Skip to main content

The Musashi Family of RNA Binding Proteins: Master Regulators of Multiple Stem Cell Populations

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 786))

Abstract

In order to maintain their unlimited capacity to divide, stem cells require controlled temporal and spatial protein expression. The Musashi family of RNA-binding proteins have been shown to exhibit this necessary translational control through both repression and activation in order to regulate multiple stem cell populations. This chapter looks in depth at the initial discovery and characterisation of Musashi in the model organism Drosophila, and its subsequent emergence as a master regulator in a number of stem cell populations. Furthermore the unique roles for mammalian Musashi-1 and Musashi-2 in different stem cell types are correlated with the perceived diagnostic power of Musashi expression in specific stem cell derived oncologies. In particular the potential role for Musashi in the identification and treatment of human cancer is considered, with a focus on the role of Musashi-2 in leukaemia. Finally, the manipulation of Musashi expression is proposed as a potential avenue towards the targeted treatment of specific aggressive stem cell cancers.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Becker AJ, Mc CE, Till JE (1963) Cytological demonstration of the clonal nature of spleen colonies derived from transplanted mouse marrow cells. Nature 197:452–4

    Article  PubMed  CAS  Google Scholar 

  2. Siminovitch L, McCulloch EA, Till JE (1963) The distribution of colony-forming cells among spleen colonies. J Cell Physiol 62:327–36

    Article  PubMed  CAS  Google Scholar 

  3. Crittenden SL, Bernstein DS, Bachorik JL, Thompson BE et al (2002) A conserved RNA-binding protein controls germline stem cells in Caenorhabditis elegans. Nature 417(6889):660–3

    Article  PubMed  CAS  Google Scholar 

  4. Unhavaithaya Y, Hao Y, Beyret E, Yin H et al (2009) MILI, a PIWI-interacting RNA-binding protein, is required for germ line stem cell self-renewal and appears to positively regulate translation. J Biol Chem 284(10):6507–19

    Article  PubMed  CAS  Google Scholar 

  5. Okano H, Kawahara H, Toriya M, Nakao K et al (2005) Function of RNA-binding protein Musashi-1 in stem cells. Exp Cell Res 306(2):349–56

    Article  PubMed  CAS  Google Scholar 

  6. Siddall NA, Kalcina M, Johanson TM, Monk AC et al (2012) Drosophila Rbp6 is an orthologue of vertebrate Msi-1 and Msi-2, but does not function redundantly with dMsi to regulate germline stem cell behaviour. PLoS One 7(11):e49810

    Article  PubMed  CAS  Google Scholar 

  7. Akindahunsi AA, Bandiera A, Manzini G (2005) Vertebrate 2xRBD hnRNP proteins: a comparative analysis of genome, mRNA and protein sequences. Comput Biol Chem 29(1):13–23

    Article  PubMed  CAS  Google Scholar 

  8. Good P, Yoda A, Sakakibara S, Yamamoto A et al (1998) The human Musashi homolog 1 (MSI1) gene encoding the homologue of Musashi/Nrp-1, a neural RNA-binding protein putatively expressed in CNS stem cells and neural progenitor cells. Genomics 52(3):382–4

    Article  PubMed  CAS  Google Scholar 

  9. Nagata T, Kanno R, Kurihara Y, Uesugi S et al (1999) Structure, backbone dynamics and interactions with RNA of the C-terminal RNA-binding domain of a mouse neural RNA-binding protein, Musashi1. J Mol Biol 287(2):315–30

    Article  PubMed  CAS  Google Scholar 

  10. Ohyama T, Furukawa A, Mashima T, Sugiyama T et al (2008) Structural analysis of Musashi-RNA complex on the basis of long-range structural information. Nucleic Acids Symp Ser (Oxf) 52:193–4

    Article  CAS  Google Scholar 

  11. Kawahara H, Imai T, Imataka H, Tsujimoto M et al (2008) Neural RNA-binding protein Musashi1 inhibits translation initiation by competing with eIF4G for PABP. J Cell Biol 181(4):639–53

    Article  PubMed  CAS  Google Scholar 

  12. Gunter KM, McLaughlin EA (2011) Translational control in germ cell development: a role for the RNA-binding proteins Musashi-1 and Musashi-2. IUBMB Life 63(9):678–685

    PubMed  CAS  Google Scholar 

  13. Okabe M, Imai T, Kurusu M, Hiromi Y et al (2001) Translational repression determines a neuronal potential in Drosophila asymmetric cell division. Nature 411(6833):94–8

