Skip to main content

Abstract

We show that to any Poisson manifold and, more generally, to any triangular Lie bialge-broid in the sense of Mackenzie and Xu, there correspond two differential Gerstenhaber algebras in duality, one of which is canonically equipped with an operator generating the graded Lie algebra bracket, i.e. with the structure of a Batalin-Vilkovisky algebra.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bhaskara, K. H. and Viswanath, K.: Calculus on Poisson manifolds, Bull. London Math. Soc. 20 (1988), 68–72.

    Article  MathSciNet  MATH  Google Scholar 

  2. Coste, A., Dazord, P., and Weinstein, A.: Groupoides symplectiques, Pubi. Dép. Math. Univ. Lyon I, 2A (1987).

    Google Scholar 

  3. Drinfeld, V. G.: Hamiltonian structures on Lie groups, Lie bialgebras and the geometric meaning of the classical Yang-Baxter equation, Soviet. Math. Dokl. 27(1) (1983), 68–71. (In Russian, Dokl. Akad. Nauk SSSR 268(2) (1983).)

    Google Scholar 

  4. Drinfeld, V. G.: Quantum groups, Proc. Internat. Congr. Math. (Berkeley, 1986), Vol. 1, Amer. Math. Soc, Providence, 1987, pp. 798–820.

    Google Scholar 

  5. Gelfand, I. M. and Dorfman, I. Ya.: Hamiltonian operators and the classical Yang-Baxter equation, Funct. Anal. Appi. 16 (4) (1982), 241–248.

    MathSciNet  Google Scholar 

  6. Gerstenhaber, M.: The cohomology structure of an associative ring, Ann. Math. 78 (1963), 267–288.

    Article  MathSciNet  MATH  Google Scholar 

  7. Gerstenhaber, M. and Schack, S. D.: Algebraic cohomology and deformation theory, in M. Hazewinkel and M. Gerstenhaber (eds), Deformation Theory of Algebras and Structures and Applications, Kluwer, Dordrecht, 1988, pp. 11–264.

    Google Scholar 

  8. Gerstenhaber, M. and Schack, S. D.: Algebras, bialgebras, quantum groups and algebraic deformations, in M. Gerstenhaber and J. Stasheff (eds), Deformation Theory and Quantum Groups with Applications to Mathematical Physics, Contemporary Mathematics 134, Amer. Math. Soc, Providence, 1992, pp. 51–92.

    Google Scholar 

  9. Getzler, E.: Batalin-Vilkovisky algebras and two-dimensional topological field theories, Comm. Math. Phys. 159 (1994), 265–285.

    Article  MathSciNet  MATH  Google Scholar 

  10. Huebschmann, J.: Poisson cohomology and quantization, J. Reine Angew. Math. 408 (1990), 57–113.

    Article  MathSciNet  MATH  Google Scholar 

  11. Karasev, M. V.: Analogues of the objects of Lie group theory for nonlinear Poisson brackets, Math. USSR Izv. 28(3) (1987), 497–527. (In Russian, Izvestyia 50 (1986).)

    Google Scholar 

  12. Kosmann-Schwarzbach, Y.: Jacobian quasi-bialgebras and quasi-Poisson Lie groups, in M. Gotay, J. e. Marsden, and V. Moncrief (eds), Mathematical Aspects of Classical Field Theory, Contemporary Mathematics 132, Amer. Math. Soc, Providence, 1992, pp. 459–489.

    Google Scholar 

  13. Kosmann-Schwarzbach, Y. and Magri, F.: Poisson-Nijenhuis structures, Ann. Inst. Henri Poincaré A 53 (1) (1990), 35–81.

    MathSciNet  MATH  Google Scholar 

  14. Kosmann-Schwarzbach, Y, and Magri, F.: Dualization and deformation of Lie brackets on Poisson manifolds, in J. Janyska and D. Krupka (eds), Differential Geometry and its Applications (Brno, 1989 ), World Scientific, Singapore, 1990, pp. 79–84.

    Google Scholar 

  15. Koszul, J.-L.: Crochet de Schouten-Nijenhuis et cohomologie, in ’Elie Carton et les mathématiques d’aujourd’huï, Astérisque, n° hors série, Soc. Math. Fr., 1985, pp. 257–271.

    Google Scholar 

  16. Krasilshchik, L: Schouten brackets and canonical algebras, in Global Analysis III, Lecture Notes Math. 1334, Springer-Verlag, Berlin, 1988, pp. 79–110.

    Google Scholar 

  17. Krasilshchik, L: Supercanonical algebras and Schouten brackets, Mat. Zametki 49 (1991), 70–76.

    MathSciNet  Google Scholar 

  18. Lian, B. H. and Zuckerman, G. J.: New perspectives on the BRST-alfebraic structure of string theory, Comm. Math. Phys. 154 (1993), 613–646.

    Article  MathSciNet  MATH  Google Scholar 

  19. Mackenzie, K.: Lie Groupoids and Lie Algebroids in Differential Geometry, London Math. Soc. Lect. Notes Series 124, Cambridge University Press, Cambridge, 1987.

    Google Scholar 

  20. Mackenzie, K. C. H. and Ping Xu: Lie bialgebroids and Poisson groupoids, Duke Math. J. 73 (1994), 415–452.

    MATH  Google Scholar 

  21. Magri, F. and Morosi, C: A geometrical characterization of integrable Hamiltonian systems through the theory of Poisson-Nijenhuis manifolds, Quaderno S 19 (1984), University of Milan.

    Google Scholar 

  22. Palais, R. S.: The Cohomology of Lie Rings, Proc. Symp. Pure Math. 3, Amer. Math. Soc, Providence, 1961, pp. 130–137.

    Google Scholar 

  23. Penkava, M. and Schwarz, A.: On some algebraic structures arising in string theory, Preprint hep-th/912071.

    Google Scholar 

  24. Pradines, J.: Théorie de Lie pour les groupoïdes différentiables. Calcul différentiel dans la catégorie des groupoïdes infinitésimaux, CR. Acad. Sci. Paris, Série A 264 (1967), 245–248.

    MathSciNet  MATH  Google Scholar 

  25. Roger, C: Algebres de Lie graduées et quantification, in P. Donato et al. (eds), Symplectic Geometry and Mathematical Physics, Progress in Mathematics 99, Birkhäuser, Boston, 1991, pp. 374–421.

    Google Scholar 

  26. Vaisman, I.: Lectures on the Geometry of Poisson Manifolds, Progress in Mathematics 118, Birkhäuser, Boston, 1994.

    Google Scholar 

  27. Vaisman, I.: Poisson-Nijenhuis structures revisited, Rendiconti Sem. Mat. Torino 52 (1994).

    Google Scholar 

  28. Weinstein, A.: Some remarks on dressing transformations, J. Fac. Sci. Univ. Tokyo, IA, Math. 35 (1988), 163–167.

    MATH  Google Scholar 

  29. Zwiebach, B.: Closed string theory: an introduction, Preprint hep-th/9305026.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Kluwer Academic Publishers

About this chapter

Cite this chapter

Kosmann-Schwarzbach, Y. (1995). Exact Gerstenhaber Algebras and Lie Bialgebroids. In: Kersten, P.H.M., Krasil’Shchik, I.S. (eds) Geometric and Algebraic Structures in Differential Equations. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0179-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0179-7_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6565-8

  • Online ISBN: 978-94-009-0179-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics