Skip to main content

Hypoxia as a Biomarker of Kidney Disease

  • Reference work entry
  • First Online:
Book cover Biomarkers in Kidney Disease

Abstract

All established (e.g., serum creatinine, albuminuria) and emerging (e.g., neutrophil gelatinase-associated lipocalin, cystatin C) biomarkers of kidney disease suffer from the disadvantage that they are markers of damage to the kidney or loss of renal function. Tissue hypoxia is believed to be an initiating factor, in both chronic kidney disease (CKD) and acute kidney injury (AKI), so may provide a physiological biomarker for early diagnosis of both conditions. Currently blood oxygen dependent magnetic resonance imaging (BOLD MRI) appears to have little diagnostic value in human CKD. On the other hand, the measurement of urinary oxygen tension (PO2) has potential as a biomarker of risk of AKI in a hospital setting because: (i) Hypoxia in the renal medulla plays a central role in AKI of multiple causes; (ii) The vasa recta are closely associated with collecting ducts in the medulla so that pelvic urinary PO2 would be expected to equilibrate with medullary tissue PO2; (iii) The PO2 of urine in both the renal pelvis and the bladder varies in response to stimuli that would be expected to alter medullary tissue PO2; and (iv) New fibre-optic methods make it feasible to measure bladder urine PO2 in patients with a bladder catheter. But translation of this approach to hospital practice requires: (i) A quantitative understanding of the impact of oxygen transport across the epithelium of the ureter and bladder on urinary PO2 measured from the bladder, (ii) confirmation that changes in urinary PO2 parallel those in medullary PO2 in physiology and pathology, and (iii) Studies of the prognostic utility of urinary PO2 in hospital settings associated with risk of AKI, such as in patients undergoing cardiac surgery with cardiopulmonary bypass, those at risk of sepsis, and those undergoing imaging procedures requiring administration of radiocontrast agents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 449.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AKI:

Acute kidney injury

BOLD:

Blood oxygen dependent

CKD:

Chronic kidney disease

CPB:

Cardiopulmonary bypass

GFR:

Glomerular filtration rate

MRI:

Magnetic resonance imaging

NGAL:

Neutrophil gelatinase-associated lipocalin

RBF:

Renal blood flow

References

  • Abdelkader A, Ho J, Ow CP, et al. Renal oxygenation in acute renal ischemia-reperfusion injury. Am J Physiol Renal Physiol. 2014;306:F1026–38.

    Article  CAS  PubMed  Google Scholar 

  • Aksu U, Demirci C, Ince C. The pathogenesis of acute kidney injury and the toxic triangle of oxygen, reactive oxygen species and nitric oxide. Contrib Nephrol. 2011;174:119–28.

    Article  PubMed  Google Scholar 

  • Andersson LG, Bratteby LE, Ekroth R, et al. Renal function during cardiopulmonary bypass: influence of pump flow and systemic blood pressure. Eur J Cardiothorac Surg. 1994;8:597–602.

    Article  CAS  PubMed  Google Scholar 

  • Aukland K. Urine oxygen tension; lack of correlation to some renal functions. Acta Physiol Scand. 1962;55:362–75.

    Article  CAS  PubMed  Google Scholar 

  • Aukland K, Krog J. Influence of various factors on urine oxygen tension in the dog. Acta Physiol Scand. 1961;52:350–65.

    Article  CAS  PubMed  Google Scholar 

  • Basile DP, Donohoe DL, Roethe K, Mattson DL. Chronic renal hypoxia after acute ischemic injury: effects of l-arginine on hypoxia and secondary damage. Am J Physiol Renal Physiol. 2003;284:F338–48.

    Article  CAS  PubMed  Google Scholar 

  • Calzavacca P, Evans RG, Bailey M, Bellomo R, May CN. Cortical and medullary tissue perfusion and oxygenation in experimental septic acute kidney injury. Crit Care Med 2015;43:e431–9.

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Edwards A, Layton AT. A mathematical model of O2 transport in the rat outer medulla. II. Impact of outer medullary architecture. Am J Physiol Renal Physiol. 2009a;297:F537–48.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chen J, Layton AT, Edwards A. A mathematical model of O2 transport in the rat outer medulla. I. Model formulation and baseline results. Am J Physiol Renal Physiol. 2009b;297:F517–36.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Darby PJ, Kim N, Hare GM, et al. Anemia increases the risk of renal cortical and medullary hypoxia during cardiopulmonary bypass. Perfusion. 2013;28:504–11.

    Article  CAS  PubMed  Google Scholar 

  • Djamali A, Sadowski EA, Muehrer RJ, et al. BOLD-MRI assessment of intrarenal oxygenation and oxidative stress in patients with chronic kidney allograft dysfunction. Am J Physiol Renal Physiol. 2007;292:F513–22.

    Article  CAS  PubMed  Google Scholar 

  • dos Santos EA, Li LP, Ji L, Prasad PV. Early changes with diabetes in renal medullary hemodynamics as evaluated by fiberoptic probes and BOLD magnetic resonance imaging. Invest Radiol. 2007;42:157–62.

    Article  PubMed Central  PubMed  Google Scholar 

  • Evans RG, O’Connor PM. Blood flow, oxygenation and oxidative stress in the post-stenotic kidney. In: Lerman LO, Textor SC, editors. Renal vascular disease. London: Springer; 2014. p. 151–71.

    Chapter  Google Scholar 

  • Evans RG, Gardiner BS, Smith DW, O’Connor PM. Intrarenal oxygenation: unique challenges and the biophysical basis of homeostasis. Am J Physiol Renal Physiol. 2008a;295:F1259–70.

    Article  CAS  PubMed  Google Scholar 

  • Evans RG, Gardiner BS, Smith DW, O’Connor PM. Methods for studying the physiology of kidney oxygenation. Clin Exp Pharmacol Physiol. 2008b;35:1405–12.

    Article  CAS  PubMed  Google Scholar 

  • Evans RG, Goddard D, Eppel GA, O’Connor PM. Factors that render the kidney susceptible to tissue hypoxia in hypoxemia. Am J Physiol Regul Integr Comp Physiol. 2011;300:R931–40.

    Article  CAS  PubMed  Google Scholar 

  • Evans RG, Ince C, Joles JA, et al. Haemodynamic influences on kidney oxygenation: clinical implications of integrative physiology. Clin Exp Pharmacol Physiol. 2013;40:106–22.

    Article  CAS  PubMed  Google Scholar 

  • Evans RG, Harrop GK, Ngo JP, Ow CP, O’Connor PM. Basal renal oxygen consumption and the efficiency of oxygen utilization for sodium reabsorption. Am J Physiol Renal Physiol. 2014a;306:F551–60.

    Article  CAS  PubMed  Google Scholar 

  • Evans RG, Smith JA, Wright C, Gardiner BS, Smith DW, Cochrane AD. Urinary oxygen tension: a clinical window on the health of the renal medulla? Am J Physiol Regul Integr Comp Physiol. 2014b;306:R45–50.

    Article  CAS  PubMed  Google Scholar 

  • Farahani J, Mohammadi M, Naseri SMH, Ghiasi SMS. Urine oxygen pressure measurement as an early renal function assessment in patients undergoing open heart surgery. Kowsar Med J. 2010;15:167–9.

    Google Scholar 

  • Fine LG, Norman JT. Chronic hypoxia as a mechanism of progression of chronic kidney diseases: from hypothesis to novel therapeutics. Kidney Int. 2008;74:867–72.

    Article  CAS  PubMed  Google Scholar 

  • Fine LG, Orphanides C, Norman JT. Progressive renal disease: the chronic hypoxia hypothesis. Kidney Int Suppl. 1998;65:S74–8.

    CAS  PubMed  Google Scholar 

  • Fong D, Denton KM, Moritz KM, Evans R, Singh RR. Compensatory responses to nephron deficiency: adaptive or maladaptive? Nephrology. 2014;19:119–28.

