Skip to main content

Transcriptional Regulation and Specification of Neural Stem Cells

  • Chapter
  • First Online:
Transcriptional and Translational Regulation of Stem Cells

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 786))

Abstract

With the discovery two decades ago that the adult brain contains neural stem cells (NSCs) capable of producing new neurons, a great deal of research has been undertaken to manipulate these cells to repair the damaged nervous system. Much progress has been made in understanding what regulates adult neural stem cell specification, proliferation and differentiation but much remains to be determined. Lessons can be learned from understanding how embryonic neural stem cells produce the exquisitely complicated organ that is the adult mammalian nervous system. This review will highlight the role of transcriptional regulation of mammalian neural stem cells during embryonic development and compare these to the adult neural stem cell/neural precursor cell (NPC) niches of the subventricular zone (SVZ) of the lateral ventricle and the subgranular zone (SGZ) of the hippocampal dentate gyrus. Normal physiological NSC/NPC regulation will be explored, as well as their regulation and responses following neural injury and disease. Finally, transcriptional regulation of the endogenous NSC/NPCs will be compared and contrasted with embryonic stem/induced pluripotent stem (ES/iPS) cell-derived NSC/NPCs. Recapitulation of the embryonic sequence of transcriptional events in neural stem cell development into specific neuronal or glial lineages improves directed differentiation of ES/iPS cells and may be useful for activation and specification of endogenous adult neural stem cells for therapeutic purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Reynolds BA, Weiss S (1992) Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 255(5052):1707–1710

    PubMed  CAS  Google Scholar 

  2. Richards LJ, Kilpatrick TJ, Bartlett PF (1992) De novo generation of neuronal cells from the adult mouse brain. Proc Natl Acad Sci U S A 89(18):8591–8595

    PubMed  CAS  Google Scholar 

  3. Mizuseki K et al (1998) Xenopus Zic-related-1 and Sox-2, two factors induced by chordin, have distinct activities in the initiation of neural induction. Development 125(4):579–587

    PubMed  CAS  Google Scholar 

  4. Levine AJ, Brivanlou AH (2007) Proposal of a model of mammalian neural induction. Dev Biol 308(2):247–256

    PubMed  CAS  Google Scholar 

  5. Grabel L (2012) Developmental origin of neural stem cells: the glial cell that could. Stem Cell Rev 8(2):577–585

    PubMed  CAS  Google Scholar 

  6. Hoch RV, Rubenstein JL, Pleasure S (2009) Genes and signaling events that establish regional patterning of the mammalian forebrain. Semin Cell Dev Biol 20(4):378–386

    PubMed  CAS  Google Scholar 

  7. Vieira C et al (2010) Molecular mechanisms controlling brain development: an overview of neuroepithelial secondary organizers. Int J Dev Biol 54(1):7–20

    PubMed  CAS  Google Scholar 

  8. Ahmed S et al (2009) Transcription factors and neural stem cell self-renewal, growth and differentiation. Cell Adh Migr 3(4):412–424

    PubMed  Google Scholar 

  9. Hatakeyama J, Kageyama R (2006) Notch1 Expression is spatiotemporally correlated with neurogenesis and negatively regulated by Notch1-independent Hes genes in the developing nervous system. Cereb Cortex 16(Suppl 1):i132–i137

    PubMed  Google Scholar 

  10. Ohtsuka T et al (2011) Gene expression profiling of neural stem cells and identification of regulators of neural differentiation during cortical development. Stem Cells 29(11):1817–1828

    PubMed  CAS  Google Scholar 

  11. Mizutani K et al (2007) Differential notch signalling distinguishes neural stem cells from intermediate progenitors. Nature 449(7160):351–355

    PubMed  CAS  Google Scholar 

  12. Gaiano N, Nye JS, Fishell G (2000) Radial glial identity is promoted by Notch1 signaling in the murine forebrain. Neuron 26(2):395–404

    PubMed  CAS  Google Scholar 

  13. Nakamura Y et al (2000) The bHLH gene hes1 as a repressor of the neuronal commitment of CNS stem cells. J Neurosci 20(1):283–293

    PubMed  CAS  Google Scholar 

  14. Noctor SC, Martinez-Cerdeno V, Kriegstein AR (2008) Distinct behaviors of neural stem and progenitor cells underlie cortical neurogenesis. J Comp Neurol 508(1):28–44

    PubMed  Google Scholar 

  15. Chenn A, Walsh CA (2003) Increased neuronal production, enlarged forebrains and cytoarchitectural distortions in beta-catenin overexpressing transgenic mice. Cereb Cortex 13(6):599–606

    PubMed  Google Scholar 

  16. Rousso DL et al (2012) Foxp-mediated suppression of N-cadherin regulates neuroepithelial character and progenitor maintenance in the CNS. Neuron 74(2):314–330

    PubMed  CAS  Google Scholar 

  17. Collignon J et al (1996) A comparison of the properties of Sox-3 with Sry and two related genes, Sox-1 and Sox-2. Development 122(2):509–520

    PubMed  CAS  Google Scholar 

  18. Bylund M et al (2003) Vertebrate neurogenesis is counteracted by Sox1-3 activity. Nat Neurosci 6(11):1162–1168

    PubMed  CAS  Google Scholar 

  19. Ferri AL et al (2004) Sox2 deficiency causes neurodegeneration and impaired neurogenesis in the adult mouse brain. Development 131(15):3805–3819

    PubMed  CAS  Google Scholar 

  20. Graham V et al (2003) SOX2 functions to maintain neural progenitor identity. Neuron 39(5):749–765

    PubMed  CAS  Google Scholar 

  21. Bani-Yaghoub M et al (2006) Role of Sox2 in the development of the mouse neocortex. Dev Biol 295(1):52–66

    PubMed  CAS  Google Scholar 

  22. Favaro R et al (2009) Hippocampal development and neural stem cell maintenance require Sox2-dependent regulation of Shh. Nat Neurosci 12(10):1248–1256

    PubMed  CAS  Google Scholar 

  23. Andreu-Agullo C, Maurin T (2012) Ars2, an essential player in neural stem cell identity. Med Sci (Paris) 28(5):459–462

    Google Scholar 

  24. Bertrand N, Castro DS, Guillemot F (2002) Proneural genes and the specification of neural cell types. Nat Rev Neurosci 3(7):517–530

    PubMed  CAS  Google Scholar 

  25. Takanaga H et al (2009) Gli2 is a novel regulator of sox2 expression in telencephalic neuroepithelial cells. Stem Cells 27(1):165–174

    PubMed  CAS  Google Scholar 

  26. Fasano CA et al (2007) shRNA knockdown of Bmi-1 reveals a critical role for p21-Rb pathway in NSC self-renewal during development. Cell Stem Cell 1(1):87–99

    PubMed  CAS  Google Scholar 

  27. Gotz M, Stoykova A, Gruss P (1998) Pax6 controls radial glia differentiation in the cerebral cortex. Neuron 21(5):1031–1044

    PubMed  CAS  Google Scholar 

  28. Sansom SN et al (2009) The level of the transcription factor Pax6 is essential for controlling the balance between neural stem cell self-renewal and neurogenesis. PLoS Genet 5(6):e1000511

    PubMed  Google Scholar 

  29. Ligon KL et al (2007) Olig2-regulated lineage-restricted pathway controls replication competence in neural stem cells and malignant glioma. Neuron 53(4):503–517

    PubMed  CAS  Google Scholar 

  30. Yun K et al (2004) Id4 regulates neural progenitor proliferation and differentiation in vivo. Development 131(21):5441–5448

    PubMed  CAS  Google Scholar 

  31. Stecca B, Altaba ARi (2009) A GLI1-p53 inhibitory loop controls neural stem cell and tumour cell numbers. EMBO J 28(6):663–76

    PubMed  CAS  Google Scholar 

  32. Sakamoto M et al (2003) The basic helix-loop-helix genes Hesr1/Hey1 and Hesr2/Hey2 regulate maintenance of neural precursor cells in the brain. J Biol Chem 278(45):44808–44815

    PubMed  CAS  Google Scholar 

  33. Englund C et al (2005) Pax6, Tbr2, and Tbr1 are expressed sequentially by radial glia, intermediate progenitor cells, and postmitotic neurons in developing neocortex. J Neurosci 25(1):247–251

    PubMed  CAS  Google Scholar 

  34. Gangemi RM et al (2001) Emx2 in adult neural precursor cells. Mech Dev 109(2):323–329

    PubMed  CAS  Google Scholar 

  35. Hutton SR, Pevny LH (2011) SOX2 expression levels distinguish between neural progenitor populations of the developing dorsal telencephalon. Dev Biol 352(1):40–47

    PubMed  CAS  Google Scholar 

  36. Nieto M et al (2004) Expression of Cux-1 and Cux-2 in the subventricular zone and upper layers II-IV of the cerebral cortex. J Comp Neurol 479(2):168–180

    PubMed  CAS  Google Scholar 

  37. Tarabykin V et al (2001) Cortical upper layer neurons derive from the subventricular zone as indicated by Svet1 gene expression. Development 128(11):1983–1993

    PubMed  CAS  Google Scholar 

  38. Bulfone A et al (1999) Expression pattern of the Tbr2 (Eomesodermin) gene during mouse and chick brain development. Mech Dev 84(1–2):133–138

    PubMed  CAS  Google Scholar 

  39. Hevner RF et al (2006) Transcription factors in glutamatergic neurogenesis: conserved programs in neocortex, cerebellum, and adult hippocampus. Neurosci Res 55(3):223–233

    PubMed  CAS  Google Scholar 

  40. Sessa A et al (2008) Tbr2 directs conversion of radial glia into basal precursors and guides neuronal amplification by indirect neurogenesis in the developing neocortex. Neuron 60(1):56–69

    PubMed  CAS  Google Scholar 

  41. Arnold SJ et al (2008) The T-box transcription factor Eomes/Tbr2 regulates neurogenesis in the cortical subventricular zone. Genes Dev 22(18):2479–2484

    PubMed  CAS  Google Scholar 

  42. Hodge RD et al (2012) Tbr2 is essential for hippocampal lineage progression from neural stem cells to intermediate progenitors and neurons. J Neurosci 32(18):6275–6287

    PubMed  CAS  Google Scholar 

  43. Osumi N et al (2008) Concise review: Pax6 transcription factor contributes to both embryonic and adult neurogenesis as a multifunctional regulator. Stem Cells 26(7):1663–1672

    PubMed  CAS  Google Scholar 

  44. Nieto M et al (2001) Neural bHLH genes control the neuronal versus glial fate decision in cortical progenitors. Neuron 29(2):401–413

    PubMed  CAS  Google Scholar 

  45. Hirabayashi Y, Gotoh Y (2005) Stage-dependent fate determination of neural precursor cells in mouse forebrain. Neurosci Res 51(4):331–336

    PubMed  CAS  Google Scholar 

  46. Zechner D et al (2003) beta-Catenin signals regulate cell growth and the balance between progenitor cell expansion and differentiation in the nervous system. Dev Biol 258(2):406–418

    PubMed  CAS  Google Scholar 

  47. Hirabayashi Y et al (2004) The Wnt/beta-catenin pathway directs neuronal differentiation of cortical neural precursor cells. Development 131(12):2791–2801

    PubMed  CAS  Google Scholar 

  48. Faux CH et al (2001) Interactions between fibroblast growth factors and Notch regulate neuronal differentiation. J Neurosci 21(15):5587–5596

    PubMed  CAS  Google Scholar 

  49. Turnley AM et al (2002) Suppressor of cytokine signaling 2 regulates neuronal differentiation by inhibiting growth hormone signaling. Nat Neurosci 5(11):1155–1162

    PubMed  CAS  Google Scholar 

  50. Li S et al (2012) GSK3 temporally regulates neurogenin 2 proneural activity in the neocortex. J Neurosci 32(23):7791–7805

    PubMed  CAS  Google Scholar 

  51. Faux C et al (2012) Neurons on the move: migration and lamination of cortical interneurons. Neurosignals 20(3):168–189

    PubMed  CAS  Google Scholar 

  52. Guillemot F (2007) Cell fate specification in the mammalian telencephalon. Prog Neurobiol 83(1):37–52

    PubMed  CAS  Google Scholar 

  53. Leone DP et al (2008) The determination of projection neuron identity in the developing cerebral cortex. Curr Opin Neurobiol 18(1):28–35

    PubMed  CAS  Google Scholar 

  54. Cubelos B et al (2008) Cux-1 and Cux-2 control the development of Reelin expressing cortical interneurons. Dev Neurobiol 68(7):917–925

    PubMed  CAS  Google Scholar 

  55. Cubelos B et al (2008) Cux-2 controls the proliferation of neuronal intermediate precursors of the cortical subventricular zone. Cereb Cortex 18(8):1758–1770

    PubMed  Google Scholar 

  56. Chen B et al (2008) The Fezf2-Ctip2 genetic pathway regulates the fate choice of subcortical projection neurons in the developing cerebral cortex. Proc Natl Acad Sci U S A 105(32):11382–11387

    PubMed  CAS  Google Scholar 

  57. Arlotta P et al (2005) Neuronal subtype-specific genes that control corticospinal motor neuron development in vivo. Neuron 45(2):207–221

    PubMed  CAS  Google Scholar 

  58. Molyneaux BJ, Arlotta P, Macklis JD (2007) Molecular development of corticospinal motor neuron circuitry. Novartis Found Symp 288:3–15, discussion 15–20, 96–8

    PubMed  CAS  Google Scholar 

  59. Kwan KY et al (2008) SOX5 postmitotically regulates migration, postmigratory differentiation, and projections of subplate and deep-layer neocortical neurons. Proc Natl Acad Sci U S A 105(41):16021–16026

    PubMed  CAS  Google Scholar 

  60. Lai T et al (2008) SOX5 controls the sequential generation of distinct corticofugal neuron subtypes. Neuron 57(2):232–247

    PubMed  CAS  Google Scholar 

  61. McKenna WL et al (2011) Tbr1 and Fezf2 regulate alternate corticofugal neuronal identities during neocortical development. J Neurosci 31(2):549–564

    PubMed  CAS  Google Scholar 

  62. Alcamo EA et al (2008) Satb2 regulates callosal projection neuron identity in the developing cerebral cortex. Neuron 57(3):364–377

    PubMed  CAS  Google Scholar 

  63. Britanova O et al (2008) Satb2 is a postmitotic determinant for upper-layer neuron specification in the neocortex. Neuron 57(3):378–392

    PubMed  CAS  Google Scholar 

  64. Sugitani Y et al (2002) Brn-1 and Brn-2 share crucial roles in the production and positioning of mouse neocortical neurons. Genes Dev 16(14):1760–1765

    PubMed  CAS  Google Scholar 

  65. Jacobs FM et al (2009) Pitx3 potentiates Nurr1 in dopamine neuron terminal differentiation through release of SMRT-mediated repression. Development 136(4):531–540

    PubMed  CAS  Google Scholar 

  66. Ferri AL et al (2007) Foxa1 and Foxa2 regulate multiple phases of midbrain dopaminergic neuron development in a dosage-dependent manner. Development 134(15):2761–2769

    PubMed  CAS  Google Scholar 

  67. Couch JA et al (2004) robo2 and robo3 interact with eagle to regulate serotonergic neuron differentiation. Development 131(5):997–1006

    PubMed  CAS  Google Scholar 

  68. Hendricks T et al (1999) The ETS domain factor Pet-1 is an early and precise marker of central serotonin neurons and interacts with a conserved element in serotonergic genes. J Neurosci 19(23):10348–10356

    PubMed  CAS  Google Scholar 

  69. Ding YQ et al (2003) Lmx1b is essential for the development of serotonergic neurons. Nat Neurosci 6(9):933–938

    PubMed  CAS  Google Scholar 

  70. Zhao ZQ et al (2006) Lmx1b is required for maintenance of central serotonergic neurons and mice lacking central serotonergic system exhibit normal locomotor activity. J Neurosci 26(49):12781–12788

