Skip to main content

FTIR Imaging of Tissues: Techniques and Methods of Analysis

  • Chapter
  • First Online:
Optical Spectroscopy and Computational Methods in Biology and Medicine

Abstract

In this chapter, we describe biomedical applications of infrared microscopic imaging applied to human tissue sections. The central focus is human diseases including cervical cancer, neurodegenerative pathologies, and dysfunctions of cardiac and liver tissues. In addition, we briefly describe the fundamentals of FTIR imaging instrumentation along with spectral pre-processing and hyperspectral image reconstruction. The chapter concludes with a summary of what is required to take FTIR imaging technology into the clinical environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mantsch HH, Jackson M (1995) Molecular spectroscopy in biodiagnostics (from Hippocrates to Herschel and beyond). J Mol Struct 347:187–206

    Article  CAS  Google Scholar 

  2. Husseinzadeh N (2011) Status of tumor markers in epithelial ovarian cancer, has there been any progress? A review. Gynecol Oncol 120:152–157

    Article  CAS  Google Scholar 

  3. Breen M (2010) Update on genomics in veterinary oncology. Top Companion Anim Med 24:113–121

    Article  Google Scholar 

  4. Gould Rothberg BE, Bracken MB, Rimm DL (2009) Tissue biomarkers for prognosis in cutaneous melanoma: a systematic review and meta-analysis. J Natl Cancer Inst 101:452–474

    Article  CAS  Google Scholar 

  5. Staudt LM, Dave S (2005) The biology of human lymphoid malignancies revealed by gene expression profiling. Adv Immunol 87:163–208

    Article  CAS  Google Scholar 

  6. Moore JH, Asselbergs FW, Williams SM (2010) Bioinformatics challenges for genome-wide association studies. Bioinformatics 24:445–455

    Article  CAS  Google Scholar 

  7. Tobin MJ, Puskar L, Barber RL et al (2010) FTIR spectroscopy of single live cells in aqueous media by synchrotron IR microscopy using microfabricated sample holders. Vib Spectrosc 53:34–38

    Article  CAS  Google Scholar 

  8. Ellis DI, Dunn WB, Griffin JL et al (2007) Metabolic fingerprinting as a diagnostic tool. Pharmacogenomics 8:1243–1266

    Article  CAS  Google Scholar 

  9. Lewis EN, Treado PJ, Reeder RC et al (1995) Fourier transform spectroscopic imaging using an infrared focal-plane array detector. Anal Chem 67:3377–3381

    Article  CAS  Google Scholar 

  10. Bassan P, Lee J, Sachdeva A et al (2013) The inherent problem of transflection-mode infrared spectroscopic microscopy and the ramifications for biomedical single point and imaging applications. Analyst 138:144–157

    Article  CAS  Google Scholar 

  11. Whelan DR, Bambery KR, Heraud P et al (2011) Monitoring the reversible B to A-like transition of DNA in eukaryotic cells using Fourier transform infrared spectroscopy. Nucleic Acids Res 39:5439–5448

    Article  CAS  Google Scholar 

  12. Whelan DR, Bambery KR, Puskar L et al (2012) Quantification of DNA in simple eukaryotic cells using Fourier transform infrared spectroscopy. J Biophotonics doi:10.1002/jbio.201200112

    Google Scholar 

  13. Liu KZ, Tsang KS, Li CK et al (2003) Infrared spectroscopic identification of β-thalassemia. Clin Chem 49:1125–1132

    Article  CAS  Google Scholar 

  14. Ami D, Neri T, Natalello A et al (2008) Embryonic stem cell differentiation studied by FTIR spectroscopy. Biochim Biophys Acta 1783:98–106

    Google Scholar 

  15. Choo LP, Wetzel DL, Halliday WC et al (1996) In situ characterization of β-amyloid in Azheimer’s diseased tissue by synchrotron Fourier transform infrared microspectroscopy. Biophys J 71:1672–1679

    Article  CAS  Google Scholar 

  16. Palombo F, Shen H, Benguigui LES et al (2009) Micro ATR-FTIR spectroscopic imaging of atherosclerosis: an investigation of the contribution of inducible nitric oxide synthase to lesion composition in ApoE-null mice. Analyst 134:1107–1118

    Article  CAS  Google Scholar 

  17. Bambery KR, Wood BR, McNaughton D (2012) Resonant Mie scattering (Rimes) correction applied to FTIR images of biological tissue samples. Analyst 137:126–132

    Article  CAS  Google Scholar 

  18. Noguchi T, Inoue Y, Tang XS (1997) Structural coupling between the oxygen-evolving Mn cluster and a tyrosine residue in photosystem II as revealed by Fourier transform infrared spectroscopy. Biochemistry 36:14705–14711

