Skip to main content

Perspectives and Advances in Photocatalysis

  • Chapter
  • First Online:
  • 2483 Accesses

Abstract

Interest in heterogeneous photocatalysis has heightened in the past 40 years, underscoring several perspectives and advances. A collection of applications including solar to fuel cells, intelligent ink and remote photocatalysis have been closely examined. As an emerging panacea for the treatment of recalcitrant pollutants, heterogeneous photocatalytic degradation has been highlighted with specific reference to synthetic aliphatic and aromatic organic substances. What’s more, various treatment technologies for integration with photocatalytic degradation have been outlined.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abdullah MDP, Nainggolan H (1991) Phenolic water pollutants in a Malaysian river Basin. Env Monit Assess 19:423–431

    CAS  Google Scholar 

  • Abe R (2010) Recent progress on photocatalytic and photoelectrochemical water splitting under visible light irradiation. J Photochem Photobiol C 11:179–209

    Google Scholar 

  • Abramović BF, Anderluh VB, Topalov AS (2004) Kinetics of photocatalytic removal of 2-amino-5-chloropyridine from water. APTEFF 35:1–80

    Google Scholar 

  • Ali MF, El-Ali BM, Speight JG (2005) Handbook of industrial chemistry. McGraw-Hill, United States of America

    Google Scholar 

  • Alipázaga MV, Moreno RGM, Linares E et al (2005) Oxidative DNA damage induced by autoxidation of microquantities of S(IV) in the presence of Ni(II)-Gly-Gly-His. Dalton Trans 44:3738–3744

    Google Scholar 

  • Amao Y, Yamada Y (2007) Photovoltaic conversion using Zn chlorophyll derivative assembled in hydrophobic domain onto nanocrystalline TiO2 electrode. Biosens Bioelectron 22:1561–1565

    CAS  Google Scholar 

  • An T, Zhang M, Wang X et al (2005) Photocatalytic degradation of gaseous trichloroethene using immobilized ZnO/SnO2 coupled oxide in a flow-through photocatalytic reactor. J Chem Technol Biotechnol 80:251–258

    CAS  Google Scholar 

  • An T-C, Zhu X-H, Xiong Y (2002) Feasibility study of photoelectrochemical degradation of methylene blue with three-dimensional electrode-photocatalytic reactor. Chemosphere 46:897–903

    CAS  Google Scholar 

  • Araña J, Nieto JLM, Melián JAH et al (2004) Photocatalytic degradation of formaldehyde containing wastewater from veterinarian laboratories. Chemosphere 55:893–904

    Google Scholar 

  • Areerachakul N, Vigneswaran S, Ngo HH et al (2007) Granular activated carbon (GAC) adsorption-photocatalysis hybrid system in the removal of herbicide from water. Sep Purif Technol 55:206–211

    CAS  Google Scholar 

  • Augugliaro V, Coluccia S, Loddo V et al (1999) Photocatalytic oxidation of gaseous toluene on anatase TiO2 catalyst: mechanistic aspects and FT-IR investigation. Appl Catal B 20:15–27

    CAS  Google Scholar 

  • Augugliaro V, Litter M, Palmisano L et al (2006) The combination of heterogeneous photocatalysis with chemical and physical operations: A tool for improving the photoprocess performance. J Photochem Photobiol A 7:127–144

    CAS  Google Scholar 

  • Augugliaro V, Loddo V, Palmisano G et al (2010) Clean by light irradiation practical applications of supported TiO2. Royal Society of Chemistry, United Kingdom

    Google Scholar 

  • Bahnemann W, Muneer M, Haque MM (2007) Titanium dioxide-mediated photocatalysed degradation of few selected organic pollutants in aqueous suspensions. Catal Today 124:133–148

    CAS  Google Scholar 

  • Bao Z-C, Barker JR (1996) Temperature and ionic strength effects on some reactions involving sulfate radical [SO4 (aq)]. J Phys Chem 100:9780–9787

    CAS  Google Scholar 

  • Bao-xiu Z, Xiang-zhong L, Peng W (2007) Degradation of 2,4-dichlorophenol with a novel TiO2/Ti-Fe-graphite felt photoelectrocatalytic oxidation process. J Environ Sci 19:1020–1024

    Google Scholar 

  • Barceló D, Hennion MC (2008) Trace determination of pesticidesand their degradation products in water, techniques and instrumentation in analytical chemistry. Elsevier, Amsterdam

    Google Scholar 

  • Bertelli M, Selli E (2004) Kinetic analysis on the combined use of photocatalysis, H2O2 photolysis, and sonolysis in the degradation of methyl tert-butyl ether. Appl Catal B 52:205–212

    CAS  Google Scholar 

  • Bianchi CL, Pirola C, Ragaini V (2006) Mechanism and efficiency of atrazine degradation under combined oxidation processes. Appl Catal B 64:131–138

    CAS  Google Scholar 

  • Bissen M, Vieillard-Baron M-M, Schindelin AJ et al (2001) TiO2-catalyzed photooxidation of arsenite to arsenate in aqueous samples. Chemosphere 44:751–757

    CAS  Google Scholar 

  • Bláha L, Klánová J Klán P et al (2004) Toxicity increases in ice containing monochlorophenols upon photolysis: environmental consequences. Environ Sci Technol 38:2873–2878

    Google Scholar 

  • Blount MC, Falconer JL (2002) Steady-state surface species during toluene photocatalysis. Appl Catal B 39:39–50

    CAS  Google Scholar 

  • Boulamanti AK, Philippopoulos CJ (2009) Photocatalytic degradation of C5–C7 alkanes in the gas–phase. Atmos Environ 43:3168–3174

    CAS  Google Scholar 

  • Brillas E, Calpe JC, Casado J (2000) Mineralization of 2,4-D by advanced electrochemical oxidation processes. Water Res 34:2253–2262

    CAS  Google Scholar 

  • Brosillon S, Djelal H, Merienne N et al (2008) Innovative integrated process for the treatment of azo dyes: coupling of photocatalysis and biological treatment. Desalination 222:331–339

    CAS  Google Scholar 

  • Buechler KJ, Noble RD, Koval CA et al (1999) Investigation of the effects of controlled periodic illumination on the oxidation of gaseous trichloroethylene using a thin film of TiO2. Ind Eng Chem Res 38:892–896

    CAS  Google Scholar 

  • Byrne HE, Mazyck DW (2009) Removal of trace level aqueous mercury by adsorption and photocatalysis on silica-titania composites. J Hazard Mater 170:915–919

    CAS  Google Scholar 

  • Calza P, Massolino C, Monaco G et al (2008) Study of the photolytic and photocatalytic transformation of amiloride in water. J Pharm Biomed Anal 48:315–320