    Article  PubMed  CAS  Google Scholar 

  14. Hirota Y, Okabe M, Imai T, Kurusu M et al (1999) Musashi and seven in absentia downregulate Tramtrack through distinct mechanisms in Drosophila eye development. Mech Dev 87(1–2):93–101

    Article  PubMed  CAS  Google Scholar 

  15. Sakakibara S, Imai T, Hamaguchi K, Okabe M et al (1996) Mouse-Musashi-1, a neural RNA-binding protein highly enriched in the mammalian CNS stem cell. Dev Biol 176(2):230–42

    Article  PubMed  CAS  Google Scholar 

  16. Battelli C, Nikopoulos GN, Mitchell JG, Verdi JM (2006) The RNA-binding protein Musashi-1 regulates neural development through the translational repression of p21WAF-1. Mol Cell Neurosci 31(1):85–96

    Article  PubMed  CAS  Google Scholar 

  17. Imai T, Tokunaga A, Yoshida T, Hashimoto M et al (2001) The neural RNA-binding protein Musashi1 translationally regulates mammalian numb gene expression by interacting with its mRNA. Mol Cell Biol 21(12):3888–900

    Article  PubMed  CAS  Google Scholar 

  18. Horisawa K, Imai T, Okano H, Yanagawa H (2009) 3′-Untranslated region of doublecortin mRNA is a binding target of the Musashi1 RNA-binding protein. FEBS Lett 583(14):2429–34

    Article  PubMed  CAS  Google Scholar 

  19. Charlesworth A, Wilczynska A, Thampi P, Cox LL et al (2006) Musashi regulates the temporal order of mRNA translation during Xenopus oocyte maturation. EMBO J 25(12):2792–801

    Article  PubMed  CAS  Google Scholar 

  20. MacNicol AM, Wilczynska A, MacNicol MC (2008) Function and regulation of the mammalian Musashi mRNA translational regulator. Biochem Soc Trans 36(Pt 3):528–30

    Article  PubMed  CAS  Google Scholar 

  21. Arumugam K, Wang Y, Hardy LL, MacNicol MC et al (2010) Enforcing temporal control of maternal mRNA translation during oocyte cell-cycle progression. EMBO J 29(2):387–97

    Article  PubMed  CAS  Google Scholar 

  22. MacNicol MC, Cragle CE, MacNicol AM (2011) Context-dependent regulation of Musashi-mediated mRNA translation and cell cycle regulation. Cell Cycle 10(1):39–44

    Article  PubMed  CAS  Google Scholar 

  23. Arumugam K, Macnicol M, Macnicol A (2012) Autoregulation of Musashi1 mRNA translation during Xenopus oocyte maturation. Mol Reprod Dev 79(8):553–563

    Article  PubMed  CAS  Google Scholar 

  24. Kuwako K, Kakumoto K, Imai T, Igarashi M et al (2010) Neural RNA-binding protein Musashi1 controls midline crossing of precerebellar neurons through posttranscriptional regulation of Robo3/Rig-1 expression. Neuron 67(3):407–21

    Article  PubMed  CAS  Google Scholar 

  25. de Sousa AR, Sanchez-Diaz PC, Vogel C, Burns SC et al (2009) Genomic analyses of musashi1 downstream targets show a strong association with cancer-related processes. J Biol Chem 284(18):12125–35

    Article  Google Scholar 

  26. Nikpour P, Baygi ME, Steinhoff C, Hader C et al (2011) The RNA binding protein Musashi1 regulates apoptosis, gene expression and stress granule formation in urothelial carcinoma cells. J Cell Mol Med 15(5):1210–24

    Article  PubMed  CAS  Google Scholar 

  27. Sakakibara S, Nakamura Y, Yoshida T, Shibata S et al (2002) RNA-binding protein Musashi family: roles for CNS stem cells and a subpopulation of ependymal cells revealed by targeted disruption and antisense ablation. Proc Natl Acad Sci U S A 99(23):15194–9

    Article  PubMed  CAS  Google Scholar 

  28. Kharas MG, Lengner CJ, Al-Shahrour F, Bullinger L et al (2010) Musashi-2 regulates normal hematopoiesis and promotes aggressive myeloid leukemia. Nat Med 16(8):903–8

    Article  PubMed  CAS  Google Scholar 

  29. Ito T, Kwon HY, Zimdahl B, Congdon KL et al (2010) Regulation of myeloid leukaemia by the cell-fate determinant Musashi. Nature 466(7307):765–8

    Article  PubMed  CAS  Google Scholar 

  30. Kawahara H, Okada Y, Imai T, Iwanami A et al (2011) Musashi1 cooperates in abnormal cell lineage protein 28 (Lin28)-mediated let-7 family microRNA biogenesis in early neural differentiation. J Biol Chem 286(18):16121–30

    Article  PubMed  CAS  Google Scholar 

  31. Kawase S, Imai T, Miyauchi-Hara C, Yaguchi K et al (2011) Identification of a novel intronic enhancer responsible for the transcriptional regulation of musashi1 in neural stem/progenitor cells. Mol Brain 4:14

    Article  PubMed  CAS  Google Scholar 

  32. Vo DT, Qiao M, Smith AD, Burns SC et al (2011) The oncogenic RNA-binding protein Musashi1 is regulated by tumor suppressor miRNAs. RNA Biol 8(5)

    Google Scholar 

  33. Nakamura M, Okano H, Blendy JA, Montell C (1994) Musashi, a neural RNA-binding protein required for Drosophila adult external sensory organ development. Neuron 13(1):67–81

    Article  PubMed  CAS  Google Scholar 

  34. Siddall NA, Hime GR, Pollock JA, Batterham P (2009) Ttk69-dependent repression of lozenge prevents the ectopic development of R7 cells in the Drosophila larval eye disc. BMC Dev Biol 9:64

    Article  PubMed  Google Scholar 

  35. Siddall NA, McLaughlin EA, Marriner NL, Hime GR (2006) The RNA-binding protein Musashi is required intrinsically to maintain stem cell identity. Proc Natl Acad Sci U S A 103(22):8402–7

    Article  PubMed  CAS  Google Scholar 

  36. Yoda A, Sawa H, Okano H (2000) MSI-1, a neural RNA-binding protein, is involved in male mating behaviour in Caenorhabditis elegans. Genes Cells 5(11):885–95

    Article  PubMed  CAS  Google Scholar 

  37. Kawashima T, Murakami AR, Ogasawara M, Tanaka K et al (2000) Expression patterns of Musashi homologs of the ascidians, Halocynthia roretzi and Ciona intestinalis. Dev Genes Evol 210(3):162–5

    Article  PubMed  CAS  Google Scholar 

  38. Higuchi S, Hayashi T, Tarui H, Nishimura O et al (2008) Expression and functional analysis of musashi-like genes in planarian CNS regeneration. Mech Dev 125(7):631–45

    Article  PubMed  CAS  Google Scholar 

  39. Kaneko Y, Sakakibara S, Imai T, Suzuki A et al (2000) Musashi1: an evolutionally conserved marker for CNS progenitor cells including neural stem cells. Dev Neurosci 22(1–2):139–53

    Article  PubMed  CAS  Google Scholar 

  40. Shibata S, Umei M, Kawahara H, Yano M et al (2012) Characterization of the RNA-binding protein Musashi1 in Zebrafish. Brain Res 1462:162

    Article  PubMed  CAS  Google Scholar 

  41. Toda M, Iizuka Y, Yu W, Imai T et al (2001) Expression of the neural RNA-binding protein Musashi1 in human gliomas. Glia 34(1):1–7

    Article  PubMed  CAS  Google Scholar 

  42. Kong DS, Kim MH, Park WY, Suh YL et al (2008) The progression of gliomas is associated with cancer stem cell phenotype. Oncol Rep 19(3):639–43

    PubMed  CAS  Google Scholar 

  43. Nakano A, Kanemura Y, Mori K, Kodama E et al (2007) Expression of the neural RNA-binding protein Musashi1 in pediatric brain tumors. Pediatr Neurosurg 43(4):279–84

    Article  PubMed  Google Scholar 

  44. Kanemura Y, Sakakibara S, Okano H (2002) Identi-fication of Musashi1-positive cells in human normal and neoplastic neuroepithelial tissues by immunohistochemical methods. Methods Mol Biol 198:273–81

    PubMed  CAS  Google Scholar 

  45. Kanemura Y, Mori K, Sakakibara S, Fujikawa H et al (2001) Musashi1, an evolutionarily conserved neural RNA-binding protein, is a versatile marker of human glioma cells in determining their cellular origin, malignancy, and proliferative activity. Differentiation 68(2–3):141–52

    Article  PubMed  CAS  Google Scholar 

  46. Yen TH, Wright NA (2006) The gastrointestinal tract stem cell niche. Stem Cell Rev 2(3):203–12

    Article  PubMed  CAS  Google Scholar 

  47. Yuqi L, Chengtang W, Ying W, Shangtong L et al (2008) The expression of Msi-1 and its significance in small intestinal mucosa severely damaged by high-dose 5-FU. Dig Dis Sci 53(9):2436–42

    Article  PubMed  Google Scholar 

  48. Potten CS, Booth C, Tudor GL, Booth D et al (2003) Identification of a putative intestinal stem cell and early lineage marker; Musashi-1. Differentiation 71(1):28–41

    Article  PubMed  CAS  Google Scholar 

  49. He XC, Yin T, Grindley JC, Tian Q et al (2007) PTEN-deficient intestinal stem cells initiate intestinal polyposis. Nat Genet 39(2):189–98

    Article  PubMed  CAS  Google Scholar 

  50. Montgomery RK, Breault DT (2008) Small intestinal stem cell markers. J Anat 213(1):52–8

    Article  PubMed  CAS  Google Scholar 

  51. Samuel S, Walsh R, Webb J, Robins A et al (2009) Characterization of putative stem cells in isolated human colonic crypt epithelial cells and their interactions with myofibroblasts. Am J Physiol Cell Physiol 296(2):C296–C305

    Article  PubMed  CAS  Google Scholar 

  52. George RJ, Sturmoski MA, May R, Sureban SM et al (2009) Loss of p21Waf1/Cip1/Sdi1 enhances intestinal stem cell survival following radiation injury. Am J Physiol Gastrointest Liver Physiol 296(2):G245–G54254

    Article  PubMed  CAS  Google Scholar 

  53. Murata H, Tsuji S, Tsujii M, Nakamura T et al (2008) Helicobacter pylori infection induces candidate stem cell marker Musashi-1 in the human gastric epithelium. Dig Dis Sci 53(2):363–9

    Article  PubMed  CAS  Google Scholar 

  54. Nagata H, Akiba Y, Suzuki H, Okano H et al (2006) Expression of Musashi-1 in the rat stomach and changes during mucosal injury and restitution. FEBS Lett 580(1):27–33

    Article  PubMed  CAS  Google Scholar 

  55. Bobryshev YV, Freeman AK, Botelho NK, Tran D et al (2010) Expression of the putative stem cell marker Musashi-1 in Barrett’s esophagus and esophageal adenocarcinoma. Dis Esophagus 23(7):580–9

    Article  PubMed  CAS  Google Scholar 

  56. Wang T, Ong CW, Shi J, Srivastava S et al (2011) Sequential expression of putative stem cell markers in gastric carcinogenesis. Br J Cancer 105(5):658–65

    Article  PubMed  CAS  Google Scholar 

  57. Burkert J, Otto WR, Wright NA (2008) Side populations of gastrointestinal cancers are not enriched in stem cells. J Pathol 214(5):564–73

    Article  PubMed  CAS  Google Scholar 

  58. Sureban SM, May R, George RJ, Dieckgraefe BK et al (2008) Knockdown of RNA binding protein musashi-1 leads to tumor regression in vivo. Gastroenterology 134(5):1448–58

    Article  PubMed  CAS  Google Scholar 

  59. Gotte M, Wolf M, Staebler A, Buchweitz O et al (2008) Increased expression of the adult stem cell marker Musashi-1 in endometriosis and endometrial carcinoma. J Pathol 215(3):317–29

    Article  PubMed  CAS  Google Scholar 

  60. Wang XY, Yin Y, Yuan H, Sakamaki T et al (2008) Musashi1 modulates mammary progenitor cell expansion through proliferin-mediated activation of the Wnt and Notch pathways. Mol Cell Biol 28(11):3589–99

    Article  PubMed  CAS  Google Scholar 

  61. Wang XY, Penalva LO, Yuan H, Linnoila RI et al (2010) Musashi1 regulates breast tumor cell proliferation and is a prognostic indicator of poor survival. Mol Cancer 9:221

    Article  PubMed  Google Scholar 

  62. Glazer RI, Wang XY, Yuan H, Yin Y (2008) Musashi1: a stem cell marker no longer in search of a function. Cell Cycle 7(17):2635–9

    Article  PubMed  CAS  Google Scholar 

  63. Kagara N, Huynh K, Kuo C, Okano H et al (2012) Epigenetic regulation of cancer stem cell genes in triple-negative breast cancer. Am J Pathol 181(1):257

    Article  PubMed  CAS  Google Scholar 

  64. Götte M, Greve B, Kelsch R, Müller-Uthoff H et al (2011) The adult stem cell marker Musashi-1 modulates endometrial carcinoma cell cycle progression and apoptosis via Notch-1 and p21 (WAF1/CIP1). Int J Cancer J Int du Cancer 129(8):2042

    Article  Google Scholar 

  65. Sakakibara S, Okano H (1997) Expression of neural RNA-binding proteins in the postnatal CNS: implications of their roles in neuronal and glial cell development. J Neurosci 17(21):8300–12

    PubMed  CAS  Google Scholar 

  66. Sakakibara S, Nakamura Y, Satoh H, Okano H (2001) Rna-binding protein Musashi2: developmentally regulated expression in neural precursor cells and subpopulations of neurons in mammalian CNS. J Neurosci 21(20):8091–107

    PubMed  CAS  Google Scholar 

  67. Wuebben E, Mallanna S, Cox J, Rizzino A (2012) Musashi2 is required for the self-renewal and pluripotency of embryonic stem cells. PLoS One 7(4):e34827

    Article  PubMed  CAS  Google Scholar 

  68. Lemieux ME, Cheng Z, Zhou Q, White R et al (2011) Inactivation of a single copy of Crebbp selectively alters pre-mRNA processing in mouse hematopoietic stem cells. PLoS One 6(8):e24153

    Article  PubMed  CAS  Google Scholar 

  69. de Andres-Aguayo L, Varas F, Kallin EM, Infante JF et al (2011) Musashi 2 is a regulator of the HSC compartment identified by a retroviral insertion screen and knockout mice. Blood 118(3):554–64

    Article  PubMed  Google Scholar 

  70. Nishimoto Y, Okano H (2010) New insight into cancer therapeutics: induction of differentiation by regulating the Musashi/Numb/Notch pathway. Cell Res 20(10):1083–5

    Article  PubMed  Google Scholar 

  71. Hope KJ, Sauvageau G (2011) Roles for MSI2 and PROX1 in hematopoietic stem cell activity. Curr Opin Hematol 18(4):203–7

    Article  PubMed  CAS  Google Scholar 

  72. Griner LN, Reuther GW (2010) Aggressive myeloid leukemia formation is directed by the Musashi 2/Numb pathway. Cancer Biol Ther 10(10):979–82

    Article  PubMed  CAS  Google Scholar 

  73. Barbouti A, Hoglund M, Johansson B, Lassen C et al (2003) A novel gene, MSI2, encoding a putative RNA-binding protein is recurrently rearranged at disease progression of chronic myeloid leukemia and forms a fusion gene with HOXA9 as a result of the cryptic t(7;17)(p15;q23). Cancer Res 63(6):1202–6

    PubMed  CAS  Google Scholar 

  74. De Weer A, Speleman F, Cauwelier B, Van Roy N et al (2008) EVI1 overexpression in t(3;17) positive myeloid malignancies results from juxtaposition of EVI1 to the MSI2 locus at 17q22. Haematologica 93(12):1903–7

    Article  PubMed  Google Scholar 

  75. De Weer A, Poppe B, Cauwelier B, Carlier A et al (2008) EVI1 activation in blast crisis CML due to juxtaposition to the rare 17q22 partner region as part of a 4-way variant translocation t(9;22). BMC Cancer 8:193

    Article  PubMed  Google Scholar 

  76. Danovi SA (2010) Leukaemia: comfortably MSI2-NUMB. Nat Rev Cancer 10(9):602

    Article  PubMed  CAS  Google Scholar 

  77. Byers RJ, Currie T, Tholouli E, Rodig SJ et al (2011) MSI2 protein expression predicts unfavorable outcome in acute myeloid leukemia. Blood 118(10):2857–67

    Article  PubMed  CAS  Google Scholar 

  78. de Andrés-Aguayo L, Varas F, Graf T (2012) Musashi 2 in hematopoiesis. Curr Opin Hematol 19(4):268

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eileen A. McLaughlin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Sutherland, J.M., McLaughlin, E.A., Hime, G.R., Siddall, N.A. (2013). The Musashi Family of RNA Binding Proteins: Master Regulators of Multiple Stem Cell Populations. In: Hime, G., Abud, H. (eds) Transcriptional and Translational Regulation of Stem Cells. Advances in Experimental Medicine and Biology, vol 786. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6621-1_13

Download citation

Publish with us

Policies and ethics