    PubMed  CAS  Google Scholar 

  71. Sun Y et al (2001) Neurogenin promotes neurogenesis and inhibits glial differentiation by independent mechanisms. Cell 104(3):365–376

    PubMed  CAS  Google Scholar 

  72. He F et al (2005) A positive autoregulatory loop of Jak-STAT signaling controls the onset of astrogliogenesis. Nat Neurosci 8(5):616–625

    PubMed  CAS  Google Scholar 

  73. Fan G et al (2005) DNA methylation controls the timing of astrogliogenesis through regulation of JAK-STAT signaling. Development 132(15):3345–3356

    PubMed  CAS  Google Scholar 

  74. Namihira M, Nakashima K, Taga T (2004) Developmental stage dependent regulation of DNA methylation and chromatin modification in a immature astrocyte specific gene promoter. FEBS Lett 572(1–3):184–188

    PubMed  CAS  Google Scholar 

  75. Takizawa T et al (2001) DNA methylation is a critical cell-intrinsic determinant of astrocyte differentiation in the fetal brain. Dev Cell 1(6):749–758

    PubMed  CAS  Google Scholar 

  76. Stolt CC et al (2003) The Sox9 transcription factor determines glial fate choice in the developing spinal cord. Genes Dev 17(13):1677–1689

    PubMed  CAS  Google Scholar 

  77. Cai J et al (2007) A crucial role for Olig2 in white matter astrocyte development. Development 134(10):1887–1899

    PubMed  CAS  Google Scholar 

  78. Lu PPY, Ramanan N (2012) A critical cell-intrinsic role for serum response factor in glial specification in the CNS. J Neurosci 32(23):8012–8023

    PubMed  CAS  Google Scholar 

  79. Deneen B et al (2006) The transcription factor NFIA controls the onset of gliogenesis in the developing spinal cord. Neuron 52(6):953–968

    PubMed  CAS  Google Scholar 

  80. Cebolla B, Vallejo M (2006) Nuclear factor-I regulates glial fibrillary acidic protein gene expression in astrocytes differentiated from cortical precursor cells. J Neurochem 97(4):1057–1070

    PubMed  CAS  Google Scholar 

  81. Kang P et al (2012) Sox9 and NFIA coordinate a transcriptional regulatory cascade during the initiation of gliogenesis. Neuron 74(1):79–94

    PubMed  CAS  Google Scholar 

  82. Muroyama Y et al (2005) Specification of astrocytes by bHLH protein SCL in a restricted region of the neural tube. Nature 438(7066):360–363

    PubMed  CAS  Google Scholar 

  83. Sakurai K, Osumi N (2008) The neurogenesis-controlling factor, Pax6, inhibits proliferation and promotes maturation in murine astrocytes. J Neurosci 28(18):4604–4612

    PubMed  CAS  Google Scholar 

  84. Emery B (2010) Regulation of oligodendrocyte differentiation and myelination. Science 330(6005):779–782

    PubMed  CAS  Google Scholar 

  85. Fancy SP et al (2011) Myelin regeneration: a recapitulation of development? Annu Rev Neurosci 34:21–43

    PubMed  CAS  Google Scholar 

  86. Kessaris N, Pringle N, Richardson WD (2008) Specification of CNS glia from neural stem cells in the embryonic neuroepithelium. Philos Trans R Soc Lond B Biol Sci 363(1489):71–85

    PubMed  CAS  Google Scholar 

  87. Richardson WD, Kessaris N, Pringle N (2006) Oligodendrocyte wars. Nat Rev Neurosci 7(1):11–18

    PubMed  CAS  Google Scholar 

  88. Kessaris N et al (2006) Competing waves of oligodendrocytes in the forebrain and postnatal elimination of an embryonic lineage. Nat Neurosci 9(2):173–179

    PubMed  CAS  Google Scholar 

  89. Lu QR et al (2002) Common developmental requirement for Olig function indicates a motor neuron/oligodendrocyte connection. Cell 109(1):75–86

    PubMed  CAS  Google Scholar 

  90. Zhou Q, Anderson DJ (2002) The bHLH transcription factors OLIG2 and OLIG1 couple neuronal and glial subtype specification. Cell 109(1):61–73

    PubMed  CAS  Google Scholar 

  91. Fu H et al (2002) Dual origin of spinal oligodendrocyte progenitors and evidence for the cooperative role of Olig2 and Nkx2.2 in the control of oligodendrocyte differentiation. Development 129(3):681–693

    PubMed  CAS  Google Scholar 

  92. Li H et al (2011) Phosphorylation regulates OLIG2 cofactor choice and the motor neuron-oligodendrocyte fate switch. Neuron 69(5):918–929

    PubMed  CAS  Google Scholar 

  93. Zhu X et al (2012) Olig2-dependent developmental fate switch of NG2 cells. Development 139(13):2299–2307

    PubMed  CAS  Google Scholar 

  94. Parras CM et al (2007) The proneural gene Mash1 specifies an early population of telencephalic oligodendrocytes. J Neurosci 27(16):4233–4242

    PubMed  CAS  Google Scholar 

  95. Petryniak MA et al (2007) Dlx1 and Dlx2 control neuronal versus oligodendroglial cell fate acquisition in the developing forebrain. Neuron 55(3):417–433

    PubMed  CAS  Google Scholar 

  96. Battiste J et al (2007) Ascl1 defines sequentially generated lineage-restricted neuronal and oligodendrocyte precursor cells in the spinal cord. Development 134(2):285–293

    PubMed  CAS  Google Scholar 

  97. Sugimori M et al (2008) Ascl1 is required for oligodendrocyte development in the spinal cord. Development 135(7):1271–1281

    PubMed  CAS  Google Scholar 

  98. Liu R et al (2003) Region-specific and stage-dependent regulation of Olig gene expression and oligodendrogenesis by Nkx6.1 homeodomain transcription factor. Development 130(25):6221–6231

    PubMed  CAS  Google Scholar 

  99. Vallstedt A, Klos JM, Ericson J (2005) Multiple dorsoventral origins of oligodendrocyte generation in the spinal cord and hindbrain. Neuron 45(1):55–67

    PubMed  CAS  Google Scholar 

  100. Qi Y et al (2001) Control of oligodendrocyte differentiation by the Nkx2.2 homeodomain transcription factor. Development 128(14):2723–2733

    PubMed  CAS  Google Scholar 

  101. Pozniak CD et al (2010) Sox10 directs neural stem cells toward the oligodendrocyte lineage by decreasing Suppressor of Fused expression. Proc Natl Acad Sci U S A 107(50):21795–21800

    PubMed  CAS  Google Scholar 

  102. Wang S et al (1998) Notch receptor activation inhibits oligodendrocyte differentiation. Neuron 21(1):63–75

    PubMed  Google Scholar 

  103. Park HC, Appel B (2003) Delta-Notch signaling regulates oligodendrocyte specification. Development 130(16):3747–3755

    PubMed  CAS  Google Scholar 

  104. Dewald LE, Rodriguez JP, Levine JM (2011) The RE1 binding protein REST regulates oligodendrocyte differentiation. J Neurosci 31(9):3470–3483

    PubMed  CAS  Google Scholar 

  105. Rivers LE et al (2008) PDGFRA/NG2 glia generate myelinating oligodendrocytes and piriform projection neurons in adult mice. Nat Neurosci 11(12):1392–1401

    PubMed  CAS  Google Scholar 

  106. Zhu X, Bergles DE, Nishiyama A (2008) NG2 cells generate both oligodendrocytes and gray matter astrocytes. Development 135(1):145–157

    PubMed  CAS  Google Scholar 

  107. Andreu-Agullo C et al (2012) Ars2 maintains neural stem-cell identity through direct transcriptional activation of Sox2. Nature 481(7380):195–198

    CAS  Google Scholar 

  108. Wexler EM et al (2009) Endogenous Wnt signaling maintains neural progenitor cell potency. Stem Cells 27(5):1130–1141

