Skip to main content
  • 2140 Accesses

Abstract

We first introduce the Maxwell’s equations about the electromagnetic field and the Hamiltonian of electron in the electromagnetic field from which we obtain the formula for light-matter interaction which forms the base for the optical electronics. We discuss the general absorption and emission spectra of nanostructure materials. Major focus of the rest of the chapter is about electron-hole pair, i.e., exciton in nanostructures which is the base for the fast developing nanophotonics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sze SM (1981) Physics of semiconductor devices, 2nd edn. Wiley, New York, p 32

    Google Scholar 

  2. Goeppert Mayer M (1931) Elementary processes with two quantum jumps. Ann Phys (Leipz) 9:273–294

    Article  ADS  Google Scholar 

  3. Lami J-F, Gilliot P, Hirlimann C (1996) Observation of interband two-photon absorption saturation in CdS. Phys Rev Lett 77:1632–1635

    Article  ADS  Google Scholar 

  4. Helmchen F, Svododa K, Denk W, Kleinfeld D, Tank DW (1996) In vivo dendritic calcium dynamics in deep-layer cortical pyramidal neurons. Nat Neurosci 2:989–996

    Article  Google Scholar 

  5. Yokoyama H, Guo H, Yoda T, Takashima K, Sato K-I, Taniguchi H, Ito H (2006) Two-photon bioimaging with picosecond optical pulses from a semiconductor laser. Opt Express 14:3467–3471

    Article  ADS  Google Scholar 

  6. Wherrett BS (1984) Scaling rules for multiphoton interband absorption in semiconductors. J Opt Soc Am B 1:67–72

    Article  ADS  Google Scholar 

  7. Schmidt ME, Blanton SA, Hines MA, Guyot-Sionnest P (1996) Size-dependent two-photon excitation spectroscopy of CdSe nanocrystals. Phys Rev B 53:12629–12632

    Article  ADS  Google Scholar 

  8. Haken H (1963) Theory of exciton II. In: Kuper CG, Whitfield GD (eds) Polarons and excitons. Plenum, New York, p 295

    Google Scholar 

  9. Dimmock JO (1967) Introduction to the theory of exciton states in semiconductors. In: Willardson RK, Beer AC (eds) Semiconductors and semimetals, vol 3. Academic Press, New York, pp 259–319, Chap. 7

    Google Scholar 

  10. Haken H (1983) Quantum field theory of solids. North-Holland, Amsterdam, p 151

    Google Scholar 

  11. Lawaetz P (1971) Valence-band parameters in cubic semiconductors. Phys Rev B 4:3460–3467

    Article  ADS  Google Scholar 

  12. Madelung O (ed) (1991) Semiconductors group IV elements and III–V compounds. Springer, Berlin

    Google Scholar 

  13. Miller DAB, Chemla DS, Eilenberg DJ, Smith PW, Gossard AC, Tsang WT (1982) Large room-temperature optical nonlinearity in GaAs/Ga1−x Al x As multiple quantum well structures. Appl Phys Lett 41:679–681

    Article  ADS  Google Scholar 

  14. Sun HD, Makino T, Segawa Y, Kawasaki M, Ohtomo A, Tamura K, Koinuma H (2002) Enhancement of exciton binding energies in ZnO/ZnMgO multiquantum wells. J Appl Phys 91:1993–1997

    Article  ADS  Google Scholar 

  15. Sapra S, Sarma DD (2004) Evolution of the electronic structure with size in II–VI semiconductor nanocrystals. Phys Rev B 69:125304

    Article  ADS  Google Scholar 

  16. Lippens PE, Lannoo M (1990) Comparison between calculated and experimental values of the lowest excited electronic state of small CdSe crystallites. Phys Rev B 41:6079–6081

    Article  ADS  Google Scholar 

  17. Brus LE (1984) Electron-electron and electron-hole interactions in small semiconductor crystallites: the size dependence of the lowest excited electronic state. J Chem Phys 80:4403–4409

    Article  ADS  Google Scholar 

  18. Nair SV, Sinha S, Rustagi KC (1987) Quantum size effects in spherical semiconductor microcrystals. Phys Rev B 35:4098–4101

    Article  ADS  Google Scholar 

  19. Kayanuma Y, Momiji H (1990) Incomplete confinement of electrons and holes in microcrystals. Phys Rev B 41:10261–10263

    Article  ADS  Google Scholar 

  20. Grabovskis VYa, Dzenis YaYa, Ekimov AI, Kudryavtsev IA, Tolstoi MN, Rogulis UT (1989) Photoionization of semiconducting microcrystals in glass [luminescence studies]. Fiz Tverd Tela 31:272–275

    Google Scholar 

  21. Grabovskis VYa, Dzenis YaYa, Ekimov AI, Kudryavtsev IA, Tolstoi MN, Rogulis UT (1989) Sov Phys, Solid State 31:149–151

    Google Scholar 

  22. Swank RK (1967) Surface properties of II–VI compounds. Phys Rev 153:844–849

    Article  ADS  Google Scholar 

  23. Bujatti M (1968) CdS-metal barriers from photovoltage measurements. Brit J Appl Phys (J Phys D), Ser 2 1:581–584

    Article  ADS  Google Scholar 

  24. Lippens PE, Lannoo M (1989) Calculation of the bandgap for small CdS and ZnS crystallites. Phys Rev B 39:10935–10942

    Article  ADS  Google Scholar 

  25. Madelung O (ed) (1992) Data in science and technology: semiconductors other than group IV elements and III–V compounds. Springer, Boston

    Google Scholar 

  26. Einevoll GT (1992) Confinement of excitons in quantum dots. Phys Rev B 45:3410–3417

    Article  ADS  Google Scholar 

  27. Nair SV, Ramaniah LM, Rustagi KC (1992) Electron states in a quantum dot in an effective-bond-orbital model. Phys Rev B 45:5969–5979

    Article  ADS  Google Scholar 

  28. Vogl P, Hjalmarson HP, Dow JD (1983) A semi-empirical tight-binding theory of the electronic structure of semiconductor. J Phys Chem Solids 44:365–378

    Article  ADS  Google Scholar 

  29. Sapra S, Shanthi N, Sarma DD (2002) Realistic tight-binding model for the electronic structure of II–VI semiconductors. Phys Rev B 66:205202

    Article  ADS  Google Scholar 

  30. Jiang J, Gao B, Han T-T, Fu Y (2009) Ab initio study of energy band structures of GaAs nanoclusters. Appl Phys Lett 94, 092110

    Article  ADS  Google Scholar 

  31. van der Waerden BL (1932) Die Gruppentheoretische Methode in der Quantenmechanik. Springer, Berlin

    Book  Google Scholar 

  32. Racah G (1942) Theory of complex spectra. II. Phys Rev 62:438–462

    Article  ADS  Google Scholar 

  33. Fu Y, Willander M, Ivchenko EL (2000) Photonic dispersions of semiconductor-quantum-dot-array-based photonic crystals in primitive and face-centered cubic lattices. Superlattices Microstruct 27:255–264

    Article  ADS  Google Scholar 

  34. Jacobini C, Reggiani L (1983) The Monte Carlo method for the solution of charge transport in semiconductors with applications to covalent materials. Rev Mod Phys 55:645–705

    Article  ADS  Google Scholar 

  35. Ridley BK (1988) Quantum processes in semiconductors, 2nd edn. Clarendon, Oxford

    Google Scholar 

  36. Han T-T, Fu Y, Ågren H (2008) Dynamic photon emission from multiphoton-excited semiconductor quantum dot. J Appl Phys 103:93703(6)

    Google Scholar 

  37. Reynolds DC, Litton CW, Collins TC (1971) Bound-phonon quasiparticle in CdS. Phys Rev B 4:1868–1872

    Article  ADS  Google Scholar 

  38. Pan AL, Liu RB, Zou BS (2006) Phonon-assisted stimulated emission from single CdS nanoribbons at room temperature. Appl Phys Lett 88:173102(3)

    ADS  Google Scholar 

  39. Rustagi KC, Weber W (1976) Adiabatic bond charge model for the phonons in A 3 B 5 semiconductors. Solid State Commun 18:673–675

    Article  ADS  Google Scholar 

  40. Sugawara M, Mukai K, Shoji H (1997) Effect of phonon bottleneck on quantum-dot laser performance. Appl Phys Lett 71:2791

    Article  ADS  Google Scholar 

  41. Murdin BN, Hollingworth AR, Kamal-Saadi M, Kotitschke RT, Ciesla CM, Pidgeon CR, Findlay PC, Pellemans HPM, Langerak CJGM, Rowe AC, Stradling RA, Gornik E (1999) Suppression of LO phonon scattering in Landau quantized quantum dots. Phys Rev B 59:R7817–R7820

    Article  ADS  Google Scholar 

  42. Nozik AJ (2002) Quantum dot solar cells. Physica E 14:115–120

    Article  ADS  Google Scholar 

  43. Schaller RD, Klimov VI (2004) High efficiency carrier multiplication in PbSe nanocrystals: implications for solar energy conversion. Phys Rev Lett 92:186601

    Article  ADS  Google Scholar 

  44. Hanna M, Ellingson RJ, Beard M, Yu P, Nozik AJ (2004) Quantum dot solar cells: high efficiency through impact ionization. In: DOE solar energy technologies program review meeting, October 25–28, 2004, Denver, USA

    Google Scholar 

  45. Kim SJ, Kim WJ, Sahoo Y, Cartwright AN, Prasad PN (2008) Multiple exciton generation and electrical extraction from a PbSe quantum dot photoconductor. Appl Phys Lett 92:31107(3)

    ADS  Google Scholar 

  46. Trinh MT, Houtepen AJ, Schins JM, Hanrath T, Piris J, Knulst W, Goossens APLM, Siebbeles LDA (2008) In spite of recent doubts carrier multiplication does occur in PbSe nanocrystals. Nano Lett 8:1713–1718

    Article  ADS  Google Scholar 

  47. Landau LD, Lifshitz EM (1962) Quantum mechanics, 3rd edn. Pergamon, Oxford, p 278

    Google Scholar 

  48. Ridley BK (1988) Quantum processes in semiconductors. Clarendon, Oxford, pp 269–278

    Google Scholar 

  49. Landsberg PT, Adams MJ (1973) Theory of donor-acceptor radiative and Auger recombination in simple semiconductors. Proc R Soc Lond A 334:523–539

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Fu, Y. (2014). Optical Properties of Semiconductors. In: Physical Models of Semiconductor Quantum Devices. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7174-1_3

Download citation

Publish with us

Policies and ethics