    Article  CAS  PubMed  Google Scholar 

  • Friederich-Persson M, Thorn E, Hansell P, Nangaku M, Levin M, Palm F. Kidney hypoxia, attributable to increased oxygen consumption, induces nephropathy independently of hyperglycemia and oxidative stress. Hypertension. 2013;62:914–9.

    Article  CAS  PubMed  Google Scholar 

  • Gloviczki ML, Glockner JF, Lerman LO, et al. Preserved oxygenation despite reduced blood flow in poststenotic kidneys in human atherosclerotic renal artery stenosis. Hypertension. 2010;55:961–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gloviczki ML, Glockner JF, Crane JA, et al. Blood oxygen level-dependent magnetic resonance imaging identifies cortical hypoxia in severe renovascular disease. Hypertension. 2011;58:1066–72.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Haase M, Bellomo R, Haase-Fielitz A. Novel biomarkers, oxidative stress, and the role of labile iron toxicity in cardiopulmonary bypass-associated acute kidney injury. J Am Coll Cardiol. 2010;55:2024–33.

    Article  CAS  PubMed  Google Scholar 

  • Hansell P, Welch WJ, Blantz RC, Palm F. Determinants of kidney oxygen consumption and their relationship to tissue oxygen tension in diabetes and hypertension. Clin Exp Pharmacol Physiol. 2013;40:123–37.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Heyman SN, Brezis M, Epstein FH, Spokes K, Silva P, Rosen S. Early renal medullary hypoxic injury from radiocontrast and indomethacin. Kidney Int. 1991;40:632–42.

    Article  CAS  PubMed  Google Scholar 

  • Heyman SN, Rosen S, Rosenberger C. Renal parenchymal hypoxia, hypoxia adaptation, and the pathogenesis of radiocontrast nephropathy. Clin J Am Soc Nephrol. 2008;3:288–96.

    Article  PubMed  Google Scholar 

  • Heyman SN, Rosenberger C, Rosen S. Experimental ischemia-reperfusion: biases and myths-the proximal vs. distal hypoxic tubular injury debate revisited. Kidney Int. 2010;77:9–16.

    Article  PubMed  Google Scholar 

  • Heyman SN, Evans RG, Rosen S, Rosenberger C. Cellular adaptive changes in AKI: mitigating renal hypoxic injury. Nephrol Dial Transplant. 2012;27:1721–8.

    Article  CAS  PubMed  Google Scholar 

  • Hofmann L, Simon-Zoula S, Nowak A, et al. BOLD-MRI for the assessment of renal oxygenation in humans: acute effect of nephrotoxic xenobiotics. Kidney Int. 2006;70:144–50.

    Article  CAS  PubMed  Google Scholar 

  • Huen SC, Parikh CR. Predicting acute kidney injury after cardiac surgery: a systematic review. Ann Thorac Surg. 2012;93:337–47.

    Article  PubMed Central  PubMed  Google Scholar 

  • Inoue T, Kozawa E, Okada H, et al. Noninvasive evaluation of kidney hypoxia and fibrosis using magnetic resonance imaging. J Am Soc Nephrol. 2011;22:1429–34.

    Article  PubMed Central  PubMed  Google Scholar 

  • Kainuma M, Kimura N, Shimada Y. Effect of acute changes in renal arterial blood flow on urine oxygen tension in dogs. Crit Care Med. 1990;18:309–12.

    Article  CAS  PubMed  Google Scholar 

  • Kainuma M, Yamada M, Miyake T. Continuous urine oxygen tension monitoring in patients undergoing cardiac surgery. J Cardiothorac Vasc Anesth. 1996;10:603–8.

    Article  CAS  PubMed  Google Scholar 

  • Karkouti K, Wijeysundera DN, Yau TM, et al. Acute kidney injury after cardiac surgery: focus on modifiable risk factors. Circulation. 2009;119:495–502.

    Article  PubMed  Google Scholar 

  • Kitashiro S, Iwasaka T, Sugiura T, et al. Monitoring urine oxygen tension during acute change in cardiac output in dogs. J Appl Physiol. 1995;79:202–4.

    CAS  PubMed  Google Scholar 

  • Koivusalo AM, Kellokumpu I, Scheinin M, Tikkanen I, Makisalo H, Lindgren L. A comparison of gasless mechanical and conventional carbon dioxide pneumoperitoneum methods for laparoscopic cholecystectomy. Anesth Analg. 1998;86:153–8.

    CAS  PubMed  Google Scholar 

  • Laisalmi M, Koivusalo AM, Valta P, Tikkanen I, Lindgren L. Clonidine provides opioid-sparing effect, stable hemodynamics, and renal integrity during laparoscopic cholecystectomy. Surg Endosc. 2001;15:1331–5.

    Article  CAS  PubMed  Google Scholar 

  • Lambers Heerspink HJ, de Zeeuw D. Novel drugs and intervention strategies for the treatment of chronic kidney disease. Br J Clin Pharmacol. 2013;76:536–50.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Langenberg C, Bellomo R, May C, Wan L, Egi M, Morgera S. Renal blood flow in sepsis. Crit Care. 2005;9:R363–74.

    Article  PubMed Central  PubMed  Google Scholar 

  • Lenihan CR, Montez-Rath ME, Mora Mangano CT, Chertow GM, Winkelmayer WC. Trends in acute kidney injury, associated use of dialysis, and mortality after cardiac surgery, 1999 to 2008. Ann Thorac Surg. 2013;95:20–8.

    Article  PubMed  Google Scholar 

  • Leonhardt KO, Landes RR. Oxygen tension of the urine and renal structures. Preliminary report of clinical findings. N Engl J Med. 1963;269:115–21.

    Article  CAS  PubMed  Google Scholar 

  • Leonhardt KO, Landes RR. Urinary oxygen pressure in renal parenchymal and vascular disease. Effects of breathing oxygen. JAMA. 1965;194:345–50.

    Article  CAS  PubMed  Google Scholar 

  • Leonhardt KO, Landes RR, McCauley RT. Anatomy and physiology of intrarenal oxygen tension: preliminary study of the effects of anesthetics. Anesthesiology. 1965;26:648–58.

    Article  CAS  PubMed  Google Scholar 

  • Liss P, Nygren A, Erikson U, Ulfendahl HR. Injection of low and iso-osmolar contrast medium decreases oxygen tension in the renal medulla. Kidney Int. 1998;53:698–702.

    Article  CAS  PubMed  Google Scholar 

  • Manotham K, Tanaka T, Matsumoto M, et al. Evidence of tubular hypoxia in the early phase in the remnant kidney model. J Am Soc Nephrol. 2004;15:1277–88.

    Article  PubMed  Google Scholar 

  • McCullough PA. Radiocontrast-induced acute kidney injury. Nephron Physiol. 2008;109:61–72.

    Article  Google Scholar 

  • Mehta RL, Chertow GM. Acute renal failure definitions and classification: time for change? J Am Soc Nephrol. 2003;14:2178–87.

    Article  PubMed  Google Scholar 

  • Michaely HJ, Metzger L, Haneder S, Hansmann J, Schoenberg SO, Attenberger UI. Renal BOLD-MRI does not reflect renal function in chronic kidney disease. Kidney Int. 2012;81:684–9.

    Article  CAS  PubMed  Google Scholar 

  • Mimura I, Nangaku M. The suffocating kidney: tubulointerstitial hypoxia in end-stage renal disease. Nat Rev Nephrol. 2010;6:667–78.

    Article  CAS  PubMed  Google Scholar 

  • Morelli A, Rocco M, Conti G, et al. Monitoring renal oxygen supply in critically-ill patients using urinary oxygen tension. Anesth Analg. 2003;97:1764–8.

    Article  PubMed  Google Scholar 

  • Mori T, Shimizu T, Tani T. Septic acute renal failure. Contrib Nephrol. 2010;166:40–6.

    Article  PubMed  Google Scholar 

  • Neugarten J. Renal BOLD-MRI and assessment for renal hypoxia. Kidney Int. 2012;81:613–4.

    Article  PubMed  Google Scholar 

  • O’Connor PM, Anderson WP, Kett MM, Evans RG. Renal preglomerular arterial-venous O2 shunting is a structural anti-oxidant defence mechanism of the renal cortex. Clin Exp Pharmacol Physiol. 2006a;33:637–41.

    Article  PubMed  Google Scholar 

  • O’Connor PM, Kett MM, Anderson WP, Evans RG. Renal medullary tissue oxygenation is dependent on both cortical and medullary blood flow. Am J Physiol Renal Physiol. 2006b;290:F688–94.

    Article  PubMed  Google Scholar 

  • Okusa MD, Jaber BL, Doran P, et al. Physiological biomarkers of acute kidney injury: a conceptual approach to improving outcomes. Contrib Nephrol. 2013;182:65–81.

    Article  PubMed  Google Scholar 

  • Ow CPC, Abdelkader A, Hilliard LM, Phillips JK, Evans RG. Determinants of renal tissue hypoxia in a rat model of polycystic kidney disease. Am J Physiol Regul Integr Comp Physiol. 2014;307:R1207–15.

    Article  CAS  PubMed  Google Scholar 

  • Pannabecker TL, Dantzler WH. Three-dimensional architecture of inner medullary vasa recta. Am J Physiol Renal Physiol. 2006;290:F1355–66.

    Article  CAS  PubMed  Google Scholar 

  • Parmar A, Langenberg C, Wan L, May CN, Bellomo R, Bagshaw SM. Epidemiology of septic acute kidney injury. Curr Drug Targets. 2009;10:1169–78.

    Article  CAS  PubMed  Google Scholar 

  • Patel NN, Lin H, Toth T, et al. Reversal of anemia with allogenic RBC transfusion prevents post-cardiopulmonary bypass acute kidney injury in swine. Am J Physiol Renal Physiol. 2011a;301:F605–14.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Patel NN, Rogers CA, Angelini GD, Murphy GJ. Pharmacological therapies for the prevention of acute kidney injury following cardiac surgery: a systematic review. Heart Fail Rev. 2011b;16:553–67.

    Article  CAS  PubMed  Google Scholar 

  • Patel NN, Toth T, Jones C, et al. Prevention of post-cardiopulmonary bypass acute kidney injury by endothelin A receptor blockade. Crit Care Med. 2011c;39:793–802.

    Article  CAS  PubMed  Google Scholar 

  • Pedersen M, Dissing TH, Morkenborg J, et al. Validation of quantitative BOLD MRI measurements in kidney: application to unilateral ureteral obstruction. Kidney Int. 2005;67:2305–12.

    Article  PubMed  Google Scholar 

  • Perazella MA. Renal vulnerability to drug toxicity. Clin J Am Soc Nephrol. 2009;4:1275–83.

    Article  CAS  PubMed  Google Scholar 

  • Pohlmann A, Cantow K, Hentschel J, et al. Linking non-invasive parametric MRI with invasive physiological measurements (MR-PHYSIOL): towards a hybrid and integrated approach for investigation of acute kidney injury in rats. Acta Physiol. 2013;207:673–89.

    Article  CAS  Google Scholar 

  • Prasad PV, Priatna A, Spokes K, Epstein FH. Changes in intrarenal oxygenation as evaluated by BOLD MRI in a rat kidney model for radiocontrast nephropathy. J Magn Reson Imaging. 2001;13:744–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Prasad P, Li LP, Halter S, Cabray J, Ye M, Batlle D. Evaluation of renal hypoxia in diabetic mice by BOLD MRI. Invest Radiol. 2010;45:819–22.

    Article  PubMed Central  PubMed  Google Scholar 

  • Pruijm M, Hofmann L, Piskunowicz M, et al. Determinants of renal tissue oxygenation as measured with BOLD-MRI in chronic kidney disease and hypertension in humans. PLoS One. 2014;9:e95895.

    Article  PubMed Central  PubMed  Google Scholar 

  • Rafferty AR, Evans RG, Scheelings TF, Reina RD. Limited oxygen availability in utero may constrain the evolution of live birth in reptiles. Am Nat. 2013;181:245–53.

    Article  PubMed  Google Scholar 

  • Reeves RB, Rennie DW, Pappenheimer JR. Oxygen tension of urine and its significance. Fed Proc. 1957;16:693–6.

    CAS  PubMed  Google Scholar 

  • Rennie DW, Reeves RB, Pappenheimer JR. Oxygen pressure in urine and its relation to intrarenal blood flow. Am J Physiol. 1958;195:120–32.

    CAS  PubMed  Google Scholar 

  • Rosenberger C, Khamaisi M, Abassi Z, et al. Adaptation to hypoxia in the diabetic rat kidney. Kidney Int. 2008;73:34–42.

    Article  CAS  PubMed  Google Scholar 

  • Rosner MH, Portilla D, Okusa MD. Cardiac surgery as a cause of acute kidney injury: pathogenesis and potential therapies. J Intensive Care Med. 2008;23:3–18.

    Article  PubMed  Google Scholar 

  • Sgouralis I, Evans RG, Gardiner BS, Smith JA, Fry BC, Layton AT. Renal hemodynamics, function and oxygenation during cardiac surgery performed on cardiopulmonary bypass: a modeling study. Physiol Rep. 2014;3:e12260.

    Article  Google Scholar 

  • Stafford-Smith M, Grocott HP. Renal medullary hypoxia during experimental cardiopulmonary bypass: a pilot study. Perfusion. 2005;20:53–8.

    Article  PubMed  Google Scholar 

  • Ullman J, Eriksson S, Rundgren M. Losartan increases renal blood flow during isoflurane anesthesia in sheep. Acta Anaesthesiol Scand. 2001;45:1168–75.

    Article  CAS  PubMed  Google Scholar 

  • Valente A, Sorrentino L, La Torre G, Draisci G. Post-transfusional variation in urinary oxygen tension in surgical patients. Clin Exp Pharmacol Physiol. 2008;35:1109–12.

    Article  CAS  PubMed  Google Scholar 

  • Wang ZJ, Joe BN, Coakley FV, Zaharchuk G, Busse R, Yeh BM. Urinary oxygen tension measurement in humans using magnetic resonance imaging. Acad Radiol. 2008;15:1467–73.

    Article  PubMed Central  PubMed  Google Scholar 

  • Washington 2nd JA, Holland JM. Urine oxygen tension: effects of osmotic and saline diuresis and of ethacrynic acid. Am J Physiol. 1966;210:243–50.

    CAS  PubMed  Google Scholar 

  • Zarjou A, Agarwal A. Sepsis and acute kidney injury. J Am Soc Nephrol. 2011;22:999–1006.

    Article  PubMed  Google Scholar 

  • Zhang W, Edwards A. Oxygen transport across vasa recta in the renal medulla. Am J Physiol Heart Circ Physiol. 2002;283:H1042–55.

    Article  CAS  PubMed  Google Scholar 

  • Zhang JL, Morrell G, Rusinek H, et al. Measurement of renal tissue oxygenation with blood oxygen level-dependent MRI and oxygen transit modeling. Am J Physiol Renal Physiol. 2014;306:F579–87.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The authors’ work is supported by grants from the National Health and Medical Research Council of Australia (606601, 1024575, 1042600, 1050672) and the Australian Research Council (DP140103045).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Roger G. Evans or Bruce S. Gardiner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Evans, R.G. et al. (2016). Hypoxia as a Biomarker of Kidney Disease. In: Patel, V., Preedy, V. (eds) Biomarkers in Kidney Disease. Biomarkers in Disease: Methods, Discoveries and Applications. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7699-9_7

Download citation

Publish with us

Policies and ethics