    PubMed  CAS  Google Scholar 

  109. Qu Q et al (2010) Orphan nuclear receptor TLX activates Wnt/beta-catenin signalling to stimulate neural stem cell proliferation and self-renewal. Nat Cell Biol 12(1):31–40, sup pp 1–9

    PubMed  CAS  Google Scholar 

  110. Zhang C et al (2010) The modulatory effects of bHLH transcription factors with the Wnt/beta-catenin pathway on differentiation of neural progenitor cells derived from neonatal mouse anterior subventricular zone. Brain Res 1315:1–10

    PubMed  CAS  Google Scholar 

  111. Lei ZN et al (2012) Bcl-2 increases stroke-induced striatal neurogenesis in adult brains by inhibiting BMP-4 function via activation of beta-catenin signaling. Neurochem Int 61(1):34–42

    PubMed  CAS  Google Scholar 

  112. Otero JJ et al (2004) Beta-catenin signaling is required for neural differentiation of embryonic stem cells. Development 131(15):3545–3557

    PubMed  CAS  Google Scholar 

  113. He S et al (2009) Bmi-1 over-expression in neural stem/progenitor cells increases proliferation and neurogenesis in culture but has little effect on these functions in vivo. Dev Biol 328(2):257–272

    PubMed  CAS  Google Scholar 

  114. Molofsky AV et al (2005) Bmi-1 promotes neural stem cell self-renewal and neural development but not mouse growth and survival by repressing the p16Ink4a and p19Arf senescence pathways. Genes Dev 19(12):1432–1437

    PubMed  CAS  Google Scholar 

  115. Paquin A et al (2005) CCAAT/enhancer-binding protein phosphorylation biases cortical precursors to generate neurons rather than astrocytes in vivo. J Neurosci 25(46):10747–10758

    PubMed  CAS  Google Scholar 

  116. Cortes-Canteli M et al (2011) Role of C/EBPbeta transcription factor in adult hippocampal neurogenesis. PLoS One 6(10):e24842

    PubMed  CAS  Google Scholar 

  117. Menard C et al (2002) An essential role for a MEK-C/EBP pathway during growth factor-regulated cortical neurogenesis. Neuron 36(4):597–610

    PubMed  CAS  Google Scholar 

  118. Dworkin S et al (2009) cAMP response element binding protein is required for mouse neural progenitor cell survival and expansion. Stem Cells 27(6):1347–1357

    PubMed  CAS  Google Scholar 

  119. Jagasia R et al (2009) GABA-cAMP response element-binding protein signaling regulates maturation and survival of newly generated neurons in the adult hippocampus. J Neurosci 29(25):7966–7977

    PubMed  CAS  Google Scholar 

  120. Giachino C et al (2005) cAMP response element-binding protein regulates differentiation and survival of newborn neurons in the olfactory bulb. J Neurosci 25(44):10105–10118

    PubMed  CAS  Google Scholar 

  121. Dworkin S et al (2007) CREB activity modulates neural cell proliferation, midbrain-hindbrain organization and patterning in zebrafish. Dev Biol 307(1):127–141

    PubMed  CAS  Google Scholar 

  122. Dworkin S, Mantamadiotis T (2010) Targeting CREB signalling in neurogenesis. Expert Opin Ther Targets 14(8):869–879

    PubMed  CAS  Google Scholar 

  123. Herold S et al (2011) CREB signalling regulates early survival, neuronal gene expression and morphological development in adult subventricular zone neurogenesis. Mol Cell Neurosci 46(1):79–88

    PubMed  CAS  Google Scholar 

  124. Kandasamy M et al (2010) Stem cell quiescence in the hippocampal neurogenic niche is associated with elevated transforming growth factor-beta signaling in an animal model of Huntington disease. J Neuropathol Exp Neurol 69(7):717–728

    PubMed  Google Scholar 

  125. Shan ZY et al (2008) pCREB is involved in neural induction of mouse embryonic stem cells by RA. Anat Rec (Hoboken) 291(5):519–526

    CAS  Google Scholar 

  126. Doetsch F et al (2002) EGF converts transit-amplifying neurogenic precursors in the adult brain into multipotent stem cells. Neuron 36(6):1021–1034

    PubMed  CAS  Google Scholar 

  127. Brill MS et al (2008) A dlx2- and pax6-dependent transcriptional code for periglomerular neuron specification in the adult olfactory bulb. J Neurosci 28(25):6439–6452

    PubMed  CAS  Google Scholar 

  128. Jones KS, Connor B (2011) Proneural transcription factors Dlx2 and Pax6 are altered in adult SVZ neural precursor cells following striatal cell loss. Mol Cell Neurosci 47(1):53–60

    PubMed  CAS  Google Scholar 

  129. Cooper-Kuhn CM et al (2002) Impaired adult neurogenesis in mice lacking the transcription factor E2F1. Mol Cell Neurosci 21(2):312–323

    PubMed  CAS  Google Scholar 

  130. Tonchev AB, Yamashima T (2006) Differential neurogenic potential of progenitor cells in dentate gyrus and CA1 sector of the postischemic adult monkey hippocampus. Exp Neurol 198(1):101–113

    PubMed  CAS  Google Scholar 

  131. Shimizu T et al (2010) Zinc finger genes Fezf1 and Fezf2 control neuronal differentiation by repressing Hes5 expression in the forebrain. Development 137(11):1875–1885

    PubMed  CAS  Google Scholar 

  132. Berberoglu MA et al (2009) fezf2 expression delineates cells with proliferative potential and expressing markers of neural stem cells in the adult zebrafish brain. Gene Expr Patterns 9(6):411–422

    PubMed  CAS  Google Scholar 

  133. Paik JH et al (2009) FoxOs cooperatively regulate diverse pathways governing neural stem cell homeostasis. Cell Stem Cell 5(5):540–553

    PubMed  CAS  Google Scholar 

  134. Aranha MM et al (2009) Caspases and p53 modulate FOXO3A/Id1 signaling during mouse neural stem cell differentiation. J Cell Biochem 107(4):748–758

    PubMed  CAS  Google Scholar 

  135. Brancaccio M et al (2010) Emx2 and Foxg1 inhibit gliogenesis and promote neuronogenesis. Stem Cells 28(7):1206–1218

    PubMed  CAS  Google Scholar 

  136. Jacquet BV et al (2011) Specification of a Foxj1-dependent lineage in the forebrain is required for embryonic-to-postnatal transition of neurogenesis in the olfactory bulb. J Neurosci 31(25):9368–9382

    PubMed  Google Scholar 

  137. Renault VM et al (2009) FoxO3 regulates neural stem cell homeostasis. Cell Stem Cell 5(5):527–539

    PubMed  CAS  Google Scholar 

  138. Lee HS et al (2010) Foxa2 and Nurr1 synergistically yield A9 nigral dopamine neurons exhibiting improved differentiation, function, and cell survival. Stem Cells 28(3):501–512

    PubMed  CAS  Google Scholar 

  139. Pfisterer U et al (2011) Direct conversion of human fibroblasts to dopaminergic neurons. Proc Natl Acad Sci U S A 108(25):10343–10348

    PubMed  CAS  Google Scholar 

  140. Oh S et al (2009) Shh and Gli3 activities are required for timely generation of motor neuron progenitors. Dev Biol 331(2):261–269

    PubMed  CAS  Google Scholar 

  141. Breunig JJ et al (2008) Primary cilia regulate hippocampal neurogenesis by mediating sonic hedgehog signaling. Proc Natl Acad Sci U S A 105(35):13127–13132

    PubMed  CAS  Google Scholar 

  142. Wang H et al (2011) Gli3 is required for maintenance and fate specification of cortical progenitors. J Neurosci 31(17):6440–6448

    PubMed  CAS  Google Scholar 

  143. Nat R et al (2012) Pharmacological modulation of the Hedgehog pathway differentially affects dorsal/ventral patterning in mouse and human embryonic stem cell models of telencephalic development. Stem Cells Dev 21(7):1016–1046

    PubMed  CAS  Google Scholar 

  144. Imayoshi I et al (2010) Essential roles of Notch signaling in maintenance of neural stem cells in developing and adult brains. J Neurosci 30(9):3489–3498