    Article  CAS  Google Scholar 

  19. Maziak DE, Do MT, Shamji FM et al (2007) Fourier-transform infrared spectroscopic study of characteristic molecular structure in cancer cells of esophagus: an exploratory study. Cancer Detect Prev 31:244–253

    Article  CAS  Google Scholar 

  20. Bogomolny E, Argov S, Mordechai S, Huleihel M (2008) Monitoring of viral cancer progression using FTIR microscopy: a comparative study of intact cells and tissues, Biochim Biophys Acta 1780:1038–1046

    Google Scholar 

  21. Ooi GJ, Fox J, Siu K et al (2008) Fourier transform infrared imaging and small angle x-ray scattering as a combined biomolecular approach to diagnosis of breast cancer. Med Phys 35:2151–2161

    Article  CAS  Google Scholar 

  22. Chen L, Holman HYN, Hao Z et al (2012) Synchrotron infrared measurements of protein phosphorylation in living single PC12 cells during neuronal differentiation. Anal Chem 84:4118–4125

    Article  CAS  Google Scholar 

  23. Benedeti E, Bramanti E, Papineschi F et al (1997) Determination of the relative amount of nucleic acids and proteins in leukemic and normal lymphocytes by means of Fourier transform infrared microspectroscopy. Appl Spectrosc 51:792–797

    Article  Google Scholar 

  24. Salman A, Ramesh J, Erukhimovitch V et al (2003) FTIR microspectroscopy of malignant fibroblasts transformed by mouse sarcoma virus. J Biochem Biophys Methods 55:141–153

    Article  CAS  Google Scholar 

  25. Mohlenhoff B, Romeo MJ, Wood BR et al (2005) Mie-type scattering and non-Beer-Lambert absorption behavior of human cells in infrared microspectroscopy. Biophys J 88:3635–3640

    Article  CAS  Google Scholar 

  26. Wood BR, Chernenko T, Matthäus C et al (2008) Shedding new light on the molecular architecture of oocytes using a combination of synchrotron Fourier transform-infrared and Raman spectroscopic imaging. Anal Chem 80:9065–9072

    Article  CAS  Google Scholar 

  27. Lasch P, Boese M, Pacifico A et al (2002) FT–IR spectroscopic investigations of single cells on the subcellular level. Vib Spectrosc 28:147–157

    Article  CAS  Google Scholar 

  28. Ozek NS, Tuna S, Erson-Bensan AE et al (2010) Characterization of microRNA-125b expression in MCF7 breast cancer cells by ATR-FTIR spectroscopy. Analyst 135:3094–3102

    Article  CAS  Google Scholar 

  29. Wrobel TP, Mateuszuk L, Chlopicki S et al (2011) Imaging of lipids in atherosclerotic lesion in aorta from ApoE/LDLR-/- mice by FT-IR spectroscopy and Hierarchical Cluster Analysis. Analyst 136:5247–5255

    Article  CAS  Google Scholar 

  30. Chiriboga L, Xie P, Lee H et al (1998) Infrared spectroscopy of human tissue. I. Differentiation and maturation of epithelium cells in the human cervix. Biospectrosc 4:47–53

    Article  CAS  Google Scholar 

  31. Wood BR, Chiriboga L, Yee H et al (2004) Fourier transform infrared (FTIR) spectral mapping of the cervical transformation zone and dysplastic squamous epithelium. Gynecol Oncol 93:59–68

    Article  CAS  Google Scholar 

  32. Wood BR, Quinn MA, Tait B et al (1998) FTIR microspectroscopic study of cell types and potential confounding variable in screening for cervical malignancies. Biospectroscopy 4:75–91

    Article  CAS  Google Scholar 

  33. Chiriboga L, Xie P, Zhang W et al (1997) Infrared spectroscopy of human tissue. III. Spectral differences between squamous and columnar tissue and cells from the human cervix. Biospectroscopy 3:253–257

    Article  CAS  Google Scholar 

  34. Wood BR, Tait B, McNaugthon D (2000) Fourier Transform Infrared Spectroscopy as a Method for Monitoring the Molecular Dynamics of Lymphocyte Activation. Appl Spectrosc 54:353–359

    Article  CAS  Google Scholar 

  35. Andrus PGL, Strickland RD (1998) Cancer grading by Fourier transform infrared spectroscopy. Biospectroscopy 4:37–46

    Article  CAS  Google Scholar 

  36. Mordechai S, Sahu RK, Hammody Z et al (2004) Possible common biomarkers from FTIR microspectroscopy of cervical cancer and melanoma. J Microsc 215:86–91

    Article  CAS  Google Scholar 

  37. Taillandier E, Liquier J (1992) Infrared spectroscopy of DNA. Methods Enzymol 211:307–335

    Article  CAS  Google Scholar 

  38. Mohlenhoff B, Romeo M, Diem M et al (2005) Mie-type scattering and non-Beer-Lambert absorption behaviour of human cells in infrared micro-spectroscopy. Biophys J 88:3635–3640

    Article  CAS  Google Scholar 

  39. Shimanouchi T, Tsuboi M, Kyogoku Y (1964) The structure and properties of biomolecules and biological systems. In: Duchesne J (ed) Advances in chemical physics, vol VII. Interscience, New York

    Google Scholar 

  40. Carr GL (2001) Resolution limits for infrared microspectroscopy explored with synchrotron radiation. Rev Sci Instrum 72:1613–1619

    Article  CAS  Google Scholar 

  41. Sommer AJ, Katon JE (1991) Diffraction-induced stray light in infrared microspectroscopy and its effect on spatial resolution. Appl Spectrosc 45:1633–1640

    Article  CAS  Google Scholar 

  42. Lasch P, Naumann D (2006) Spatial resolution in infrared microspectroscopic imaging of tissues. Biochim Biophys Acta 1758:814–929

    Google Scholar 

  43. Kazarian SG, Chan KLA (2010) Micro- and macro-attenuated total reflection Fourier transform infrared spectroscopic imaging. Appl Spectrosc 64:135A–152A

    Article  CAS  Google Scholar 

  44. Filik J, Frogley MD, Pijanka JK et al (2012) Electric field standing wave artifacts in FTIR micro-spectroscopy of biological materials. Analyst 137:853–861

    Article  CAS  Google Scholar 

  45. Holton SE, Walsh MJ, Bhargava R (2011) Subcellular localization of early biochemical transformations in cancer-activated fibroblasts using infrared spectroscopic imaging. Analyst 136:2953–2958

    Article  CAS  Google Scholar 

  46. Amrania H, McCrow AP, Matthews MR et al (2011) Ultrafast infrared chemical imaging of live cells. Chem Sci 2:107–111

    Article  CAS  Google Scholar 

  47. Kuimova MK, Chan KLA, Kazarian SG (2009) Chemical imaging of live cancer cells in the natural aqueous environment. Appl Spectrosc 63:164–171

    Article  CAS  Google Scholar 

  48. Colley CS, Kazarian SG, Weinberg PD et al (2004) Spectroscopic imaging of arteries and atherosclerotic plaques. Biopolymers 74:328–335

    Article  CAS  Google Scholar 

  49. Rogalski A (2005) HgCdTe infrared detector material: history, status and outlook. Rep Prog Phys 68:2267–2336

    Article  CAS  Google Scholar 

  50. Norton P (2002) HgCdTe infrared detectors. Opto-Electron Rev 10:159–174

    CAS  Google Scholar 

  51. Miller LM, Smith RJ (2005) Synchrotrons versus globars, point-detectors versus focal plane arrays: selecting the best source and detector for specific infrared microspectroscopy and imaging applications. Vib Spectrosc 38:237–240

    Article  CAS  Google Scholar 

  52. Diem M, Romeo M, Matthäus C et al (2004) Comparison of Fourier transform infrared (FTIR) spectra of individual cells acquired using synchrotron and conventional sources. Infrared Phys Technol 45:331–338

    Article  CAS  Google Scholar 

  53. Bhargava R, Wall BG, Koenig JL (2000) Comparison of the FTIR mapping and imaging techniques applied to polymeric systems. Appl Spectrosc 54:470–479

    Article  CAS  Google Scholar 

  54. Reffner JA, Martoglio PA, Williams GP (1995) Fourier transform infrared microscopical analysis with synchrotron radiation: the microscope optics and system performance (invited). Rev Sci Instrum 66:1298–1302

    Article  CAS  Google Scholar 

  55. Miller LM, Dumas P (2006) Chemical imaging of biological tissue with synchrotron infrared light. Biochim Biophys Acta 1758:846–857

    Google Scholar 

  56. Tobin MJ, Chesters MA, Chalmers JM et al (2004) Infrared microscopy of epithelial cancer cells in whole tissues and in tissue culture, using synchrotron radiation. Faraday Discuss 126:27–39

    Article  CAS  Google Scholar 

  57. Nasse MJ, Walsh MJ, Mattson EC et al (2011) High-resolution Fourier transform infrared chemical imaging with multiple synchrotron beams. Nat Methods 8:413–416

    Article  CAS  Google Scholar 

  58. Dumas P, Jasmin N, Teillaud JL et al (2004) Imaging capabilities of synchrotron infrared microspectroscopy. Faraday Discuss 126:289–302

    Article  CAS  Google Scholar 

  59. Carr GL, Chubar O, Dumas P (2005) Multichanel detection with a synchrotron light source: design and potential. In: Bhargava R, Levin I (eds) Spectrochemical analysis using multichanel detectors. Analytical chemistry series, chap. 3. Blackwell, Oxford, pp 56–84

    Google Scholar 

  60. Moss D, Gasharova B, Mathis YL (2006) Practical tests of a focal plane array detector microscope at the ANKA-IR beamline. Infrared Phys Technol 49:53–56

    Article  CAS  Google Scholar 

  61. Petibois C, Cestelli-Guidi M, Piccinini M et al (2010) Synchrotron radiation FTIR imaging in minutes: a first step towards real-time cell imaging. Anal Bioanal Chem 397:2123–2129

    Article  CAS  Google Scholar 

  62. Hirschmugl CJ, Gough KM (2012) Fourier transform infrared spectrochemical imaging: review of design and applications with a focal plane array and multiple beam synchrotron radiation source. Appl Spectrosc 66:475–491

    Article  CAS  Google Scholar 

  63. Afseth NK, Kohler A (2012) Extended multiplicative signal correction in vibrational spectroscopy, a tutorial. Chemometr Intel Lab Systems 117:92–99

    Article  CAS  Google Scholar 

  64. Lan T, Fang Y, Xiong W et al (2007) Automatic baseline correction of infrared spectra. Chin Opt Lett 5:613–616

    Google Scholar 

  65. Severcan F, Harris PI (2012) Vibrational spectroscopy in diagnosis and screening. In: advances in biomedical spectrosocpy, Vol. 6. IOS Press

    Google Scholar 

  66. Butler WL, Hopkins DW (1970) An analysis of fourth derivative spectra. Photochem Photobiol 12:451–456

    Article  Google Scholar 

  67. Susi H, Byler DM (1986) Resolution-enhanced Fourier transform infrared spectroscopy of enzymes. Methods Enzymol 130:290–311

    Article  CAS  Google Scholar 

  68. Savitsky A, Golay MJE (1964) Smoothing and Differentiation of Data by Simplified Least Squares Procedures. Anal Chem 36:1627–1639

    Article  Google Scholar 

  69. van de Hulst HC (1981) Light scattering by small particles. Dover, New York

    Google Scholar 

  70. Martens H, Naes T (1989) Multivariate Calibration. Wiley, Chichester

    Google Scholar 

  71. Martens H, Nielsen JP, Engelsen SB (2003) Light scattering and light absorbance separated by extended multiplicative signal correction. Application to near-infrared transmission analysis of powder mixtures. Anal Chem 75:394–404

    Article  CAS  Google Scholar 

  72. Chen ZP, Morris J, Martin E (2006) Extracting chemical information from spectral data with multiplicative light scattering effects by optical path-length estimation and correction. Anal Chem 78:7674–7681

    Article  CAS  Google Scholar 

  73. Kohler A, Sulé-Suso J, Sockalingum GD et al (2008) Estimating and correcting Mie scattering in synchrotron-based micorscopic Fourier transform infrared spectra by extended multiplicative signal correction. Appl Spectrosc 62:259–266

    Article  CAS  Google Scholar 

  74. Martens H, Stark E (1991) Extended multiplicative signal correction and spectral interference subtraction: new preprocessing methods for near infrared spectroscopy. J Pharm Biomed Anal 9:625–635

    Article  CAS  Google Scholar 

  75. Kohler A, Kirschner C, Oust A et al (2005) Extended multiplicative signal correction as a tool for separation and characterization of physical and chemical information in Fourier transform infrared microscopy images of cryo-sections of beef loin. Appl Spectrosc 59:707–716

    Article  CAS  Google Scholar 

  76. Bassan P, Byrne HJ, Bonnier F et al (2009) Resonant Mie scattering in infrared spectroscopy of biological materials-understanding the ‘dispersion artefact’. Analyst 134:1586–1593

    Article  CAS  Google Scholar 

  77. Bassan P, Kohler A, Martens H et al (2010) Resonant Mie scattering (Rimes) correction of infrared spectra from highly scattering biological samples. Analyst 135:268–277

    Article  CAS  Google Scholar 

  78. Bassan P, Kohler A, Martens H et al (2010) Rimes-EMSC correction for infrared spectra of biological cells: extension using full Mie theory and GPU computing. J Biophoton 3:609–620

    Article  CAS  Google Scholar 

  79. Bassan P, Byrne HJ, Lee J et al (2009) Reflection contributions to the dispersion artefact in FTIR spectra of single biological cells. Analyst 134:1171–1175

    Article  CAS  Google Scholar 

  80. Bassan P, Gardner P (2011) Biomedical applications of synchrotron infrared microspectroscopy: a practical approach, Moss D (ed). Royal Society of Chemistry, Cambridge, pp. 260–276

    Google Scholar 

  81. Bassan P, Sachdeva A, Kohler A et al (2012) FTIR microscopy of biological cells and tissue: data analysis using resonant Mie scattering (Rimes) EMSC algorithm. Analyst 137:1370–1377

    Article  CAS  Google Scholar 

  82. Miljkovic M, Bird B, Diem M (2012) Line shape distortion effects in infrared spectroscopy. Analyst 137:3954–3964

    Article  CAS  Google Scholar 

  83. Lasch P, Naumann D (1998) FT-IR microspectroscopic imaging of human carcinoma thin sections based on pattern recognition techniques. Cell Mol Biol 44:189–202

    CAS  Google Scholar 

  84. Lasch P, Haensch W, Lewis EN et al (2002) Characteristion of colorectal adenocarcinoma sections by spatially resolved FT-IR microspectroscopy. App Spectrosc 56:1–9

    Article  CAS  Google Scholar 

  85. Fabian H, Lasch P, Boese M et al (2003) Infrared microspectroscopic imaging of benign breast tumour tissue sections. J Mol Struct 661–662:411–417

    Google Scholar 

  86. Ward JH Jr (1963) Hierarchical grouping to optimize an objective function. J Am Stat Assoc 58:236–244

    Article  Google Scholar 

  87. Vapnik VN, Chervonenkis AYA (1971) On the uniform convergence of relative frequencies of events to their probabilities. Theor Probab Appl 16:264–281

    Article  Google Scholar 

  88. Hush DR, Horne BG (1993) Progress in supervised neural network. IEEE Signal Proc Mag 10:8–39

    Article  Google Scholar 

  89. Walboomers JM, Jacobs MV, Manos MM et al (1999) Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J Pathol 189:12–19

    Article  CAS  Google Scholar 

  90. Poljak M, Kocjan BJ (2010) Commercially available assays for multiplex detection of alpha human papillomaviruses. Expert Rev Anti-infe 8:1139–1162

    Google Scholar 

  91. Wong PTT, Wong RK, Caputo TA et al (1991) Infrared Spectroscopy of Exfoliated human cervical cells: evidence of extensive structural changes during carcinogenesis. Proc Natl Acad Sci U S A 88:10988–10992

    Article  CAS  Google Scholar 

  92. Wood BR, Quinn MA, Burden FR et al (1996) An investigation into FTIR spectroscopy as a biodiagnostic tool for cervical cancer. Biospectroscopy 2:143–153

    Article  CAS  Google Scholar 

  93. Mordechai S, Sahu RK, Hammody Z et al (2004) Possible common biomarkers from FTIR microspectroscopy of cervical cancer and melanoma. J Microsc 215:86–91

    Article  CAS  Google Scholar 

  94. Chiriboga L, Xie P, Lee H et al (1998) Infrared spectroscopy of human tissue. I. Differentiation and maturation of epithelium cells in the human cervix. Biospectroscopy 4:47–53

    Article  CAS  Google Scholar 

  95. Chiriboga L, Xie P, Lee H et al (1998) Infrared spectroscopy of human cells and tissues: IV. Detection of dysplastic and neoplastic changes in human cervical tissue via infrared microscopy. Cell Mol Biol 44:219–229

    CAS  Google Scholar 

  96. Chiriboga L, Xie P, Vigorita P et al (1998) Infrared spectroscopy of human tissue: II. A comparative study of spectra of biopsies of cervical squamous epithelium and of exfoliated cervical cells. Biospectroscopy 4:55–59

    Article  CAS  Google Scholar 

  97. Wood BR, Quinn MA, Tait B et al (1998) FTIR microspectroscopic study of cell types and potential confounding variable in screening for cervical malignancies. Biospectroscopy 4:75–91

    Article  CAS  Google Scholar 

  98. Diem M, Chiriboga L, Lasch P et al (2002) IR spectra and IR spectral maps of individual normal and cancerous cells. Biopolymers 67:349–353

    Article  CAS  Google Scholar 

  99. Chang JI, Huang YB, Wu PC et al (2003) Characterization of human cervical precancerous tissue through the Fourier transform infrared microscopy with mapping method. Gynecol Oncol 91:577–583

    Article  Google Scholar 

  100. Wood BR, Chiriboga L, Yee H et al (2004) Fourier transform infrared (FTIR) spectral mapping of the cervical transformation zone and dysplastic squamous epithelium. Gynecol Oncol 93:59–68

    Article  CAS  Google Scholar 

  101. Steller W, Einenkel J, Horn LC et al (2006) Delimitation of squamous cell cervical carcinoma using infrared microspectroscopic imaging. Anal Bioanal Chem 384:145–154

