Skip to main content

Part of the book series: NATO ASI Series ((ASIC,volume 321))

Abstract

Gravity waves in the southern hemisphere exhibit many of the same characteristics as those in the northern hemisphere in terms of their scales, amplitude growth with height, and influences on the lower and middle atmosphere. Yet there are likely to be significant differences in the wave spectra and their effects as well, due to differing source distributions and strengths in the two hemispheres. Presented here will be a brief review of our current understanding of gravity wave saturation processes and effects, and of the evidence for and likely sources of wave variability, in both hemispheres. We will then examine some of the evidence for hemispheric differences in gravity wave sources, energies, drag, and induced diffusion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andrews, D.G., and M.E. McIntyre, 1978: An exact theory of nonlinear waves on a Lagrangian mean flow, J. Fluid Mech., 89, 609–646.

    Article  Google Scholar 

  • Balachandran, N.K., 1980: Gravity waves from thunderstorms, Mon. Wea. Rev., 108, 804–816.

    Article  Google Scholar 

  • Balsley, B.B., and D.A. Carter, 1982: The spectrum of atmospheric velocity fluctuations at 8 and 86 km, Geophys. Res. Lett., 9, 465–468.

    Article  Google Scholar 

  • Balsley, B.B., and R. Garello, 1985: The kinetic energy density in the troposphere, stratosphere and mesosphere: A preliminary study using the Poker Flat radar in Alaska, Radio Sci., 20, 1355–1362.

    Article  Google Scholar 

  • Chanin, M.-L., and A. Hauchecorne, 1987: Lidar sounding of the structure and dynamics of the middle atmosphere. A review of recent results relevant to transport processes, Transport Processes in the Middle Atmsophere, NATO Advanced Studies Workshop, G. Visconti and R. Garcia, eds., 459–477.

    Google Scholar 

  • Chao, W.C., and M.R. Schoeberl, 1984: A note on the linear approximation of gravity wave saturation in the mesosphere, J. Atmos. Sci., 41., 1893–1898.

    Article  Google Scholar 

  • Chimonas, G., and J.R. Grant, 1984: Shear excitation of gravity waves. Part II: Upscale scattering from Kelvin-Helmholtz waves, J. Atmos. Sci., 41, 2278–2288.

    Article  Google Scholar 

  • Coy, L., and D.C. Fritts, 1988: Gravity wave heat fluxes: A Lagrangian approach, J. Atmos. Sci., 45, 1770–1780.

    Article  Google Scholar 

  • Curry, J.M., and R.C. Murty, 1974: Thunderstorm-generated gravity waves, J. Atmos. Sci., 31, 1402–1408.

    Article  Google Scholar 

  • Davis, P.A., and W.R. Peltier, 1976: Resonant parallel shear instability in the stably stratified planetary bondary layer, J. Atmos. Sci., 33, 1287–1300.

    Article  Google Scholar 

  • Dewan, E.M., and R.E. Good, 1986: Saturation and the “universal” spectrum for vertical profiles of horizontal scalar winds in the atmosphere, J. Geophys. Res., 91, 2742–2748.

    Article  Google Scholar 

  • Dong, B., and K.C. Yeh, 1988: Resonant and nonresonant wave-wave interactions in an isothermal atmosphere, J. Geophvs. Res., 93, 3729–3744.

    Article  Google Scholar 

  • Dunkerton, T.J., 1984: Inertio-gravity waves in the stratosphere, J. Atmos. Sci., 41, 3396–3404.

    Article  Google Scholar 

  • Dunkerton, T.J., 1987: Effect of nonlinear instability on gravity wave momentum transport, J. Atmos. Sci., 44, 3188–3209.

    Article  Google Scholar 

  • Dunkerton, T.J., 1989: Theory of internal gravity wave saturation, Pure Apl. Geophys., in press.

    Google Scholar 

  • Dunkerton, T.J., and N. Butchart, 1984: Propagation and selective transmission of gravity waves in a sudden warming, J. Atmos. Sci., 41, 1443–1460.