    PubMed  CAS  Google Scholar 

  145. Veeraraghavalu K et al (2010) Presenilin 1 mutants impair the self-renewal and differentiation of adult murine subventricular zone-neuronal progenitors via cell-autonomous mechanisms involving notch signaling. J Neurosci 30(20):6903–6915

    PubMed  CAS  Google Scholar 

  146. Wang X et al (2009) Involvement of Notch1 signaling in neurogenesis in the subventricular zone of normal and ischemic rat brain in vivo. J Cereb Blood Flow Metab 29(10):1644–1654

    PubMed  Google Scholar 

  147. Scholzke MN et al (2011) TWEAK regulates proliferation and differentiation of adult neural progenitor cells. Mol Cell Neurosci 46(1):325–332

    PubMed  Google Scholar 

  148. Prozorovski T et al (2008) Sirt1 contributes critically to the redox-dependent fate of neural progenitors. Nat Cell Biol 10(4):385–394

    PubMed  CAS  Google Scholar 

  149. Teng FY, Hor CH, Tang BL (2009) Emerging cues mediating astroglia lineage restriction of progenitor cells in the injured/diseased adult CNS. Differentiation 77(2):121–127

    PubMed  CAS  Google Scholar 

  150. Wang L et al (2009) The Notch pathway mediates expansion of a progenitor pool and neuronal differentiation in adult neural progenitor cells after stroke. Neuroscience 158(4):1356–1363

    PubMed  CAS  Google Scholar 

  151. Kobayashi T, Kageyama R (2010) Hes1 regulates embryonic stem cell differentiation by suppressing Notch signaling. Genes Cells 15(7):689–698

    PubMed  CAS  Google Scholar 

  152. Lugert S et al (2010) Quiescent and activehippocampal neural stem cells with distinct morphologies respond selectively to physiological and pathological stimuli and aging. Cell Stem Cell 6(5):445–456

    PubMed  CAS  Google Scholar 

  153. Crews L et al (2008) Alpha-synuclein alters Notch-1 expression and neurogenesis in mouse embryonic stem cells and in the hippocampus of transgenic mice. J Neurosci 28(16):4250–4260

    PubMed  CAS  Google Scholar 

  154. Bai G et al (2007) Id sustains Hes1 expression to inhibit precocious neurogenesis by releasing negative autoregulation of Hes1. Dev Cell 13(2):283–297

    PubMed  CAS  Google Scholar 

  155. Tzeng SF, de Vellis J (1998) Id1, Id2, and Id3 gene expression in neural cells during development. Glia 24(4):372–381

    PubMed  CAS  Google Scholar 

  156. Bedford L et al (2005) Id4 is required for the correct timing of neural differentiation. Dev Biol 280(2):386–395

    PubMed  CAS  Google Scholar 

  157. Havrda MC et al (2008) Id2 is required for specification of dopaminergic neurons during adult olfactory neurogenesis. J Neurosci 28(52):14074–14086

    PubMed  CAS  Google Scholar 

  158. Deisseroth K et al (2004) Excitation-neurogenesis coupling in adult neural stem/progenitor cells. Neuron 42(4):535–552

    PubMed  CAS  Google Scholar 

  159. Caiazzo M et al (2011) Direct generation of functional dopaminergic neurons from mouse and human fibroblasts. Nature 476(7359):224–227

    PubMed  CAS  Google Scholar 

  160. Friling S et al (2009) Efficient production of mesencephalic dopamine neurons by Lmx1a expression in embryonic stem cells. Proc Natl Acad Sci U S A 106(18):7613–7618

    PubMed  CAS  Google Scholar 

  161. Dolmazon V et al (2011) Forced expression of LIM homeodomain transcription factor 1b enhances differentiation of mouse embryonic stem cells into serotonergic neurons. Stem Cells Dev 20(2):301–311

    PubMed  CAS  Google Scholar 

  162. Kim EJ et al (2007) In vivo analysis of Ascl1 defined progenitors reveals distinct developmental dynamics during adult neurogenesis and gliogenesis. J Neurosci 27(47):12764–12774

    PubMed  CAS  Google Scholar 

  163. Jessberger S et al (2008) Directed differentiation of hippocampal stem/progenitor cells in the adult brain. Nat Neurosci 11(8):888–893

    PubMed  CAS  Google Scholar 

  164. Berninger B, Guillemot F, Gotz M (2007) Directing neurotransmitter identity of neurones derived from expanded adult neural stem cells. Eur J Neurosci 25(9):2581–2590

    PubMed  Google Scholar 

  165. Zhang RL et al (2011) Ascl1 lineage cells contribute to ischemia-induced neurogenesis and oligodendrogenesis. J Cereb Blood Flow Metab 31(2):614–625

    PubMed  CAS  Google Scholar 

  166. Uchida Y et al (2007) Differential regulation of basic helix-loop-helix factors Mash1 and Olig2 by beta-amyloid accelerates both differentiation and death of cultured neural stem/progenitor cells. J Biol Chem 282(27):19700–19709

    PubMed  CAS  Google Scholar 

  167. Waldau B, Shetty AK (2008) Behavior of neural stem cells in the Alzheimer brain. Cell Mol Life Sci 65(15):2372–2384

    PubMed  CAS  Google Scholar 

  168. Vierbuchen T et al (2010) Direct conversion of fibroblasts to functional neurons by defined factors. Nature 463(7284):1035–1041

    PubMed  CAS  Google Scholar 

  169. Pang ZP et al (2011) Induction of human neuronal cells by defined transcription factors. Nature 476(7359):220–223

    PubMed  CAS  Google Scholar 

  170. Lim DA et al (2009) Chromatin remodelling factor Mll1 is essential for neurogenesis from postnatal neural stem cells. Nature 458(7237):529–533

    PubMed  CAS  Google Scholar 

  171. Borgs L et al (2009) Period 2 regulates neural stem/progenitor cell proliferation in the adult hippocampus. BMC Neurosci 10:30

    PubMed  Google Scholar 

  172. Cho JH, Tsai MJ (2004) The role of BETA2/NeuroD1 in the development of the nervous system. Mol Neurobiol 30(1):35–47

    PubMed  CAS  Google Scholar 

  173. Gao Z et al (2009) Neurod1 is essential for the survival and maturation of adult-born neurons. Nat Neurosci 12(9):1090–1092

    PubMed  CAS  Google Scholar 

  174. Kuwabara T et al (2009) Wnt-mediated activation of NeuroD1 and retro-elements during adult neurogenesis. Nat Neurosci 12(9):1097–1105

    PubMed  CAS  Google Scholar 

  175. Roybon L et al (2009) Neurogenin2 directs granule neuroblast production and amplification while NeuroD1 specifies neuronal fate during hippocampal neurogenesis. PLoS One 4(3):e4779

    PubMed  Google Scholar 

  176. Roybon L et al (2009) Involvement of Ngn2, Tbr and NeuroD proteins during postnatal olfactory bulb neurogenesis. Eur J Neurosci 29(2):232–243

    PubMed  Google Scholar 

  177. Fedele V et al (2011) Neurogenesis in the R6/2 mouse model of Huntington’s disease is impaired at the level of NeuroD1. Neuroscience 173:76–81

    PubMed  CAS  Google Scholar 

  178. Ozen I et al (2007) Proliferating neuronal progenitors in the postnatal hippocampus transiently express the proneural gene Ngn2. Eur J Neurosci 25(9):2591–2603

    PubMed  Google Scholar 

  179. Brill MS et al (2009) Adult generation of glutamatergic olfactory bulb interneurons. Nat Neurosci 12(12):1524–1533

    PubMed  CAS  Google Scholar 

  180. Pieper AA et al (2005) The neuronal PAS domain protein 3 transcription factor controls FGF-mediated adult hippocampal neurogenesis in mice. Proc Natl Acad Sci U S A 102(39):14052–14057

    PubMed  CAS  Google Scholar 

  181. Chung S et al (2009) Wnt1-lmx1a forms a novel autoregulatory loop and controls midbraindopaminergic differentiation synergistically with the SHH-FoxA2 pathway. Cell Stem Cell 5(6):646–658