    Article  CAS  Google Scholar 

  102. Mark S, Sahu RK, Kantarovich K et al (2004) Fourier transform infrared microspectroscopy as a quantitative diagnostic tool for assignment of premalignancy grading in cervical neoplasia. J Biomed Opt 9:558–567

    Article  CAS  Google Scholar 

  103. Podshyvalov A, Sahu RK, Mark S et al (2005) Distinction of cervical cancer biopsies by use of infrared microspectroscopy and probabilistic neural networks. Appl Opt 44:3725–3734

    Article  CAS  Google Scholar 

  104. Bogomolny E, Argov S, Mordechai S et al (2008) Monitoring of viral cancer progression using FTIR microscopy: a comparative study of intact cells and tissues. Biochim Biophys Acta 1780:1038–1046

    Google Scholar 

  105. Kelly JG, Cheung KT, Martin C et al (2010) A spectral phenotype of oncogenic human papillomavirus-infected exfoliative cervical cytology distinguishes women based on age. Clin Chim Acta 411:1027–1033

    Article  CAS  Google Scholar 

  106. Ostrowska KM, Garcia A, Meade AD et al (2011) Correlation of p16INK4A expression and HPV copy number with cellular FTIR spectroscopic signatures of cervical cancer cells. Analyst 136:1365–1373

    Article  CAS  Google Scholar 

  107. Cohenford MA, Godwin TA, Cahn F et al (1997) Infrared spectroscopy of normal and abnormal cervical smears: evaluation by principal component analysis. Gynecol Oncol 66:59–65

    Article  CAS  Google Scholar 

  108. El-Tawil SG, Adnan R, Muhamed ZN, Othman NH (2008) Comparative study between Pap smear cytology and FTIR spectroscopy: a new tool for screening for cervical cancer. Pathology 40:600–603

    Article  Google Scholar 

  109. Petter CH, Heigl N, Rainer M et al (2009) Development and application of Fourier-transform infrared chemical imaging of tumor in human tissue. Curr Med Chem 16:318–326

    Article  CAS  Google Scholar 

  110. Rigas B, LaGuardia K, Qiao L et al (2000) Infrared spectroscopic study of cervical smears in patients with HIV: implications for cervical carcinogenesis. J Lab Clin Med 135:26–31

    Article  CAS  Google Scholar 

  111. Sindhuphak R, Issaravanich S, Udomprasertgul V, Srisookho P, Warakamin S, Sindhuphak S, Boonbundarlchai R, Dusitsin N (2003) A new approach for the detection of cervical cancer in Thai women. Gynecol Oncol 90:10–14

    Article  Google Scholar 

  112. Walsh MJ, Singh MN, Pollock HM et al (2007) ATR microspectroscopy with multivariate analysis segregates grades of exfoliative cervical cytology. Biochem Biophys Res Commun 352:213–219

    Article  CAS  Google Scholar 

  113. Schubert JM, Bird B, Papamarkakis K et al (2010) Spectral cytopathology of cervical samples: detecting cellular abnormalities in cytologically normal cells. Lab Invest 90:1068–1077

    Article  Google Scholar 

  114. Krishna CM, Sockalingum GD, Vadhiraja BM et al (2007) Vibrational spectroscopy studies on formalin-fixed cervix tissues. Biopolymers 85:214–221

    Article  CAS  Google Scholar 

  115. Steiner G, Shaw A, Choo-Smith LP et al (2003) distinguishing and grading human gliomas by IR spectroscopy. Biopolymers 72:464–471

    Article  CAS  Google Scholar 

  116. Beleteis C, Steiner G, Sowa MG et al (2005) Classification of human gliomas by infrared imaging spectroscopy and chemometric image processing. Vib Spectrosc 38:143–149

    Article  CAS  Google Scholar 

  117. Krafft C, Thümmler K, Sobottka SB et al (2006) Classification of malignant gliomas by infrared spectroscopy and linear discriminant analysis. Biopolymers 82:301–305

    Article  CAS  Google Scholar 

  118. Amharref N, Beljebbar A, Dukic S et al (2006) Brain tissue characterization by infrared imaging in a rat glioma model. Biochim Biophys Acta 1758:892–899

    Google Scholar 

  119. Krafft C, Shapoval L, Sobottka SB et al (2006) Identification of primary tumors of brain metastases by SIMCA classification of IR spectroscopic images. Biochim Biophys Acta 1758:883–891

    Google Scholar 

  120. Bambery KR, Schültke E, Wood BR et al (2006) A Fourier transform infrared microspectroscopic imaging investigation into an animal model exhibiting glioblastoma multiforme. Biochim Biophys Acta 1758:900–907

    Google Scholar 

  121. Krafft C, Kirsch M, Beleites et al (2007) Methodology for fiber-optic Raman and FTIR imaging of metastates in mouse brain. Anal Bioanal Chem 389:1133–1142