    CAS  Google Scholar 

  • Cao S-W, Yuan Y-P, Fang J et al (2013) In-situ growth of CdS quantum dots on g-C3N4 nanosheets for highly efficient photocatalytic hydrogen generation under visible light irradiation. Int J Hydrogen Energy 38:1258–1266

    CAS  Google Scholar 

  • Castiglioni S, Fanelli R, Pomati F et al (2006) Removal of pharmaceuticals in sewage treatment plants in Italy. Environ Sci Technol 40:357–363

    CAS  Google Scholar 

  • Chang M-W, Chen T-S, Chern J-M (2008) Initial degradation rate of p-nitrophenol in aqueous solution by fenton reaction. Ind Eng Chem Res 47:8533–8541

    CAS  Google Scholar 

  • Chatzitakis A, Berberidou C, Paspaltsis I et al (2008) Photocatalytic degradation and drug activity reduction of Chloramphenicol. Water Res 42:386–394

    CAS  Google Scholar 

  • Chen Y-C, Smirniotis P (2002) Enhancement of photocatalytic degradation of phenol and chlorophenols by ultrasound. Ind Eng Chem Res 41:5958–5965

    CAS  Google Scholar 

  • Chen LC, Huang C-M, Hsiao M-C et al (2010) Mixture design optimization of the composition of S, C, SnO2-codoped TiO2 for degradation of phenol under visible light. Chem Eng J 165:482–489

    CAS  Google Scholar 

  • Chin P, Ollis DF (2007) Decolorization of organic dyes on Pilkington ActivTM photocatalytic glass. Catal Today 123:177–188

    CAS  Google Scholar 

  • Chiron S, Minero C, Evione D (2007) Occurrence of 2,4-dichlorophenol and of 2,4-dichloro-6-nitrophenol in the Rhône River Delta (Southern France). Environ Sci Technol 41:3127–3133

    CAS  Google Scholar 

  • Choi W, Ko JY, Park H et al (2001) Investigation on TiO2-coated optical fibers for gas-phase photocatalytic oxidation of acetone. Appl Catal B 31(2001):209–220

    CAS  Google Scholar 

  • Connel DW (2005) Basic concepts of environmental chemistry. Taylor and Francis, London

    Google Scholar 

  • Dalrymple OK, Yeh DH, Trotz MA (2007) Removing pharmaceuticals and endocrine-disrupting compounds from wastewater by photocatalysis. J Chem Technol Biotechnol 82:121–134

    CAS  Google Scholar 

  • De Padova P, Lucci M, Olivieri B et al (2009) Natural hybrid organic-inorganic photovoltaic devices. Superlattice Microst 45:555–563

    CAS  Google Scholar 

  • Demeestere K, Dewulf J, De WB (2008) Heterogeneous photocatalytic removal of toluene from air on building materials enriched with TiO2. Build Environ 43:406–414

    Google Scholar 

  • Dholam R, Patel N, Adami M et al (2009) Hydrogen production by photocatalytic water-splitting using Cr- or Fe-doped TiO2 composite thin films photocatalyst. Int J Hydrogen Energy 34:5337–5346

    CAS  Google Scholar 

  • Ding L, Zhou H, Lou S et al (2013) Butterfly wing architecture assisted CdS/Au/TiO2 Z-scheme type photocatalytic water splitting. Int J Hydrogen Energ 38:8244–8253

    CAS  Google Scholar 

  • Dionysiou DD, Khodadoust AP, Kern AM et al (2000) Continuous-mode photocatalytic degradation of chlorinated phenols and pesticides in water using a bench-scale TiO2 rotating disk reactor. Appl Catal B 24:139–155

    CAS  Google Scholar 

  • Djebbar K, Sehili T (1998) Kinetics of heterogeneous photocatalytic decomposition of 2,4-dichlorophenoxyacetic acid over titanium dioxide and zinc oxide in aqueous solution. Pestic Sci 54:269–276

    CAS  Google Scholar 

  • Doong R, Chen C-H, Maithreepala RA et al (2001) The influence of pH and cadmium sulphide on the photocatalytic degradation of 2-chlorophenol in titanium dioxide suspensions. Water Res 35:2873–2880

    CAS  Google Scholar 

  • Driessen MD, Miller TM, Grassian VH (1998) Photocatalytic oxidation of trichloroethylene on zinc oxide: characterization of surface-bound and gas-phase products and intermediates with FT-IR spectroscopy. J Mol Catal A: Chem 131:149–156

    CAS  Google Scholar 

  • Du Y, Zhou M, Lei L (2006) Role of the intermediates in the degradation of phenolic compounds by Fenton-like process. J Hazard Mater 136:859–865

    CAS  Google Scholar 

  • Dutta PK, Pehkonen SO, Sharma VK et al (2005) Photocatalytic oxidation of arsenic (III): evidence of hydroxyl radicals. Environ Sci Technol 39:1827–1834

    CAS  Google Scholar 

  • Einaga H, Futamura S, Ibusuki T (2001) Complete oxidation of benzene in gas phase by platinized titania photocatalysts. Environ Sci Technol 35:1880–1884

    CAS  Google Scholar 

  • Epling GA, Lin C (2002) Photoassisted bleaching of dyes utilizing TiO2 and visible light. Chemosphere 46:561–570

    CAS  Google Scholar 

  • Evgenidou E, Konstantinou I, Fytianos K et al (2007) Photocatalytic oxidation of methyl parathion over TiO2 and ZnO suspensions. Catal Today 124:156–162

    CAS  Google Scholar 

  • Fateh R, Ismail AA, Dillert R et al (2011) Highly active crystalline mesoporous TiO2 films coated onto polycarbonate substrates for self-cleaning applications. J Phys Chem C 115:10405–10411

    CAS  Google Scholar 

  • Faust BC, Hoffmann MR, Bahnemann DW (1989) Photocatalytic oxidation of sulfur dioxide in aqueous suspensions of α-Fe2O3. J Phys Chem 93:6371–6381

    CAS  Google Scholar 

  • Ferguson MA, Hering JG (2006) TiO2-Photocatalyzed As(III) Oxidation in a fixed-bed, flow-through reactor. Environ Sci Technol 40:4261–4267

    CAS  Google Scholar 

  • Fingler S, Dravenkar V (1988) Chlorophenols in the Sava river before, in and after the Zagreb City area. Impact on the purity of the city ground and drinking waters. Toxicol Environ Chem 17:319–328

    CAS  Google Scholar 

  • Fox MA (1983) Organic heterogeneous photocatalysis: chemical conversions sensitized by irradiated semiconductors. Acc Chem Res 16:314–321

    CAS  Google Scholar 

  • Fu X, Zeltner WA, Anderson MA (1995) The gas-phase photocatalytic mineralization benzene on porous titania-based catalysts. Appl Catal B 6:209–224

    CAS  Google Scholar 

  • Fujishima K, Fukuoka A, Yamagishi A (2001) Photooxidation of benzene to phenol by ruthenium bipyridine complexes grafted on mesoporous silica FSM-16. J Mol Catal A: Chem 166:211–218

    CAS  Google Scholar 

  • Gao J, Liu L, Liu X et al (2008) Levels and spatial distribution of chlorophenols—2,4-dichlorophenol, 2,4,6-trichlorophenol, and pentachlorophenol in surface water of China. Chemosphere 71:1181–1187

    CAS  Google Scholar 

  • García A, Amat AM, Arques A et al (2006) Detoxification of aqueous solutions of the pesticide “Sevnol” by solar photocatalysis. Environ Chem Lett 3:169–172

    Google Scholar 

  • García-López E, Marcí G, Serpone N et al (2007) Photoassisted oxidation of the recalcitrant cyanuric acid substrate in aqueous ZnO suspensions. J Phys Chem C 111:18025–18032

    Google Scholar 

  • Gaya UI, Abdullah AH, Zainal Z et al (2009) Photocatalytic treatment of 4-chlorophenol in aqueous ZnO suspensions: intermediates, influence of dosage and inorganic anions. J Hazard Mater 168:57–63

    CAS  Google Scholar 

  • Gaya UI, Abdullah AH, Zainal Z et al (2010) Photocatalytic degradation of 2,4-dichlorophenol in irradiated aqueous ZnO suspension. Int J Chem 2:180–193

    CAS  Google Scholar 

  • Goel M, Chovelon J-M, Ferronato C et al (2010) The remediation of wastewater containing 4-chlorophenol using integrated photocatalytic and biological treatment. J Photochem Photobiol B 98:1–6

    CAS  Google Scholar 

  • Grätzel M (2005) Solar energy conversion by dye-sensitized photovoltaic cells. Inorg Chem 44:6841–6851

    Google Scholar 

  • Guillard C, Lachheb H, Houas A et al (2003) Influence of chemical structure of dyes, of pH and of inorganic salts on their photocatalytic degradation by TiO2 comparison of the efficiency of powder and supported TiO2. J Photochem Photobiol A 158:27–36

    CAS  Google Scholar 

  • Haick H, Paz Y (2001) Remote photocatalytic activity as probed by measuring the degradation of self-assembled monolayers anchored near microdomains of titanium dioxide. J Phys Chem B 105:3045–3051

    CAS  Google Scholar 

  • Hernández-Alonso MD, Coronado JM, Maira AJ et al (2002) Ozone enhanced activity of aqueous titanium dioxide suspensions for photocatalytic oxidation of free cyanide ions. Appl Catal B 39:257–267

    Google Scholar 

  • Hernando MD, Mezcua M, Fernández-Alba AR et al (2006) Environmental risk assessment of pharmaceutical residues in wastewater effluents, surface waters and sediments. Talanta 69:334–342

    CAS  Google Scholar 

  • Hiskia A, Ecke M, Troupis A et al (2001) Sonolytic, photolytic, and photocatalytic decomposition of atrazine in the presence of polyoxometalates. Environ Sci Technol 35:2358–2364

    CAS  Google Scholar 

  • Hong S-S, Lee MS, Kim J-H et al (2002) Photocatalytic decomposition of bromate over titanium dioxides prepared using sol-gel method. J Ind Eng Chem 8:150–155

    CAS  Google Scholar 

  • Horikoshi S, Hidaka H (2003) Non-degradable triazine substrates of atrazine and cyanuric acid hydrothermally and in supercritical water under the UV-illuminated photocatalytic cooperation. Chemosphere 51:139–142

    CAS  Google Scholar 

  • Hsu C-W, Wang L, Su W-F (2009) Effect of chemical structure of interface modifier of TiO2 on photovoltaic properties of poly(3-hexylthiophene)/TiO2 layered solar cells. J Colloid Interface Sci 329:182–187

    CAS  Google Scholar 

  • Huang H, Li W (2011) Destruction of toluene by ozone-enhanced photocatalysis: performance and mechanism. Appl Catal B 102:449–453

    CAS  Google Scholar 

  • Huang C, Chen DH, Li K (2003) Photocatalytic oxidation of butyraldehyde over titania in air: by-product identification and reaction pathways. Chem Eng Comm 190:373–392

    CAS  Google Scholar 

  • Huber R, Moser JE, Grätzel M et al (2002) Observation of photoinduced electron transfer in dye/semiconductor colloidal systems with different coupling strengths. Chem Phys 285:39–45

    CAS  Google Scholar 

  • Hug SJ, Leupin O (2003) Iron-catalyzed oxidation of arsenic (III) by oxygen and by hydrogen peroxide: pH-dependent formation of oxidants in the fenton reaction. Environ Sci Technol 37:2734–2742

    CAS  Google Scholar 

  • Hung C-H, Marias BJ (1997) Role of chlorine and oxygen in the photocatalytic degradation of trichloroethylene vapor on TiO2 films. Environ Sci Technol 31:562–568

    CAS  Google Scholar 

  • Ishibashi K-I, Nosaka Y, Hashimoto K et al (1998) Time-dependent behavior of active oxygen species formed on photoirradiated TiO2 films in air. J Phys Chem B 102(12):2117–2120

    CAS  Google Scholar 

  • Ishibashi K-I, Fujishima A, Watanabe T et al (2000) Generation and deactivation processes of superoxide formed on TiO2 film illuminated by very weak UV light in air or water. J Phys Chem B 104:4934–4938

    CAS  Google Scholar 

  • Jacoby WA, Blake DM, Fennell JA (1996) Heterogeneous photocatalysis for control of volatile organic compounds in indoor air. J Air Waste Manage Assoc 46:891–898

    CAS  Google Scholar 

  • Jańczyk A, Krakowska E, Stochel G (2006) Singlet oxygen photogeneration at surface modified titanium dioxide. J Am Chem Soc 128:15574–15575

    Google Scholar 

  • Jardim WF, Moraes SG, Takiyama MMK (1997) Photocatalytic degradation of aromatic chlorinated compounds using TiO2: toxicity of intermediates. Wat Res 31:1728–1732

    CAS  Google Scholar 

  • Jayaweera PVV, Perera AGU, Tennakone K (2008) Why Gratzel’s cell works so well. Inorg Chim Acta 361:707–711

    CAS  Google Scholar 

  • Jiang Y, Petrier C, Waite TD (2006) Sonolysis of 4-chlorophenol in aqueous solution: effects of substrate concentration, aqueous temperature and ultrasonic frequency. Ultrason Sonochem 13:415–422

    CAS  Google Scholar 

  • Jung KY, Park SB (2004) Photoactivity of SiO2/TiO2 and ZrO2/TiO2 mixed oxides prepared by sol-gel method. Mater Lett 58:2897–2900

    CAS  Google Scholar 

  • Kamble SP, Deosarkar SP, Sawant SB (2004) Photocatalytic Degradation of 2,4-Dichlorophenoxyacetic Acid Using Concentrated Solar Radiation: Batch and Continuous Operation. Ind Eng Chem Res 43(26):8178–8187

    CAS  Google Scholar 

  • Kandiel TA, Dillert R, Robben L et al (2011) Photonic efficiency and mechanism of photocatalytic molecular hydrogen production over platinized titanium dioxide from aqueous methanol solutions. Catal Today 161:196–201

    CAS  Google Scholar 

  • Kebir M, Chabani M, Nasrallah N et al (2011) Coupling adsorption with photocatalysis process for the Cr(VI) removal. Desalination 270:166–173

    CAS  Google Scholar 

  • Khodja AA, Sehili T, Pilichowski J-F et al (2001) Photocatalytic degradation of 2-phenylphenol on TiO2 and ZnO in aqueous suspensions. J Photochem Photobiol A 141:231–239

    CAS  Google Scholar 

  • Kim H, Choi W (2007) Effects of surface fluorination of TiO2 on photocatalytic oxidation of gaseous acetaldehyde. Appl Catal B 69:127–132

    CAS  Google Scholar 

  • Kong F-T, Dai S-Y, Wang K-J (2007) Review of recent progress in dye-sensitized solar cells. Adv OptoElectron. doi:10.1155/2007/75384

    Google Scholar 

  • Konstantinou IK, Sakkas VA, Albanis TA (2001) Photocatalytic degradation of the herbicides propanil and molinate over aqueous TiO2 suspensions: identification of intermediates and the reaction pathway. Appl Catal B 34:227–239

    CAS  Google Scholar 

  • Krijgsheld KR, Gen A van der (1986) Assessment of the impact of the emission of certain organochlorine compounds on the aquatic environment. Chemosphere 15:825–860

    CAS  Google Scholar 

  • Kubo W, Tatsuma T (2004) Detection of H2O2 released from TiO2 phototcatalyst to air. Anal Sci 24:591–593

    Google Scholar 

  • Kubo W, Tatsuma T (2005) Photocatalytic remote oxidation with various photocatalysts and enhancement of its activity. J Mater Chem 15:3104–3108

    CAS  Google Scholar 

  • Kubo W, Tatsuma T, Fujishima A et al (2004) Mechanisms and resolution of photocatalytic lithography. J Phys Chem B 108:3005–3009

    CAS  Google Scholar 

  • Kwon BG, Yoon J (2009) Experimental evidence of the mobility of hydroperoxyl/superoxide anion radicals from the illuminated TiO2 interface into the aqueous phase. Bull Korean Chem Soc 30(3):667–670

    CAS  Google Scholar 

  • Kyung HS, Lee JS, Choi W (2005) Simultaneous and synergistic conversion of dyes and heavy metal ions in aqueous TiO2 suspensions under visible-light illumination. Environ Sci Technol 39:2376–2382

    CAS  Google Scholar 

  • L’Amour RJA, Azevedo EB, Leite SGF et al (2008) Removal of phenol in high salinity media by a hybrid process (activated sludge + photocatalysis). Sep Purif Technol 60:142–146

    Google Scholar 

  • L’homme L, Brosillon S, Wolbert D (2008) Photocatalytic degradation of pesticides in pure water and a commercial agricultural solution on TiO2 coated media. Chemosphere 70(2008):381–386

    Google Scholar 

  • Lackhoff M, Niessner R (2002) Photocatalytic atrazine degradation by synthetic minerals, atmospheric aerosols, and soil particles. Environ Sci Technol 36:5342–5347

    CAS  Google Scholar 

  • Lai K, Zhu Y, Lu J et al (2013) N- and Mo-doping Bi2WO6 in photocatalytic water splitting. Comput Mater Sci 67:88–92

    CAS  Google Scholar 

  • Lalitha K, Reddy JK, Sharma MVP et al (2010) Continuous hydrogen production activity over finely dispersed Ag2O/TiO2 catalysts from methanol:water mixtures under solar irradiation: a structure–activity correlation. Int J Hydrogen Energy 35:3991–4001

    CAS  Google Scholar 

  • Lathasree S, Rao AN, SivaSankar B et al (2004) Heterogeneous photocatalytic mineralisation of phenols in aqueous solutions. J Mol Catal A: Chem 223:101–105

    CAS  Google Scholar 

  • Lee H, Choi W (2002a) Photocatalytic oxidation of arsenite in TiO2 suspension: kinetics and mechanisms. Environ Sci Technol 36:3872–3878

    CAS  Google Scholar 

  • Lee MC, Choi W (2002b) Solid phase photocatalytic reaction on the soot/TiO2 interface: the role of migrating OH radicals. J Phys Chem B 106:11818–11822

    CAS  Google Scholar 

  • Leng WH, Cheng XF, Zhang JQ et al (2007) Comment on “Photocatalytic oxidation of arsenite on TiO2: understanding the controversial oxidation mechanism involving superoxides and the effect of alternative electron acceptors”. Environ Sci Technol 41:6311–6312

    CAS  Google Scholar 

  • Lewerenz HJ, Heine C, Skorupska K et al (2010) Photoelectrocatalysis: principles, nanoemitter applications and routes to bio-inspired systems. Energy Environ Sci 3:748–760

    CAS  Google Scholar 

  • Li D, Haneda H (2003) Photocatalysis of sprayed nitrogen-containing Fe2O3–ZnO and WO3–ZnO composite powders in gas-phase acetaldehyde decomposition. J Photochem Photobiol A 160:203–212

    CAS  Google Scholar 

  • Li S, Ma Z, Zhang J et al (2008) A comparative study of photocatalytic degradation of phenol of TiO2 and ZnO in the presence of manganese dioxides. Catal Today 139:109–112

    CAS  Google Scholar 

  • Li Q, Easter NJ, Shang JK (2009) As(III) removal by palladium-modified nitrogen-doped titanium oxide nanoparticle photocatalyst. Environ Sci Technol 43:1534–1539

    CAS  Google Scholar 

  • Li W, Lu S, Qiu Z et al (2011) Photocatalysis of clofibric acid under solar light in summer and winter seasons. Ind Eng Chem Res 50:5384–5393

    CAS  Google Scholar 

  • Liqiang J, Baifu X, Fulong Y et al (2004) Deactivation and regeneration of ZnO and TiO2 nanoparticles in the gas phase photocatalytic oxidation of n-C7H16 or SO2. Appl Catal A 275:49–54

    Google Scholar 

  • Luo Y, Ollis DF (1996) Heterogeneous photocatalytic oxidation of trichloroethylene and toluene mixtures in air: kinetic promotion and inhibition, time-dependent catalyst activity. J Catal 163:1–11

    CAS  Google Scholar 

  • Maira AJ, Yeung KL, Soria J et al (2001) Gas-phase photo-oxidation of toluene using nanometer-size TiO2 catalysts. Appl Catal B 29:327–336

    CAS  Google Scholar 

  • Malato S, Cáceres J, Fernández-Alba AR (2003) Photocatalytic treatment of diuron by solar photocatalysis: evaluation of main intermediates and toxicity. Environ Sci Technol 37:2516–2524

    CAS  Google Scholar 

  • Mantilla A, Tzompantzi F, Fernández JL et al (2010) Photodegradation of phenol and cresol in aqueous medium by using Zn/Al + Fe mixed oxides obtained from layered double hydroxides materials. Catal Today 150:353–357

    CAS  Google Scholar 

  • Marchante E, Lana-Villarreal T, Sáez V, Gonzólez-García J, Gómez R (2009) Sonopotential: a new concept in electrochemistry. Chem Commun 27:4127–4129

    Google Scholar 

  • Martra G, Coluccia S, Marchese L (1999) The role of H2O in the photocatalytic oxidation of toluene in vapour phase on anatase TiO2 catalyst. A FTIR study. Catal Today 53:695–702

    CAS  Google Scholar 

  • Matar S, Hatch LF (2000) Chemistry of petrochemical processes. Gulf Publishing Company, Texas

    Google Scholar 

  • McCusker JK (2001) Fuel from photons. Science 293:1599–1601

    CAS  Google Scholar 

  • McMurray TA, Dunlop PSM, Byrne JA (2006) The photocatalytic degradation of atrazine on nanoparticulate TiO2 films. J Photochem Photobiol A 182:43–51

    CAS  Google Scholar 

  • Mills A, McGrady M (2008) A study of new photocatalyst indicator inks. J Photochem Photobiol A 193:228–236

    CAS  Google Scholar 

  • Mills A, Belghazi A, Rodman D (1996) Bromate removal from water by semiconductor photocatalysis. Water Res 30:1973–1978

    CAS  Google Scholar 

  • Mills A, Hill G, Bhopal S et al (2003) Thick titanium dioxide films for semiconductor photocatalysis. J Photochem Photobiol A 160:185–194

    CAS  Google Scholar 

  • Mills A, Wang J, Lee S-K et al (2005) An intelligence ink for photocatalytic films. Chem Commun 21:2721–2723

    Google Scholar 

  • Mills A, Wang J, McGrady M (2006) Method of rapid assessment of photocatalytic activities of self-cleaning films. J Phys Chem B 110:18324–18331

    CAS  Google Scholar 

  • Mills A, McGrady M, Wang J et al (2008) A rapid method of assessing the photocatalytic activity of thin TiO2 films using an ink based on the redox dye 2,6-dichloroindophenol. Int J Photoenergy:1–6

    Google Scholar 

  • Minero C, Mariella G, Maurino V et al (2000a) Photocatalytic transformation of organic compounds in the presence of inorganic anions. 1. Hydroxyl-mediated and direct electron-transfer reactions of phenol on a titanium dioxide-fluoride system. Langmuir 16:2632–2641

    CAS  Google Scholar 

  • Minero C, Mariella G, Maurino V et al (2000b) Photocatalytic transformation of organic compounds in the presence of inorganic ions. 2. Competitive reactions of phenol and alcohols on a titanium dioxide-fluoride system. Langmuir 16:8964–8972

    CAS  Google Scholar 

  • Minero C, Pelizzetti E, Malato S et al (1996) Large solar plant photocatalytic water decontamination: degradation of atrazine. Sol Energy 56:411–419

    CAS  Google Scholar 

  • Mofidi AA, Min JH, Palencia LS et al (2002) Task 2.1: advanced oxidation processes and UV Photolysis for treatment of drinking water, metropolitan water district of Southern California. California Energy Commission, La Verne

    Google Scholar 

  • Mohan D, Pittman CU Jr (2007) Arsenic removal from water/wastewater using adsorbents—a critical review. J Hazard Mater 142:1–53

    CAS  Google Scholar 

  • Moser J, Grätzel M (1983) Light-induced electron transfer in colloidal semiconductor dispersions: single vs. dielectronic reduction of acceptors by conduction-band electrons. J Am Chem Soc 105:6547–6555

    CAS  Google Scholar 

  • Muradov NZ, Raissi AT, Muzzey D et al (1996) Selective photocatalytic destruction of airbone VOCs. Sol Energy 56:445–456

    CAS  Google Scholar 

  • Murakami Y, Kenji E, Nosaka AY et al (2006) Direct detection of OH radicals diffused to the gas phase from the UV-irradiated photocatalytic TiO2 surfaces by means of laser-induced fluorescence spectroscopy. J Phys Chem B 110(34):16808–16811

    CAS  Google Scholar 

  • Murakami Y, Endo K, Ohta I et al (2007) Can OH radicals diffuse from the UV-irradiated photocatalytic TiO2 surfaces? Laser-induced-fluorescence study. J Phys Chem C 111:11339–11346

    CAS  Google Scholar 

  • Nagata Y, Nakagawa M, Okuno H et al (2000) Sonochemical degradation of chlorophenols in water. Ultrason Sonochem 7:115–120

    CAS  Google Scholar 

  • Naito K, Tachikawa T, Cui S-C et al (2006) Single-molecule detection of airborne singlet oxygen. J Am Chem Soc 128:16430–16431

    CAS  Google Scholar 

  • Nakamura R, Nakato Y (2004) Primary intermediates of oxygen photoevolution reaction on TiO2 (rutile) particles, revealed by in situ FTIR absorption and photoluminescence measurements. J Am Chem Soc 126:1290–1298

    CAS  Google Scholar 

  • Neta P, Huie RE (1985) Free-radical chemistry of sulphite. Environ Health Perspect 64:209–217

    CAS  Google Scholar 

  • Nikolaou AD, Kostopoulou MN, Lekkas TD (1999) Organic by-products of drinking water chlorination. Global Nest: Int J 1:143–156

    Google Scholar 

  • Nimlos MR, Jacoby WA, Blake DM et al (1979) Direct mass spectrometric studies of the destruction of hazardous wastes. 2. Gas-phase photocatalytic oxidation of trichloroethylene over TiOs: Products and mechanisms. Environ Sci Technol 27:732–740

    Google Scholar 

  • Ohko Y, Tryk DA, Hashimoto K et al (1998) Autoxidation of acetaldehyde initiated by TiO2 photocatalysis under weak UV illumination. J Phys Chem B 102:2699–2704

    CAS  Google Scholar 

  • Ojanperä I (2000) Pesticides. In: Bogusz MJ (ed) Forensic science. Hanbook of analytical separations, vol 2. Elsevier Science

    Google Scholar 

  • Oliveira HG, Nery DC, Longo C (2010) Effect of applied potential on photocatalytic phenol degradation using nanocrystalline TiO2 electrodes. Appl Catal B 93:205–211

    CAS  Google Scholar 

  • Oturan N, Brillas E, Oturan MA (2012) Unprecedented total mineralization of atrazine and cyanuric acid by anodic oxidation and electro-Fenton with a boron-doped diamond anode. Environ Chem Lett 10:165–170

    CAS  Google Scholar 

  • Özcan L, Yurdakal S, Augugliaro V et al (2010) Photoelectrocatalytic selective oxidation of 4-methoxybenzyl alcohol in water by TiO2 supported on titanium anodes. Appl Catal B. doi:10.1016/j.apcatb.2012.12.030

    Google Scholar 

  • Park H, Choi W (2004) Effects of TiO2 surface fluorination on photocatalytic reactions and photoelectrochemical behaviours. J Phys Chem B 108:4086–4093

    CAS  Google Scholar 

  • Parra S, Stanca SE, Guasaquillo I et al (2004) Photocatalytic degradation of atrazine using suspended and supported TiO2. Appl Catal B 51:107–116

    CAS  Google Scholar 

  • Patnaik P (2004) Deanʼs analytical chemistry handbook. McGraw-Hill Handbooks, United States of America

    Google Scholar 

  • Paul T, Miller PL, Strathmann TJ (2007) Visible-light-mediated TiO2 photocatalysis of fluoroquinolone antibacterial agents. Environ Sci Technol 41:4720–4727

    CAS  Google Scholar 

  • Pelizetti E, Maurino V, Minero C (1990) Photocatalytic degradation of atrazine and other s-triazine herbicides. Environ Sci Technol 24:1559–1565

    Google Scholar 

  • Peller J, Wiest O, Kamat PV (2003) Synergy of combining sonolysis and photocatalysis in the degradation and mineralization of chlorinated aromatic compounds. Environ Sci Technol 37:1926–1932

    CAS  Google Scholar 

  • Peller J, Wiest O, Kamat PV (2004) Hydroxyl radical’s role in the remediation of a common herbicide, 2,4-Dichlorophenoxyacetic acid (2,4-D). J Phys Chem A 108:10925–10933

    CAS  Google Scholar 

  • Pena ME, Korfiatis GP, Patel M et al (2005) Adsorption of As(V) and As(III) by nanocrystalline titanium dioxide. Water Res 39:2327–2337

    CAS  Google Scholar 

  • Peralta-Zamora P, Gomes deMS, Pelegrinir R et al (1998) Evaluation of ZnO, TiO2 and supported ZnO on the photoassisted remediatlon of black liquor, cellulose and textile mill effluents. Chemosphere 36:2119–2133

    CAS  Google Scholar 

  • Pichat P, Herrmann J-M, Disdler J et al (1979) Photocatalytic oxidation of propene over various oxides at 320 K. Selectivity. J Phys Chem 83:3122–3126

    CAS  Google Scholar 

  • Poulose AC, Veeranarayanan S, Varghese SH et al (2012) Functionalized electrophoretic deposition of CdSe quantum dots onto TiO2 electrode for photovoltaic application. Chem Phys Lett 539–540:197–203

    Google Scholar 

  • Prairie MR, Evans LR, Stange BM et al (1993) An investigation of TiO2 photocatalysis for the treatment of water contaminated with metals and organic chemicals. Environ Sci Technol 27:1776–1782

    CAS  Google Scholar 

  • Qamar M, Muneer M, Bahnemann D (2006) Heterogeneous photocatalysed degradation of two selected pesticide derivatives, triclopyr and daminozid in aqueous suspensions of titanium dioxide. J Environ Manage 80:99–106

    CAS  Google Scholar 

  • Rahman MA, Muneer M (2005) Photocatalysed degradation of two selected pesticide derivatives, dichlorvos and phosphamidon, triclopyr and daminozid in aqueous suspensions of titanium dioxide. Desalination 185:161–172

    Google Scholar 

  • Ranjit PJD, Palanivelu K, Lee C-S (2008) Degradation of 2,4-dichlorophenol in aqueous solution by sono-Fenton method. Korean J Chem Eng 25:112–117

    CAS  Google Scholar 

  • Rauf MA, Meetani MA, Hisaindee S (2011) An overview on the photocatalytic degradation of azo dyes in the presence of TiO2 doped with selective transition metals. Desalination 276:13–27

    CAS  Google Scholar 

  • Ravichandran L, Selvam K, Swaminathan M (2007) Effect of oxidants and metal ions on photodefluoridation of pentafluorobenzoic acid with ZnO. Sep Purif Methods 56:192–198

    CAS  Google Scholar 

  • Rayalu SS, Jose D, Joshi MV et al (2013) Photocatalytic water splitting on Au/TiO2 nanocompositessynthesized through various routes: enhancement in photocatalyticactivity due to SPR effect. Appl Catal B 142–143:684–693

    Google Scholar 

  • Razykov TM, Ferekides CS, Morel D et al (2011) Solar photovoltaic electricity: current status and future prospects. Sol Energy 85:1580–1608

    CAS  Google Scholar 

  • Reyes C, Fernandez J, Freer J et al (2006) Degradation and inactivation of tetracycline by TiO2 photocatalysis. J Photochem Photobiol A 184:141–146

    CAS  Google Scholar 

  • Ryu J, Choi W (2004) Effects of TiO2 surface modifications on photocatalytic oxidation of arsenite: the role of superoxides. Environ Sci Technol 38:2928–2933

    CAS  Google Scholar 

  • Ryu J, Choi W (2006) Photocatalytic oxidation of arsenite on TiO2: Understanding the controversial oxidation mechanism involving superoxides and the effect of alternative electron acceptors. Environ Sci Technol 40:7034–7039

    CAS  Google Scholar 

  • Ryu J, Choi W (2007) Response to comment on “Photocatalytic oxidation of arsenite on TiO2: understanding the controversial oxidation mechanism involving superoxides and the effect of alternative electron acceptors”. Environ Sci Technol 41:6313–6314

    CAS  Google Scholar 

  • Sakthivel S, Neppolian B, Shankar MV et al (2003) Solar photocatalytic degradation of azo dye: comparison of photocatalytic efficiency of ZnO and TiO2. Sol Energy Mater Sol Cells 77:65–82

    CAS  Google Scholar 

  • Sandstead HH (1991) Zinc deficiency. A public health problem? Am J Dis Child 145(8):853–859

    CAS  Google Scholar 

  • Sasaki Y, Iwase A, Kato H et al (2008) The effect of co-catalyst for Z-scheme photocatalysis systems with an Fe3+/Fe2+ electron mediator on overall water splitting under visible light irradiation. J Catal 259(2008):133–137

    CAS  Google Scholar 

  • Sauer ML, Hale MA, Ollis DF (1995) Heterogeneous photocatalytic oxidation of dilute toluene-chlorocarbon mixtures in air. J Photochem Photobiol A 88:169–178

    CAS  Google Scholar 

  • Sawyer DT, Sobkowiak A, Roberts JL Jr (1995) Electrochemistry for chemists. Wiley, New York

    Google Scholar 

  • Sharma VK, Sohn M (2009) Aquatic arsenic: toxicity, speciation, transformations, and remediation. Environ Int 35:743–759

    CAS  Google Scholar 

  • Shen YS, Ku Y (2002) Decomposition of gas-phase trichloroethene by the UV/TiO2 process in the presence of ozone. Chemosphere 46:101–107

    CAS  Google Scholar 

  • Shen P, Liu X, Jiang S et al (2011) Effects of aromatic p-conjugated bridges on optical and photovoltaic properties of N, N-diphenylhydrazone-based metal-free organic dyes, N, N-diphenylhydrazone-based metal-free organic dyes. Org Electron 12:1992–2002

    CAS  Google Scholar 

  • Simamora A-J, Hsiung T-L, Chang F-C et al (2013) Photocatalytic splitting of seawater and degradation of methylene blue on CuO/nano TiO2. Int J Hydrogen Energy 37:13855–13858

    Google Scholar 

  • Sleiman M, Ferronato C, Chovelon J-M (2008) Photocatalytic removal of pesticide dichlorvos from indoor air: a study of reaction parameters, intermediates and mineralization. Environ Sci Technol 42:3018–3024

    CAS  Google Scholar 

  • Sobana N, Swaminathan M (2007) The effect of operational parameters on the photocatalytic degradation of acid red 18 by ZnO. Sep Purif Technol 56:101–107

    CAS  Google Scholar 

  • Somasundaram S, Chenthamarakshan CRN, de Tacconi NR et al (2007) Photocatalytic production of hydrogen from electrodeposited p-Cu2O film and sacrificial electron donors. Int J Hydrogen Energ 32:4661–4669

    CAS  Google Scholar 

  • Stock NL, Peller J, Vinodgopal K et al (2000) Combinative sonolysis and photocatalysis for textile dye degradation. Environ Sci Technol 34:1747–1750

    CAS  Google Scholar 

  • Sun L, Bolton JR (1996) Determination of the quantum yield for the photochemical generation of hydroxyl radicals in TiO2 suspensions. J Phys Chem 100:4127–4134

    CAS  Google Scholar 

  • Sun B, Reddy EP, Smirniotis PG (2005) Visible light Cr(VI) reduction and organic chemical oxidation by TiO2 photocatalysis. Environ Sci Technol 39:6251–6259

    CAS  Google Scholar 

  • Suryaman D, Hasegawa K, Kagaya S (2006) Combined biological and photocatalytic treatment for the mineralization of phenol in water. Chemosphere 65:2502–2506

    CAS  Google Scholar 

  • Swaddle TW (1990) Inorganic chemistry. Academic, USA

    Google Scholar 

  • Tatsuma T, Kubo W (2007) Photocatalytic lithography based on photocatalytic remote oxidation. J Photopolym Sci Technol 20:83–87

    CAS  Google Scholar 

  • Tatsuma T, Tachibana S-I, Miwa T et al (1999) Remote bleaching of methylene blue by UV-irradiated TiO2 in the gas phase. J Phys Chem B 103:8033–8035

    CAS  Google Scholar 

  • Tatsuma T, Kubo W, Fujishima A (2002) Patterning of solid surfaces by photocatalytic lithography based on the remote oxidation effect of TiO2. Langmuir 18:9632–9634

    CAS  Google Scholar 

  • Tetzlaff TA, Jenks WS (1999) Stability of cyanuric acid to photocatalytic degradation. Org Lett 1:463–465

    CAS  Google Scholar 

  • Thampi KR, Reddy TV, Ramakrishnan V et al (1983) Mechanism of the photoelectrocatalytic dehydrogenation of 2-propanolon a polycrystalline ZnO photoelectrode. Electrochim Acta 28:1869–1874

    CAS  Google Scholar 

  • Turchi CS, Ollis DF (1990) Photocatalytic degradation of organic water contaminants: mechanisms involving hydroxyl radical attack. J Catal 122:178–192

    CAS  Google Scholar 

  • Uddin MJ, Davies B, Dickens TJ et al (2013) Self-aligned carbon nanotubes yarns (CNY) with efficient optoelectronic interface for microyarn shaped 3D photovoltaic cells. Sol Energy Mater Sol Cells 115:166–171

    CAS  Google Scholar 

  • US EPA (2006) National Emission Standards for Hazardous Air Pollutants: miscellaneous organic chemical manufacturing. final rule, federal register part V, 40 CFR part 63, United States Environmental Protection Agency

    Google Scholar 

  • EPA/OSHA US (2000) Chemical advisory and notice of potential risk: skin exposure to molten 2,4-dichlorophenol (2,4-DCP) can cause rapid death, US EPA Office of pollution prevention and toxics and occupational safety and health administration, United States of America

    Google Scholar 

  • Vimonses V, Jin B, Chow CWK et al (2010) An adsorption-photocatalysis hybrid process using multi-functional-nanoporous materials for wastewater reclamation. Water Res 44:5385–5397

    CAS  Google Scholar 

  • Vincent G, Aluculesei A, Parker A et al (2008) Direct detection of OH radicals and indirect detection of H2O2 molecules in the gas phase near a TiO2 photocatalyst using LIF. J Phys Chem C 112(25):9115–9119

    CAS  Google Scholar 

  • Vinu R, Madras G (2009) Kinetics of sonophotocatalytic degradation of anionic dyes with nano-TiO2. Environ Sci Technol 43:473–479

    CAS  Google Scholar 

  • Vorontsov AV, Stoyanova IV, Kozlov DV et al (2000) Kinetics of the photocatalytic oxidation of gaseous acetone over platinized titanium dioxide. J Catal 189:360–369

    CAS  Google Scholar 

  • Wang K-H, Jehng J-M, Hsieh Y-H et al (2002) The reaction pathway for the heterogeneous photocatalysis of trichloroethylene in gas phase. J Hazard Mater 90:63–75

    CAS  Google Scholar 

  • Wang X, Jia J, Wang Y (2011) Degradation of C. I. reactive red 2 through photocatalysis coupled with water jet cavitation. J Hazard Mater 185:315–321

    CAS  Google Scholar 

  • Wang Q, An N, Bai Y et al (2013) High photocatalytic hydrogen production from methanol aqueous solution using the photocatalysts CuS/TiO2. Int J Hydrogen Energy. http://dx.doi.org/10.1016/j.ijhydene.2013.02.131

  • Wegman RCC, Den BHH van (1983) Chlorophenols in river sediments in the Netherlands (1976–1977). Water Res 17:227–230

    CAS  Google Scholar 

  • Wu W, Li J, Guo F et al (2010) Photovoltaic performance and long-term stability of quasi-solid-state fluoranthene dyes-sensitized solar cells. Renew Energ 35:1724–1728

    CAS  Google Scholar 

  • Wunderlich W, Oekermann T, Miao L et al (2004) Electronic properties of nano-porous TiO2- and ZnO-thin films-comparison of simulations and experiments. J Ceram Process Res 5:343–354

    Google Scholar 

  • Xu T, Kamat PV, O’Shea KE (2005) Mechanistic evaluation of arsenite oxidation in TiO2 assisted photocatalysis. J Phys Chem A 109:9070–9075

    CAS  Google Scholar 

  • Yahiat S, Fourcade F, Brosillon S et al (2011a) Photocatalysis as a pre-treatment prior to a biological degradation of cyproconazole. Desalination 281:61–67

    CAS  Google Scholar 

  • Yahiat S, Fourcade F, Brosillon S et al (2011b) Removal of antibiotics by an integrated process coupling photocatalysis and biological treatment—case of tetracycline and tylosin. Int Biodeter and Biodegr 65:997–1003

    CAS  Google Scholar 

  • Yamaguchi M, Tomizawa M, Takagaki K, Masui D, Yamagishi T et al (2006) Photooxidation of alkane under visible light irradiation catalyzed by ruthenium complexes. Catal Today 117:206–209

    CAS  Google Scholar 

  • Yan J, Zhang L, Yang H et al (2009) CuCr2O4/TiO2 heterojunction for photocatalytic H2 evolution under simulated sunlight irradiation. Sol Energy 83:1534–1539

    CAS  Google Scholar 

  • Yang H, Lin WY, Rajeshwar K (1999) Homogeneous and heterogeneous photocatalytic reactions involving As(III) and As(V) species in aqueous media. J Photochem Photobiol A 123:137–143

    CAS  Google Scholar 

  • Yang G-P, Zhao X-K, Suna X-J et al (2005a) Oxidative degradation of diethyl phthalate by photochemically-enhanced Fenton reaction. J Hazard Mater 126:112–118

    CAS  Google Scholar 

  • Yang J, Chen C, Ji H et al (2005b) Mechanism of TiO2-assisted photocatalytic degradation of dyes under visible irradiation: photoelectrocatalytic study by TiO2-film Electrodes. J Phys Chem B 109:21900–21907

    CAS  Google Scholar 

  • Yang L, Yu LE, Ray MB (2009) Photocatalytic oxidation of paracetamol: dominant reactants, intermediates, and reaction mechanisms. Environ Sci Technol 43:460–465

    CAS  Google Scholar 

  • Yoon SH, Lee JH (2005) Oxidation mechanism of As(III) in the UV/TiO2 system: evidence for a direct hole oxidation mechanism. Environ Sci Technol 39:9695–9701

    CAS  Google Scholar 

  • Yoon SH, SE Oh, Yang JE et al (2009) TiO2 photocatalytic oxidation mechanism of As(III). Environ Sci Technol 43:864–869

    CAS  Google Scholar 

  • Zainal Z, Lee CY, Hussein MZ et al (2007) Electrochemical-assisted photodegradation of mixed dye and textile effluents using TiO2 thin films. J Hazard Mater 146:73–80

    CAS  Google Scholar 

  • Zainudin NF, Abdullah AZ, Mohamed AR (2010) Characteristics of supported nano-TiO2/ZSM-5/silica gel (SNTZS): photocatalytic degradation of phenol. J Hazard Mater 174:299–306

    CAS  Google Scholar 

  • Zama K, Fukuoka A, Sasaki Y (2000) Selective hydroxylation of benzene to phenol by photocatalysis of molybdenum complexes grafted on mesoporous FSM-16. Catal Lett 66:251–253

    CAS  Google Scholar 

  • Zhang F, Zhaoa J, Shen T et al (1998) TiO2-assisted photodegradation of dye pollutants II. Adsorption and degradation kinetics of eosin in TiO2 dispersions under visible light irradiation. Appl Catal B 15:147–156

    Google Scholar 

  • Zhang Q, Liu J, Wang W et al (2006a) A novel regular catalyst for gas-phase photodestruction of organic substances of dilute concentrations. Catal Commun 7:685–688

    CAS  Google Scholar 

  • Zhang S, Zheng Z, Wang J et al (2006b) Heterogeneous photocatalytic decomposition of benzene on lanthanum-doped TiO2 film at ambient temperature. Chemosphere 65:2282–2288

    CAS  Google Scholar 

  • Zheng S, Cai Y, O’Shea KE (2010) TiO2 photocatalytic degradation of phenylarsonic acid. J Photochem Photobiol A 210:61–68

    CAS  Google Scholar 

  • Zhong J, Wang J, Tao L et al (2007) Photocatalytic degradation of gaseous benzene over TiO2/Sr2CeO4: kinetic model and degradation mechanisms. J Hazard Mater 139:323–331

    CAS  Google Scholar 

  • Zhu X, Yuan CW, Chen H (2007) Photocatalytic degradation of pesticide pyridaben. 3. In surfactant/TiO2 aqueous dispersions. Environ Sci Technol 41:263–269

    CAS  Google Scholar 

  • Zou S-W, How C-W, Chen JP (2007) Photocatalytic treatment of wastewater contaminated with organic waste and copper ions from the semiconductor industry. Ind Eng Chem Res 46:6566–6571

    CAS  Google Scholar 

  • Zuo G-M, Cheng Z-X, Chen H (2006) Study on photocatalytic degradation of several volatile organic compounds. J Hazard Mater 128:158–163

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Umar Ibrahim Gaya .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Gaya, U. (2014). Perspectives and Advances in Photocatalysis. In: Heterogeneous Photocatalysis Using Inorganic Semiconductor Solids. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7775-0_5

Download citation

Publish with us

Policies and ethics