    PubMed  CAS  Google Scholar 

  182. Hack MA et al (2005) Neuronal fate determinants of adult olfactory bulb neurogenesis. Nat Neurosci 8(7):865–872

    PubMed  CAS  Google Scholar 

  183. Hack MA et al (2004) Regionalization and fate specification in neurospheres: the role of Olig2 and Pax6. Mol Cell Neurosci 25(4):664–678

    PubMed  CAS  Google Scholar 

  184. Buffo A et al (2005) Expression pattern of the transcription factor Olig2 in response to brain injuries: implications for neuronal repair. Proc Natl Acad Sci U S A 102(50):18183–18188

    PubMed  CAS  Google Scholar 

  185. Magnus T et al (2007) Evidence that nucleocytoplasmic Olig2 translocation mediates brain-injury-induced differentiation of glial precursors to astrocytes. J Neurosci Res 85(10):2126–2137

    PubMed  CAS  Google Scholar 

  186. Hernandez-Acosta NC et al (2011) Dynamic expression of the p53 family members p63 and p73 in the mouse and human telencephalon during development and in adulthood. Brain Res 1372:29–40

    PubMed  CAS  Google Scholar 

  187. Holembowski L et al (2011) While p73 is essential, p63 is completely dispensable for the development of the central nervous system. Cell Cycle 10(4):680–689

    PubMed  CAS  Google Scholar 

  188. Fletcher RB et al (2011) p63 regulates olfactory stem cell self-renewal and differentiation. Neuron 72(5):748–759

    PubMed  CAS  Google Scholar 

  189. Agostini M et al (2010) p73 regulates maintenance of neural stem cell. Biochem Biophys Res Commun 403(1):13–17

    PubMed  CAS  Google Scholar 

  190. Fujitani M et al (2010) TAp73 acts via the bHLH Hey2 to promote long-term maintenance of neural precursors. Curr Biol 20(22):2058–2065

    PubMed  CAS  Google Scholar 

  191. Talos F et al (2010) p73 is an essential regulator of neural stem cell maintenance in embryonal and adult CNS neurogenesis. Cell Death Differ 17(12):1816–1829

    PubMed  CAS  Google Scholar 

  192. Maekawa M et al (2005) Pax6 is required for production and maintenance of progenitor cells in postnatal hippocampal neurogenesis. Genes Cells 10(10):1001–1014

    PubMed  CAS  Google Scholar 

  193. Jablonska B et al (2010) Chordin-induced lineage plasticity of adult SVZ neuroblasts after demyelination. Nat Neurosci 13(5):541–550

    PubMed  CAS  Google Scholar 

  194. Pera MF et al (2004) Regulation of human embryonic stem cell differentiation by BMP-2 and its antagonist noggin. J Cell Sci 117(Pt 7):1269–1280

    PubMed  CAS  Google Scholar 

  195. Davidson KC et al (2007) Wnt3a regulates survival, expansion, and maintenance of neural progenitors derived from human embryonic stem cells. Mol Cell Neurosci 36(3):408–415

    PubMed  CAS  Google Scholar 

  196. Chambers SM et al (2009) Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nat Biotechnol 27(3):275–280

    PubMed  CAS  Google Scholar 

  197. Zhang X et al (2010) Pax6 is a human neuroectoderm cell fate determinant. Cell Stem Cell 7(1):90–100

    PubMed  CAS  Google Scholar 

  198. Elkouris M et al (2011) Sox1 maintains the undifferentiated state of cortical neural progenitor cells via the suppression of Prox1-mediated cell cycle exit and neurogenesis. Stem Cells 29(1):89–98

    PubMed  CAS  Google Scholar 

  199. Kaltezioti V et al (2010) Prox1 regulates the notch1-mediated inhibition of neurogenesis. PLoS Biol 8(12):e1000565

    PubMed  CAS  Google Scholar 

  200. Karalay O et al (2011) Prospero-related homeobox 1 gene (Prox1) is regulated by canonical Wnt signaling and has a stage-specific role in adult hippocampal neurogenesis. Proc Natl Acad Sci U S A 108(14):5807–5812

    PubMed  CAS  Google Scholar 

  201. Lavado A et al (2010) Prox1 is required for granule cell maturation and intermediate progenitor maintenance during brain neurogenesis. PLoS Biol 8(8):43–44. p ii: e1000460. doi: 10.1371/journal.pbio.1000460

    Google Scholar 

  202. Merson TD et al (2006) The transcriptional coactivator Querkopf controls adult neurogenesis. J Neurosci 26(44):11359–11370

    PubMed  CAS  Google Scholar 

  203. Komine O et al (2011) RBP-J promotes the maturation of neuronal progenitors. Dev Biol 354(1):44–54

    PubMed  CAS  Google Scholar 

  204. Gao F et al (2009) Transcription factor RBP-J-mediated signaling represses the differentiation of neural stem cells into intermediate neural progenitors. Mol Cell Neurosci 40(4):442–450

    PubMed  CAS  Google Scholar 

  205. Ehm O et al (2010) RBPJkappa-dependent signaling is essential for long-term maintenance of neural stem cells in the adult hippocampus. J Neurosci 30(41):13794–13807

    PubMed  CAS  Google Scholar 

  206. Fujimoto M et al (2009) RBP-J promotes neuronal differentiation and inhibits oligodendroglial development in adult neurogenesis. Dev Biol 332(2):339–350

    PubMed  CAS  Google Scholar 

  207. Stipursky J, Francis D, Gomes FC (2012) Activation of MAPK/PI3K/SMAD pathways by TGF-beta(1) controls differentiation of radial glia into astrocytes in vitro. Dev Neurosci 34(1):68–81

    PubMed  CAS  Google Scholar 

  208. Rajan P et al (2003) BMPs signal alternately through a SMAD or FRAP-STAT pathway to regulate fate choice in CNS stem cells. J Cell Biol 161(5):911–921

    PubMed  CAS  Google Scholar 

  209. Nakashima K et al (1999) Synergistic signaling in fetal brain by STAT3-Smad1 complex bridged by p300. Science 284(5413):479–482

    PubMed  CAS  Google Scholar 

  210. Nakashima K et al (2001) BMP2-mediated alteration in the developmental pathway of fetal mouse brain cells from neurogenesis to astrocytogenesis. Proc Natl Acad Sci U S A 98(10):5868–5873

    PubMed  CAS  Google Scholar 

  211. Colak D et al (2008) Adult neurogenesis requires Smad4-mediated bone morphogenic protein signaling in stem cells. J Neurosci 28(2):434–446

    PubMed  CAS  Google Scholar 

  212. Fukuda S et al (2007) Potentiation of astrogliogenesis by STAT3-mediated activation of bone morphogenetic protein-Smad signaling in neural stem cells. Mol Cell Biol 27(13):4931–4937

    PubMed  CAS  Google Scholar 

  213. Menendez L et al (2011) Wnt signaling and a Smad pathway blockade direct the differentiation of human pluripotent stem cells to multipotent neural crest cells. Proc Natl Acad Sci U S A 108(48):19240–19245

    PubMed  CAS  Google Scholar 

  214. Patani R et al (2009) Activin/Nodal inhibition alone accelerates highly efficient neural conversion from human embryonic stem cells and imposes a caudal positional identity. PLoS One 4(10):e7327

    PubMed  Google Scholar 

  215. Ying QL et al (2003) BMP induction of Id proteins suppresses differentiation and sustains embryonic stem cell self-renewal in collaboration with STAT3. Cell 115(3):281–292

    PubMed  CAS  Google Scholar 

  216. Finley MF, Devata S, Huettner JE (1999) BMP-4 inhibits neural differentiation of murine embryonic stem cells. J Neurobiol 40(3):271–287

    PubMed  CAS  Google Scholar 

  217. Gratsch TE, O’Shea KS (2002) Noggin and chordin have distinct activities in promoting lineage commitment of mouse embryonic stem (ES) cells. Dev Biol 245(1):83–94

    PubMed  CAS  Google Scholar 

  218. Lopez-Juarez A et al (2012) Thyroid hormone signaling acts as a neurogenic switch by repressing sox2 in the adult neural stem cell niche. Cell Stem Cell 10(5):531–543

    PubMed  CAS  Google Scholar 

  219. Brazel CY et al (2005) Sox2 expression defines a heterogeneous population of neurosphere-forming cells in the adult murine brain. Aging Cell 4(4):197–207

    PubMed  CAS  Google Scholar 

  220. Ring KL et al (2012) Direct reprogramming of mouse and human fibroblasts into multipotent neural stem cells with a single factor. Cell Stem Cell 11(1):100–109

    PubMed  CAS  Google Scholar 

  221. Wang TW et al (2006) Sox3 expression identifies neural progenitors in persistent neonatal and adult mouse forebrain germinative zones. J Comp Neurol 497(1):88–100

    PubMed  CAS  Google Scholar 

  222. Li Y et al (2012) Sox11 modulates neocortical development by regulating the proliferation and neuronal differentiation of cortical intermediate precursors. Acta Biochim Biophys Sin (Shanghai) 44(8):660–668

    CAS  Google Scholar 

  223. Haslinger A et al (2009) Expression of Sox11 in adult neurogenic niches suggests a stage-specific role in adult neurogenesis. Eur J Neurosci 29(11):2103–2114

    PubMed  Google Scholar 

  224. Mu L et al (2012) SoxC transcription factors are required for neuronal differentiation in adult hippocampal neurogenesis. J Neurosci 32(9):3067–3080

    PubMed  CAS  Google Scholar 

  225. Guo Y et al (2011) Transcription factor Sox11b is involved in spinal cord regeneration in adult zebrafish. Neuroscience 172:329–341

    PubMed  CAS  Google Scholar 

  226. Li X et al (2011) The transcription factor Sp8 is required for the production of parvalbumin-expressing interneurons in the olfactory bulb. J Neurosci 31(23):8450–8455

    PubMed  CAS  Google Scholar 

  227. Liu F et al (2009) Brain injury does not alter the intrinsic differentiation potential of adult neuroblasts. J Neurosci 29(16):5075–5087

    PubMed  CAS  Google Scholar 

  228. Muller S et al (2009) Neurogenesis in the dentate gyrus depends on ciliary neurotrophic factor and signal transducer and activator of transcription 3 signaling. Stem Cells 27(2):431–441

    PubMed  Google Scholar 

  229. Yu Y, Ren W, Ren B (2009) Expression of signal transducers and activator of transcription 3 (STAT3) determines differentiation of olfactory bulb cells. Mol Cell Biochem 320(1–2):101–108

    PubMed  CAS  Google Scholar 

  230. Cao F et al (2010) Conditional deletion of Stat3 promotes neurogenesis and inhibits astrogliogenesis in neural stem cells. Biochem Biophys Res Commun 394(3):843–847

    PubMed  CAS  Google Scholar 

  231. Gu F et al (2005) Suppression of Stat3 promotes neurogenesis in cultured neural stem cells. J Neurosci Res 81(2):163–171

    PubMed  CAS  Google Scholar 

  232. Li W et al (2008) Nuclear receptor TLX regulates cell cycle progression in neural stem cells of the developing brain. Mol Endocrinol 22(1):56–64

    PubMed  CAS  Google Scholar 

  233. Chavali PL et al (2011) Nuclear orphan receptor TLX induces Oct-3/4 for the survival and maintenance of adult hippocampal progenitors upon hypoxia. J Biol Chem 286(11):9393–9404

    PubMed  CAS  Google Scholar 

  234. Elmi M et al (2010) TLX activates MASH1 for induction of neuronal lineage commitment of adult hippocampal neuroprogenitors. Mol Cell Neurosci 45(2):121–131

    PubMed  CAS  Google Scholar 

  235. Shimozaki K et al (2012) SRY-box-containing gene 2 regulation of nuclear receptor tailless (Tlx) transcription in adult neural stem cells. J Biol Chem 287(8):5969–5978

    PubMed  CAS  Google Scholar 

  236. Zhang CL et al (2008) A role for adult TLX-positive neural stem cells in learning and behaviour. Nature 451(7181):1004–1007

    PubMed  CAS  Google Scholar 

  237. Liu HK et al (2008) The nuclear receptor tailless is required for neurogenesis in the adult subventricular zone. Genes Dev 22(18):2473–2478

    PubMed  CAS  Google Scholar 

  238. Obernier K et al (2011) Expression of Tlx in both stem cells and transit amplifying progenitors regulates stem cell activation and differentiation in the neonatal lateral subependymal zone. Stem Cells 29(9):1415–1426

    PubMed  CAS  Google Scholar 

  239. Shi Y et al (2004) Expression and function of orphan nuclear receptor TLX in adult neural stem cells. Nature 427(6969):78–83

    PubMed  CAS  Google Scholar 

  240. Zhang C et al (2011) Role of transcription factors in neurogenesis after cerebral ischemia. Rev Neurosci 22(4):457–465

    PubMed  Google Scholar 

  241. Brown L, Brown S (2009) Zic2 is expressed in pluripotent cells in the blastocyst and adult brain expression overlaps with makers of neurogenesis. Gene Expr Patterns 9(1):43–49

    PubMed  CAS  Google Scholar 

  242. Freund TF, Buzsaki G (1996) Interneurons of the hippocampus. Hippocampus 6(4):347–470

    PubMed  CAS  Google Scholar 

  243. Hodge RD, Hevner RF (2011) Expression and actions of transcription factors in adult hippocampal neurogenesis. Dev Neurobiol 71(8):680–689

    PubMed  CAS  Google Scholar 

  244. Ellis P et al (2004) SOX2, a persistent marker for multipotential neural stem cells derived from embryonic stem cells, the embryo or the adult. Dev Neurosci 26(2–4):148–165

    PubMed  CAS  Google Scholar 

  245. Suh H et al (2007) In vivo fate analysis reveals the multipotent and self-renewal capacities of Sox2+ neural stem cells in the adult hippocampus. Cell Stem Cell 1(5):515–528

    PubMed  CAS  Google Scholar 

  246. Gao Z et al (2011) The master negative regulator REST/NRSF controls adult neurogenesis by restraining the neurogenic program in quiescent stem cells. J Neurosci 31(26):9772–9786

    PubMed  CAS  Google Scholar 

  247. Kim EJ et al (2011) Ascl1 (Mash1) defines cells with long-term neurogenic potential in subgranular and subventricular zones in adult mouse brain. PLoS One 6(3):e18472

    PubMed  CAS  Google Scholar 

  248. Scobie KN et al (2009) Kruppel-like factor 9 is necessary for late-phase neuronal maturation in the developing dentate gyrus and during adult hippocampal neurogenesis. J Neurosci 29(31):9875–9887

    PubMed  CAS  Google Scholar 

  249. Luskin MB (1993) Restricted proliferation and migration of postnatally generated neurons derived from the forebrain subventricular zone. Neuron 11(1):173–189

    PubMed  CAS  Google Scholar 

  250. Lois C, Alvarez-Buylla A (1994) Long-distance neuronal migration in the adult mammalian brain. Science 264(5162):1145–1148

    PubMed  CAS  Google Scholar 

  251. Doetsch F et al (1999) Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell 97(6):703–716

    PubMed  CAS  Google Scholar 

  252. Malaterre J et al (2008) c-Myb is required for neural progenitor cell proliferation and maintenance of the neural stem cell niche in adult brain. Stem Cells 26(1):173–181

    PubMed  CAS  Google Scholar 

  253. Cheng LC et al (2009) miR-124 regulates adult neurogenesis in the subventricular zone stem cell niche. Nat Neurosci 12(4):399–408

    PubMed  CAS  Google Scholar 

  254. Arvidsson A et al (2002) Neuronal replacement from endogenous precursors in the adult brain after stroke. Nat Med 8(9):963–970

    PubMed  CAS  Google Scholar 

  255. Rice AC et al (2003) Proliferation and neuronal differentiation of mitotically active cells following traumatic brain injury. Exp Neurol 183(2):406–417

    PubMed  CAS  Google Scholar 

  256. Parent JM (2007) Adult neurogenesis in the intact and epileptic dentate gyrus. Prog Brain Res 163:529–540

    PubMed  CAS  Google Scholar 

  257. Jin K et al (2001) Neurogenesis in dentate subgranular zone and rostral subventricular zone after focal cerebral ischemia in the rat. Proc Natl Acad Sci U S A 98(8):4710–4715

    PubMed  CAS  Google Scholar 

  258. Parent JM et al (2002) Rat forebrain neurogenesis and striatal neuron replacement after focal stroke. Ann Neurol 52(6):802–813

    PubMed  Google Scholar 

  259. Zhang RL et al (2001) Proliferation and differentiation of progenitor cells in the cortex and the subventricular zone in the adult rat after focal cerebral ischemia. Neuroscience 105(1):33–41

    PubMed  CAS  Google Scholar 

  260. Li L et al (2010) Focal cerebral ischemia induces a multilineage cytogenic response from adult subventricular zone that is predominantly gliogenic. Glia 58(13):1610–1619

    PubMed  Google Scholar 

  261. Richardson RM, Sun D, Bullock MR (2007) Neurogenesis after traumatic brain injury. Neurosurg Clin N Am 18(1):169–181, xi

    PubMed  Google Scholar 

  262. Szele FG, Chesselet MF (1996) Cortical lesions induce an increase in cell number and PSA-NCAM expression in the subventricular zone of adult rats. J Comp Neurol 368(3):439–454

    PubMed  CAS  Google Scholar 

  263. Blizzard CA et al (2011) Focal damage to the adult rat neocortex induces wound healing accompanied by axonal sprouting and dendritic structural plasticity. Cereb Cortex 21(2):281–291

    PubMed  Google Scholar 

  264. Chirumamilla S et al (2002) Traumatic brain injury induced cell proliferation in the adult mammalian central nervous system. J Neurotrauma 19(6):693–703

    PubMed  CAS  Google Scholar 

  265. Bengzon J et al (1997) Apoptosis and proliferation of dentate gyrus neurons after single and intermittent limbic seizures. Proc Natl Acad Sci U S A 94(19):10432–10437

    PubMed  CAS  Google Scholar 

  266. Parent JM et al (1997) Dentate granule cell neurogenesis is increased by seizures and contributes to aberrant network reorganization in the adult rat hippocampus. J Neurosci 17(10):3727–3738

    PubMed  CAS  Google Scholar 

  267. Parent JM, Valentin VV, Lowenstein DH (2002) Prolonged seizures increase proliferating neuroblasts in the adult rat subventricular zone-olfactory bulb pathway. J Neurosci 22(8):3174–3188

    PubMed  CAS  Google Scholar 

  268. Ekdahl CT et al (2003) Death mechanisms in status epilepticus-generated neurons and effects of additional seizures on their survival. Neurobiol Dis 14(3):513–523

    PubMed  CAS  Google Scholar 

  269. Hardy J, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297(5580):353–356

    PubMed  CAS  Google Scholar 

  270. Winner B, Kohl Z, Gage FH (2011) Neurodegenerative disease and adult neurogenesis. Eur J Neurosci 33(6):1139–1151

    PubMed  Google Scholar 

  271. Goedert M (2001) Alpha-synuclein and neurodegenerative diseases. Nat Rev Neurosci 2(7):492–501

    PubMed  CAS  Google Scholar 

  272. Winner B et al (2004) Human wild-type alpha-synuclein impairs neurogenesis. J Neuropathol Exp Neurol 63(11):1155–1166

    PubMed  CAS  Google Scholar 

  273. Luzzati F et al (2011) New striatal neurons in a mouse model of progressive striatal degeneration are generated in both the subventricular zone and the striatal parenchyma. PLoS One 6(9):e25088

    PubMed  CAS  Google Scholar 

  274. Menn B et al (2006) Origin of oligodendrocytes in the subventricular zone of the adult brain. J Neurosci 26(30):7907–7918

    PubMed  CAS  Google Scholar 

  275. Nait-Oumesmar B et al (1999) Progenitor cells of the adult mouse subventricular zone proliferate, migrate and differentiate into oligodendrocytes after demyelination. Eur J Neurosci 11(12):4357–4366

    PubMed  CAS  Google Scholar 

  276. Picard-Riera N et al (2002) Experimental autoimmune encephalomyelitis mobilizes neural progenitors from the subventricular zone to undergo oligodendrogenesis in adult mice. Proc Natl Acad Sci U S A 99(20):13211–13216

    PubMed  CAS  Google Scholar 

  277. Cate HS et al (2010) Modulation of bone morphogenic protein signalling alters numbers of astrocytes and oligodendroglia in the subventricular zone during cuprizone-induced demyelination. J Neurochem 115(1):11–22

    PubMed  CAS  Google Scholar 

  278. Sabo JK et al (2011) Remyelination is altered by bone morphogenic protein signaling in demyelinated lesions. J Neurosci 31(12):4504–4510

    PubMed  CAS  Google Scholar 

  279. Soundarapandian MM et al (2011) Zfp488 promotes oligodendrocyte differentiation of neural progenitor cells in adult mice after demyelination. Sci Rep 1:2

    PubMed  Google Scholar 

  280. Reubinoff BE et al (2000) Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro. Nat Biotechnol 18(4):399–404

    PubMed  CAS  Google Scholar 

  281. Thomson JA et al (1998) Embryonic stem cell lines derived from human blastocysts. Science 282(5391):1145–1147

    PubMed  CAS  Google Scholar 

  282. Yu J et al (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318(5858):1917–1920

    PubMed  CAS  Google Scholar 

  283. Denham M, Dottori M (2011) Neural differentiation of induced pluripotent stem cells. Methods Mol Biol 793:99–110

    PubMed  CAS  Google Scholar 

  284. Bachiller D et al (2000) The organizer factors Chordin and Noggin are required for mouse forebrain development. Nature 403(6770):658–661

    PubMed  CAS  Google Scholar 

  285. Smith WC, Harland RM (1992) Expression cloning of noggin, a new dorsalizing factor localized to the Spemann organizer in Xenopus embryos. Cell 70(5):829–840

    PubMed  CAS  Google Scholar 

  286. Suter DM et al (2009) A Sox1 to Pax6 switch drives neuroectoderm to radial glia progression during differentiation of mouse embryonic stem cells. Stem Cells 27(1):49–58

    PubMed  CAS  Google Scholar 

  287. Okita K, Ichisaka T, Yamanaka S (2007) Generation of germline-competent induced pluripotent stem cells. Nature 448(7151):313–317

    PubMed  CAS  Google Scholar 

  288. Wernig M et al (2007) In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature 448(7151):318–324

    PubMed  CAS  Google Scholar 

  289. Matsui T et al (2012) Neural stem cells directly differentiated from partially reprogrammed fibroblasts rapidly acquire gliogenic competency. Stem Cells 30(6):1109–1119

    PubMed  CAS  Google Scholar 

  290. Thier M et al (2012) Direct conversion of fibroblasts into stably expandable neural stem cells. Cell Stem Cell 10(4):473–479

    PubMed  CAS  Google Scholar 

  291. Denham M et al (2010) Gli1 is an inducing factor in generating floor plate progenitor cells from human embryonic stem cells. Stem Cells 28(10):1805–1815

    PubMed  CAS  Google Scholar 

  292. Lopez-Gonzalez R, Velasco I (2012) Therapeutic potential of motor neurons differentiated from embryonic stem cells and induced pluripotent stem cells. Arch Med Res 43(1):1–10

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ann M. Turnley .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Christie, K.J., Emery, B., Denham, M., Bujalka, H., Cate, H.S., Turnley, A.M. (2013). Transcriptional Regulation and Specification of Neural Stem Cells. In: Hime, G., Abud, H. (eds) Transcriptional and Translational Regulation of Stem Cells. Advances in Experimental Medicine and Biology, vol 786. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6621-1_8

Download citation

Publish with us

Policies and ethics