    Google Scholar 

  122. Ali K, Lu Y, Christensen C et al (2008) Fourier transform infrared spectromicroscopy and hierarchical cluster analysis of human meningiomas. Int J Mol Med 21:297–301

    CAS  Google Scholar 

  123. Beljebbar A, Amharref N, Leveques A et al (2008) Modeling and quantifying biochemical changes in C6 tumor gliomas by Fourier transform infrared imaging. Anal Chem 80:8406–8415

    Article  CAS  Google Scholar 

  124. Sobottka SB, Geiger KD, Salzer R et al (2009) Suitability of infrared spectroscopic imaging as an intraoperative tool in cerebral glioma surgery. Anal Bioanal Chem 393:187–195

    Article  CAS  Google Scholar 

  125. Beljebbar A, Dukic S, Amharref N et al (2010) Screening of biochemical/histological changes associated to C6 glioma tumor development by FTIR/PCA imaging. Analyst 135:1090–1097

    Article  CAS  Google Scholar 

  126. Choo LP, Wetzel DL, Halliday WC et al (1996) In situ characterization of β-amyloid in Alzheimer’s diseased tissue by synchrotron Fourier transform infrared microspectrometry. Biophys J 71:1672–1679

    Article  CAS  Google Scholar 

  127. Miller LM, Wang Q, Telivala TP et al (2006) Synchrotron-based infrared and X-ray imaging shows focalized accumulation of Cu and Zn co-localized with β-amyloid deposits in Alzheimer’s disease. J Struct Biol 155:30–37

    Article  CAS  Google Scholar 

  128. Leskovjan AC, Lanzirotti A, Miller LM (2009) Amyloid plaques in PSAPP mice bind less metal than plaques in human Azheimer’s disease. NeuroImage 47:1215–1220

    Article  Google Scholar 

  129. Leskovjan AC, Kretlow A, Miller LM (2010) Fourier transform infrared imaging showing reduced unsaturated lipid content in the hippocampus of a mouse model of Alzheimer’s disease. Anal Chem 82:2711–2716

    Article  CAS  Google Scholar 

  130. Gallant M, Rak M, Szeghalmi A et al (2006) Focally elevated creatine detected in amyloid precursor protein (APP) transgenic mice and Alzheimer disease brain tissue. J Biol Chem 281:5–8

    Article  CAS  Google Scholar 

  131. Kuzyk A, Kastyak M, Agrawal V et al (2010) Association among amyloid plaque, lipid, and creatine in hippocampus of TgCRND8 mouse model for Alzheimer disease. J Biol Chem 285:31202–31207

    Article  CAS  Google Scholar 

  132. Rak M, Del Bigio MR, Mai S et al (2007) Dense-core and diffuse Aβ plaques in TgCRND8 mice studied with synchrotron FTIR microspectroscopy. Biopolymers 87:207–217

    Article  CAS  Google Scholar 

  133. Kastyak-Ibrahim MZ, Nasse MJ, Rak M et al (2012) Biochemical label-free tissue imaging with subcellular-resolution synchrotron FTIR with focal array detector. NeuroImage 60:376–383

    Article  CAS  Google Scholar 

  134. Chwiej J, Dulinska J, Janeczko K et al (2010) Synchrotron FTIR micro-spectroscopy study of the rat hippocampal formation after pilocarpine-evoked seizures. J Chem Neuroanat 40:140–147

    Article  CAS  Google Scholar 

  135. Dulinska J, Setkowicz Z, Janeczko K et al (2012) Synchrotron radiation Fourier-transform infrared and Raman microspectroscopy study showing an increased frequency of creatine inclusions in the rat hippocampal formation following pilocarpine-evoked seizures. Anal Bioanal Chem 402:2267–2274

    Article  CAS  Google Scholar 

  136. Kastyak MZ, Szczerbowska-Boruchowska M, Adamek D et al (2010) Pigmented creatine deposits in amyotrophic lateral sclerosis nervous system tissues identified by synchrotron Fourier transform infrared microspectroscopy and X-ray fluorescence spectromicroscopy. Neuroscience 166:1119–1128

    Article  CAS  Google Scholar 

  137. Szczebowska-Boruchowska M, Dumas P, Kastyak MZ et al (2007) Biomolecular investigation of human substantia nigra in Parkinson’s disease by synchrotron radiation Fourier transform infrared microspectroscopy. Arch Biochem Biophys 459:241–248

    Article  CAS  Google Scholar 

  138. Choo LP, Jackson M, Halliday WC (1993) Infrared spectroscopic characterization of multiple sclerosis plaques in the human central nervous system. Biochim Biophys Acta 1182:333–337

    Google Scholar 

  139. LeVine SM, Wetzel DL (1998) Chemical analysis of multiple lesions by FT-IR microspectroscopy. Free Rad Biol Med 25:33–41

    Article  CAS  Google Scholar 

  140. Heraud P, Caine S, Campanale N et al (2010) Early detection of the chemical changes occurring during the induction and prevention of autoimmune-mediated demyelination detected by FT-IR imaging. NeuroImage 49:1180–1189

    Article  Google Scholar 

  141. Pan KM, Baldwin M, Nguyen et al (1993) Conversion of alpha helices into beta-sheets features in the formation of the scrapie prion proteins. Proc Natl Acad Sci U S A 90: 10962–10966

    Article  CAS  Google Scholar 

  142. Kneipp J, Beekes M, Lasch P et al (2002) Molecular changes of preclinical scrapie can be detected by infrared spectroscopy. J Neurosci 22:2989–2997

    CAS  Google Scholar 

  143. Kneipp J, Miller LM, Joncic M et al (2003) In situ identification of protein structural changes in prion-infected tissue. Biochim Biophys Acta 1639:152–158

    Google Scholar 

  144. Kretlow A, Wang Q, Kneipp J et al (2006) FTIR-microspectroscopy of prion-infected nervous tissue. Biochom Biophys Acta 1758:948–959

    Google Scholar 

  145. Liu KZ, Jackson M, Sowa MG et al (1996) Modification of the extracellular matrix following myocardial infarction monitored by FTIR spectroscopy. Biochim Biophys Acta 1315: 73–77

    Google Scholar 

  146. Liu KZ, Dixon IMC, Mantsch HH (1999) Distribution of collagen deposition in cardiomyopathic hamster hearts determined by infrared microscopy. Cardiovasc Pathol 8:41–47

    Article  CAS  Google Scholar 

  147. Gough KM, Zelinski D, Wiens R et al (2003) Fourier transform infrared evaluation of microscopic scarring in the cardiomyopathic heart: effect of chronic AT1 suppression. Anal Biochem 316:232–242

    Article  CAS  Google Scholar 

  148. Cheheltani R, Rosano JM, Wang B et al (2012) Fourier transform infrared spectroscopic imaging of cardiac tissue to detect collagen deposition after myocardial infarction. J Biomed Opt 17:056014-1–056014-9

    Google Scholar 

  149. Wang Q, Sanad W, Miller LM et al (2005) Infrared imaging of compositional changes in inflammatory cardiomyopathy. Vib Spectrosc 38:217–222

    Article  CAS  Google Scholar 

  150. Toyran N, Lasch P, Naumann D et al (2006) Early alternations in myocardia and vessels of the diabetic rat heart: an FTIR microspectroscopic study. Biochem J 397:427–436

    Article  CAS  Google Scholar 

  151. Zohdi V, Wood BR, Pearson JT et al (2012) Evidence of altered biochemical composition in the hearts of adult intrauterine growth-restricted rats. Eur J Nutr. doi:10.1007/s00394-012-0381-x

    Google Scholar 

  152. Chiriboga L, Yee H, Diem M (2000) Infrared spectroscopy of human cells and tissue. Part VI: a comparative study of histopathology and infrared microspectroscopy of normal, cirrhotic, and cancerous liver tissue. App Spectrosc 54:1–8

    Article  CAS  Google Scholar 

  153. Chiriboga L, Yee H, Diem M (2000) Infrared spectroscopy of human cells and tissue. Part VII: FT-IR microspectroscopy of DNase- and RNase-treated normal, cirrhotic, and neoplastic liver tissue. App Spectrosc 54:480–485

    Article  CAS  Google Scholar 

  154. Liu KZ, Man A, Shaw RA et al (2006) Molecular determination of liver fibrosis by synchrotron infrared microspectroscopy. Biochim Biophys Acta 1758:960–967

    Google Scholar 

  155. Le Naour F, Bralet MP, Debois D et al (2009) Chemical imaging on liver steatosis using synchrotron infrared and ToF-SIMS microspectroscopies. PLoS ONE 4:e7408

    Article  CAS  Google Scholar 

  156. Gautam R, Chandrasekar B, Deobagkar-Lele M et al (2012) Identification of early biomarkers during acetaminophen-induced hepatotoxicity by Fourier transform infrared microspectroscopy. PLoS ONE 7:e45521

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Dr. B.R. Wood is financially supported by an Australian Research Council Future Fellowship FT120100926.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamilla Malek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Malek, K., Wood, B., Bambery, K. (2014). FTIR Imaging of Tissues: Techniques and Methods of Analysis. In: Baranska, M. (eds) Optical Spectroscopy and Computational Methods in Biology and Medicine. Challenges and Advances in Computational Chemistry and Physics, vol 14. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7832-0_15

Download citation

Publish with us

Policies and ethics