    Article  Google Scholar 

  • Ecklund, W.L., K.S. Gage, B.B. Balsley, R.G. Strauch, and J.L. Green, 1982: Vertical wind variability observed by VHF radar in the lee ofthe Colorado Rockies, Mon. Wea. Rev., 110, 1451–1457.

    Article  Google Scholar 

  • Einaudi, F., W.L. Clark, D. Fua, J.L. Green, and T.E. Van Zandt, 1987: Gravity waves and convection in Colorado during July 1983, J. Atmos. Sci., 44, 1534–1553.

    Article  Google Scholar 

  • Eliassen, A., and E. Palm, 1960: On the transfer of energy in stationary mountain waves, Geophvs. Publ., 22, 1–20.

    Google Scholar 

  • Fritts, D.C., 1984a: Gravity wave saturation in the middle atmosphere: A review of theory and observations, Rev. Geophvs. Space Phys., 22, 275–308.

    Article  Google Scholar 

  • Fritts, D.C., 1984b: Shear excitation of atmospheric gravity waves. Part II: Nonlinear radiation from a free shear layer, J. Atmos. Sci., 41, 524–537.

    Article  Google Scholar 

  • Fritts, D.C., 1985: A numerical study of gravity wave saturation: Nonlinear and multiple wave effects, J. Atmos. Sci., 42, 2043–2058.

    Article  Google Scholar 

  • Fritts, D.C., 1989: A review of gravity wave saturation processes, effects, and variability in the middle atmosphere, Pure Appl. Geophys., 130, 343–371.

    Article  Google Scholar 

  • Fritts, D.C., R.C. Blanchard, and L. Coy, 1989a: Gravity wave structure between 60 and 90 km inferred from space shuttle re-entry data, J. Atmos. Sci., 46, 423–434.

    Article  Google Scholar 

  • Fritts, D.C., and T.J. Dunkerton, 1985: Fluxes of heat and constituents due to convectively unstable gravity waves, J. Atmos. Sci., 42, 549–556.

    Article  Google Scholar 

  • Fritts, D.C., and P.K. Rastogi, 1985: Convective and dynamical instabilities due to gravity wave motions in the lower and middle atmosphere: Theory and observations, Radio Sci., 20, 1247–1277.

    Article  Google Scholar 

  • Fritts, D.C., S.A. Smith, B.B. Balsley, and C.R. Philbrick, 1988b: Evidence of gravity wave saturation and local turbulence production in the summer mesosphere and lower thermosphere during the STATE experiment, J. Geophvs. Res., 93, 7015–7025.

    Article  Google Scholar 

  • Fritts, D.C., T. Tsuda, T. Sato, S. Fukao, and S. Kato, 1988a: Observational evidence of a saturated gravity wave spectrum in the troposphere and lower stratosphere, J. Atmos. Sci., 45, 1741–1759.

    Article  Google Scholar 

  • Fritts, D.C., T. Tsuda, T.E. Van Zandt, S.A. Smith, T. Sato, S. Fukao, and S. Kato, 1989b: Studies of velocity fluctuations in the lower atmosphere using the MU radar II. Momentum fluxes and energy densities, J. Atmos. Sci., in press.

    Google Scholar 

  • Fritts, D.C., and R.A. Vincent, 1987: Mesospheric momentum flux studies at Adelaide, Australia: Observations and a gravity wave/tidal interaction model, J. Atmos. Sci., 44, 605–619.

    Article  Google Scholar 

  • Fritts, D.C., and L. Yuan, 1989a: A stability analysis of inertio-gravity wave structure in the middle atmosphere, J. Atmos. Sci., in press.

    Google Scholar 

  • Fritts, D.C., and L. Yuan, 1989b: Measurement of momentum fluxes near the summer mesopause at Poker Flat, Alaska, submitted to J. Atmos. Sci.

    Google Scholar 

  • Garcia, R.R., and S. Solomon, 1985: The effect of breaking gravity waves on the dynamical and chemical composition of the mesosphere and lower thermosphere, J. Geophvs. Res., 90, 3850–3868.

    Article  Google Scholar 

  • Hines, C.O., 1971: Generalizations of the Richardson number criterion for the onset of atmospheric turbulence, Quart. J. Roy. Met. Soc., 97, 429–439.

    Article  Google Scholar 

  • Hines, C.O., 1988: The generation of turbulence by atmospheric gravity waves, J. Atmos. Sci., 45, 1269–1278.

    Article  Google Scholar 

  • Hirota, I., 1984: Climatology of gravity waves in the middle atmosphere, Dynamics of the Middle Atmosphere,, J.R. Holton and T. Matsuno, Eds., 65–76.

    Google Scholar 

  • Hodges, R.R., Jr., 1967: Generation of turbulence in the upper atmosphere by internal gravity waves, J. Geophvs. Res., 72, 3455–3458.

    Article  Google Scholar 

  • Holton, J.R., 1982: The ole of gravity wave-induced drag and diffusion in the momentum budget of the mesospnere, J. Atmos. Sci., 39, 791–799.

    Article  Google Scholar 

  • Holton, J.R., 1983: The influence of gravity wave breaking on the general circulation of the middle atmosphere, J. Atmos. Sci., 40, 2497–2507.

    Article  Google Scholar 

  • Holton, J.R., 1984: The generation of mesospheric planetary waves by zonally asymmetric gravity wave breaking, J. Atmos. Sci., 41, 3427–3430.

    Article  Google Scholar 

  • Hooke, W.H., and K.R. Hardy, 1975: Further study of the atmospheric gravity waves over the eastern seaboard on 18 March 1969, J. Appl. Meteor., 14, 31–38.

    Article  Google Scholar 

  • Inhester, B., 1987: The effect of inhomogeneities on the resonant parametric interaction of gravity waves in the atmosphere, Ann. Geophvs., 87, 209–217.

    Google Scholar 

  • Labitzke, K., A.H. Manson, J.J. Barnett, and M. Corney, 1987: Comparison of geostrophic and observed winds in the upper mesosphere over Saskatoon, Canada, J. Atmos. Terres. Phys., 49, 987–997.

    Article  Google Scholar 

  • Lalas, D.P., and F. Einaudi, 1976: On characteristics of gravity waves generated by atmospheric shear layers, J. Atmos. Sci., 33, 1248–1259.

    Article  Google Scholar 

  • Lilly, D.K., and P.J. Kennedy, 1973: Observations of a stationary mountain wave and its associated momentum flux and energy dissipation, J. Atmos. Sci., 30, 1135–1152.

    Article  Google Scholar 

  • Lindzen, R.S., 1981: Turbulence and stress due to gravity wave and tidal breakdown, J. Geophys. Res., 86, 9707–9714.

    Article  Google Scholar 

  • Lindzen, R.S., and K.K. Tung, 1976: Banded convective activity and ducted gravity waves, Mon. Wea. Rev., 104, 1602–1617.

    Article  Google Scholar 

  • Lu, D., T.E. Van Zandt, and W.L. Clark, 1984: VHF Doppler radar observations of buoyancy waves induced by thunderstorms, J. Atmos. Sci., 41, 272–282.

    Article  Google Scholar 

  • McFarlane, N.A., 1987: The effect of orographically excited gravity wave drag on the general circulation of the lower stratosphere and troposphere, J. Atmos. Sci., 44, 1775–1800.

    Article  Google Scholar 

  • McIntyre, M.E., 1989: On dynamics and transport near the polar mesopause in summer, J. Geophys. Res., in press.

    Google Scholar 

  • McIntyre, M.E., and M.A. Weissman, 1978: On radiating instabilities and resonant over-reflection, J. Atmos. Sci., 35, 1190–1196.

    Article  Google Scholar 

  • Meek, C.E., I.M. Reid and A.H. Manson, 1985: Observations of mesospheric wind velocities. II. Cross sections of power spectral density for 48-8h, 8-1h, 1h-10 min over 60–110 km for 1981, Radio Sci., 20, 1383–1402.

    Article  Google Scholar 

  • Miyahara, S., Y. Hayashi, and J.D. Mahlman, 1986: Interactions between gravity waves and the planetary scale flow simulated by the GFDL “SKYHI” general circulation model, J. Atmos. Sci., 43, 1844–1861.

    Article  Google Scholar 

  • Muller, P., G. HoUoway, F. Henyey, and N. Pomphrey, 1986: Nonlinear interactions among internal gravity waves, Rev. Geophys., 24, 493–536.

    Article  Google Scholar 

  • Muraoka, Y., T. Sugiyam, K. Kawahira, T. Sato, T. Tsuda, S. Fukao, and S. Kato, 1988: Formation of mesospheric VHF echoing layers due to a gravity wave motion, J. Atmos. Terres. Phys., 50, 819–829.

    Article  Google Scholar 

  • Nastrom, G.D., D.C. Fritts, and K.S. Gage, 1987: An investigation of terrain effects on the mesoscale spectrum of atmospheric motions, J. Atmos. Sci., 44, 3087–3096.

    Article  Google Scholar 

  • Palmer, T.N., G.J. Shutts, and R. Swinbank, 1986: Alleviation of a systematic westerly bias in general circulation and numerical weather prediction models through an orographic gravity wave drag parameterization, Quart. J. Roy. Met. Soc., 112, 1001–1040.

    Article  Google Scholar 

  • Reid, I.M., R. Ruster, P. Czechowsky, and G. Schmidt, 1988: VHF radar measurements of momentum flux in the summer polar mesosphere over Andenes (69°N, 16°E), Norway, Geophys. Res. Lett., 11., 1263–1266.

    Article  Google Scholar 

  • Reid, I.M., R. Ruster, and G. Schmidt, 1987: VHF radar observations of cat’s-eye-like structures at mesospheric heights, Nature, 327, 43–45.

    Article  Google Scholar 

  • Reid, I.M., and R.A. Vincent, 1987: Measurements of mesospheric gravity wave momentum fluxes and mean flow accelerations at Adelaide, Australia, J. Atmos. Terres. Phys., 49, 443–460.

    Article  Google Scholar 

  • Rind D., R. Suozzo, N. K. Balachandran, A. Lacis, and G. Russell, 1988: The GISS global climate — middle atmosphere model, Part II: Model variability due to interactions between planetary waves, the mean circulation and gravity wave drag, J. Atmos. Sci., 45, 371–386.

    Article  Google Scholar 

  • Ruster, R., and I.M. Reid, 1989: VHF radar observations of the dynamics of the summer polar mesopause region, J. Geophys. Res., in press.

    Google Scholar 

  • Schoeberl, M.R., and D.F. Strobel, 1984: Nonzonal gravity wave breaking in the winter mesosphere, Dynamics of the Middle Atmosphere, J.R. Holton and T. Matsuno, Eds., 45–64.

    Google Scholar 

  • Sidi, C., and J. Barat, 1986: Observational evidence of an inertial wind structure in the stratosphere, J. Geophys. Res., 91, 1209–1217.

    Article  Google Scholar 

  • Smith, A.K., and L.V. Lyjak, 1985: An observational estimate of gravity wave drag from the momentum balance in the middle atmosphere, J. Geophvs. Res., 90, 2233–2241.

    Article  Google Scholar 

  • Smith, S.A., D.C. Fritts, and T.E. Van Zandt, 1987: Evidence for a saturated spectrum of atmospheric gravity waves, J. Atmos. Sci., 44, 1404–1410.

    Article  Google Scholar 

  • Strobel, D.F., M.E. Summers, R.M. Bevilacqua, M.T. DeLand, and M. Allen, 1987: Vertical constituent transport in the mesosphere, J. Geophvs. Res., 92, 6691–6698.

    Article  Google Scholar 

  • Taylor, M.J., and M.A. Hapgood, 1988: Identification of a thunderstorm as a source of short period gravity waves in the upper atmospheric nightglow emissions, Planet. Space Sci., 36, 975–985.

    Article  Google Scholar 

  • Thrane, E.V., T.A. Blix, C. Hall, T.L. Hansen, U. von Zahn, W. Meyer, P. Czechowsky, G. Schmidt, H.-U. Widdel, and A. Neumann, 1987: Small scale structure and turbulence in the mesosphere and lower thermosphere at high latitudes in winter, J. Atmos. Terres. Phys., 49, 751–762.

    Article  Google Scholar 

  • Tsuda, T., K. Hirose, S. Kato, and M.P. Sulzer, 1985: Some findings on correlation between the stratospheric echo power and the wind shear observed by the Arecibo UHF radar, Radio Sci., 20, 1503–1508.

    Article  Google Scholar 

  • Tsuda, T., T. Inoue, D.C. Fritts, T.E. Van Zandt, S. Kato, T. Sato, and S. Fukao, 1989: MST radar observations of a saturated gravity wave spectrum, J. Atmos. Sci., in press.

    Google Scholar 

  • Van Zandt, T.E., and D.C. Fritts, 1989: A theory of enhanced saturation of the gravity wave spectrum due to increases in atmospheric stability, Pure Appl. Geophys., 130, 399–420.

    Article  Google Scholar 

  • Vincent, R.A., 1984: Gravity wave motions in the mesosphere, J. Atmos. Terres. Phys., 46, 119–128.

    Article  Google Scholar 

  • Vincent, R.A., 1989: Gravity wave observations in the Southern Hemisphere, Dynamics, Transport and Photochemistry in the Middle Atmosphere of the Southern Hemisphere, A. O’Neill and C.R. Mechoso, Eds., in press.

    Google Scholar 

  • Vincent, R.A., and D.C. Fritts, 1987: A climatology of gravity waves in the mesosphere and lower thermosphere over Adelaide, Australia, J. Atmos. Sci., 44, 748–760.

    Article  Google Scholar 

  • Vincent, R.A., and I.M. Reid, 1983: HF Doppler measurements of mesospheric momentum fluxes, J. Atmos. Sci., 40, 1321–1333.

    Article  Google Scholar 

  • Walterscheid, R.L., and G. Schubert, 1989: Nonlinear evolution of an upward propagating gravity wave: Overturning, convection, and turbulence, J. Atmos. Sci., in press.

    Google Scholar 

  • Weinstock, J., 1982: Nonlinear theory of gravity waves: Momentum deposition, generalized Rayleigh friction, and diffusion, J. Atmos. Sci., 39, 1698–1710.

    Article  Google Scholar 

  • Yeh, K.C., and C.H. Liu, 1981: The instability of atmospheric gravity waves through wave-wave interactions, J. Geophvs. Res., 86, 9722–9728.

    Article  Google Scholar 

  • Yeh, K.C., and C.H. Liu, 1985: Evolution of atmospheric spectrum by processes of wave-wave interaction, Radio Sci., 20, 1279–1294.

    Article  Google Scholar 

  • Yuan, L., and D.C. Fritts, 1989: Influence of a mean shear on the dynamical instability of an inertio-gravity wave, J. Atmos. Sci., in press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Kluwer Academic Publishers

About this chapter

Cite this chapter

Fritts, D.C. (1990). Gravity Waves in the Middle Atmosphere of the Southern Hemisphere. In: O’Neill, A. (eds) Dynamics, Transport and Photochemistry in the Middle Atmosphere of the Southern Hemisphere. NATO ASI Series, vol 321. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0693-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0693-8_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6797-3

  • Online ISBN: 978-94-009-0693-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics