Chemical Geology, 65, 1–13.

    Article  Google Scholar 

  • Li, W., Lang, M., Gleadow, A. J. W., Zdorovets, M. V., and Ewing, R. C., 2012. Thermal annealing of unetched fission tracks in apatite. Earth and Planetary Science Letters, 321–322, 121–127.

    Article  Google Scholar 

  • Naeser, C. W., 1967. The use of apatite and sphene for fission track age determinations. Geological Society of America Bulletin, 78, 1523–1526.

    Article  Google Scholar 

  • Price, P. B., and Walker, R. M., 1962. Observations of charged particle tracks in solids. Journal of Applied Physics, 33, 3400–3406.

    Article  Google Scholar 

  • Price, P. B., and Walker, R. M., 1963. Fossil tracks of charged particles in mica and the age of minerals. Journal of Geophysical Research, 68, 4847–4862.

    Article  Google Scholar 

  • Reiners, P. W., and Ehlers, T. A. (eds.), 2005. Low-temperature thermochronology. Reviews in Mineralogy and Geochemistry, 58.

    Google Scholar 

  • Schmidt, J. S., LeLarge, M. L. M. V., Conceircao, R. V., and Balzaretti, N. M., 2014. Experimental evidence regarding the pressure dependence of fission track annealing in apatite. Earth and Planetary Science Letters, 390, 1–7.

    Article  Google Scholar 

  • Silk, E. C. H., and Barnes, R. S., 1959. Examination of fission fragment tracks with a transmission electron microscope. Philosophical Magazine, 4, 970–972.

    Article  Google Scholar 

  • Storzer, D., and Wagner, G. A., 1969. Correction of thermally lowered fission track ages of tektites. Earth and Planetary Science Letters, 5, 463–468.

    Article  Google Scholar 

  • Tagami, T., and O’Sullivan, P. B., 2005. Fundamentals of fission track thermochronology. Reviews in Mineralogy and Geochemistry, 58, 19–47.

    Article  Google Scholar 

  • Tagami, T., Galbraith, R. F., Yamada, R., and Laslett, G. M., 1998. Revised annealing kinetics of fission tracks in zircon and geological applications. In Van den Haute, P., and De Corte, F. (eds.), Advances in Fission-Track Thermochronology. Dordrecht: Kluwer Academic, pp. 99–112.

    Chapter  Google Scholar 

  • Wagner, G. A., 1968. Fission track dating of apatites. Earth and Planetary Science Letters, 4, 411–415.

    Article  Google Scholar 

  • Wagner, G., and Van den haute, P., 1992. Fission Track Dating. Dordrecht: Kluwer Academic.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew JW Gleadow .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Gleadow, A.J., Seiler, C. (2014). Fission Track Dating and Thermochronology. In: Rink, W., Thompson, J. (eds) Encyclopedia of Scientific Dating Methods. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6326-5_5-1

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-6326-5_5-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Online ISBN: 978-94-007-6326-5

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics