Skip to main content

Ecophysiological aspects of growth and nitrogen fixation in Azospirillum spp.

  • Chapter
Nitrogen Fixation with Non-Legumes

Part of the book series: Developments in Plant and Soil Sciences ((DPSS,volume 35))

Abstract

The nitrogenase activity of Azospirillum spp. is efficiently regulated by environmental factors. In A. brasilense and A. lipoferum a rapid ‘switch off’ of nitrogenase activity occurs after the addition of ammonium chloride. As in photosynthetic bacteria, a covalent modification of nitrogenase reductase (Fe-protein) is involved. In A. amazonense, a non-covalent mechanism causes only a partial inhibition of nitrogenase activity after ammonium chloride is added. In anaerobic conditions, nitrogenase reductase is also ‘switched off’ by a covalent modification in A. brasilense and A. lipoferum. Short-time exposure of Azospirillum to increased oxygen levels causes a partially reversible inhibition of nitrogenase activity, but no covalent modification is involved. Azospirillum spp. show variations in their oxygen tolerance. High levels of carotenoids confer a slightly improved oxygen tolerance. Certain amino acids (e.g. glutamate, aspartate, histidine and serine) affect growth and nitrogen fixation differently in Azospirillum spp. Amino acids may influence growth and nitrogen fixation of Azospirillum in the association with plants. Azospirillum brasilense and A. halopraeferens are the more osmotolerant species. They utilize most amino acids poorly and accumulate glycine betaine, which also occurs in osmotically stressed grasses as a compatible solute to counteract osmotic stress. Nitrogen fixation is stimulated by glycine betaine and choline. Efficient iron acquisition is a prerequisite for competitive and aerotolerant growth and for high nitrogenase activity. Azospirillum halopraeferens and A. amazonense assimilate iron reasonably well, whereas growth of some A. brasilense and A. lipoferum strains is severely inhibited by iron limitation and by competition with foreign microbial iron chelators. However, growth of certain iron-limited A. brasilense strains is stimulated by the phytosiderophore mugineic acid. Thus, various plant-derived substances may stimulate growth and nitrogen fixation of Azospirillum.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albrecht S L and Okon Y 1980 Cultures of Azospirillum. Methods Enzymol. 69, 740–749.

    CAS  Google Scholar 

  • Bachhawat A K and Gosh S 1987 Iron transport in Azospirillum brasilense: Role of the siderophore spirilobactin. J. Gen. Microbiol. 133, 1759–1765.

    CAS  Google Scholar 

  • Balandreau J 1986 Ecological factors and adaptive processes in N2-fixing bacterial populations of the plant environment. Plant and Soil 90, 73–92.

    Article  Google Scholar 

  • Baldani V L D, Alvarez MA de B, Baldani JI and Döbereiner J 1986 Establishment of inoculated Azospirillum spp. in the rhizosphere and in roots of field grown wheat and sorghum. Plant and Soil 90, 35–46.

    Article  Google Scholar 

  • Bani D C, Barberio M, Favili F, Gallori E and Polsinelli M 1980 Isolation and characterization of glutamate synthase mutants of Azospirillum brasilense. J. Gen. Microbiol. 119, 239–244.

    CAS  Google Scholar 

  • Bossier P and Verstraete W 1986 Detection of siderophores in soil by a direct bioassay. Soil Biol. Biochem. 18, 481–486.

    Article  CAS  Google Scholar 

  • Bowdre J H, Krieg N R, Hoffman P S and Smibert R M 1976 Stimulatory effect of dihydroxyphenyl compounds on the aerotolerance of Spirillum volutans and Campylobacter fetus subspecies jejuni. Appl. Environ. Microbiol. 31, 127–133.

    PubMed  CAS  Google Scholar 

  • Braun V 1985 The unusual features of the iron transport systems of Escherichia coli. Trends Biochem. Sci. 10, 75–78.

    Article  CAS  Google Scholar 

  • Brock T D 1985 Procaryotic population ecology. In Engineered Organisms in the Environment: Scientific Issues. Eds. HO Halvorson, D Pramer and M Rogul. pp 176–179. American Society for Microbiology, Washington, D.C.

    Google Scholar 

  • Brown A D 1976 Microbial water stress. Bact. Reviews 40, 803–846.

    CAS  Google Scholar 

  • Burris R H 1972 Nitrogen fixation — Assay methods and techniques. Methods Enzymol. 24B, 415–431.

    Article  Google Scholar 

  • Burton G W and Ingold K U 1984 β-Carotene: An unusual type of lipid antioxidant. Science 224, 569–573.

    Article  PubMed  CAS  Google Scholar 

  • Clara R W and Knowles R 1985 Superoxide dismutase, catalase and peroxidase in ammonium-grown and nitrogen-fixing Azospirillum brasilense. Can. J. Microbiol. 30, 1222–1228.

    Article  Google Scholar 

  • Curl E A and Truelove B 1986 The Rhizosphere, pp 55–92. Springer-Verlag, Berlin.

    Google Scholar 

  • Das A and Mishra A K 1984 Aerotolerant growth in Azospirillum brasilense induced by dihydroxyphenyl iron-binding compound. Current Microbiol. 11, 313–316.

    Article  CAS  Google Scholar 

  • Del Gallo M, Gratani L and Morpurgo G 1987 Selection at the chemostat of Azospirillum brasilense Cd N2 -fixing at high oxygen pressure. In Azospirillum IV, Genetics, Physiology, Ecology. Ed. W Klingmüller. pp. 75–82. Springer-Verlag, Berlin.

    Google Scholar 

  • Dingier Ch and Oelze J 1985 Reversible and irreversible inactivation of cellular nitrogenase upon oxygen stress in Azotobacter vinelandii growing in oxygen controlled continuous culture. Arch. Microbiol. 141, 80–84.

    Article  Google Scholar 

  • Elmerich C 1984 Molecular biology and ecology of diazotrophs associated with non-leguminous plants. Bio/Technology 2, 967–978.

    Article  CAS  Google Scholar 

  • Fischer M, Levy E and Geller T 1986 Regulatory mutation that control nif expression and histidine transport in Azospirillum brasilense. J. Bacteriol. 167, 423–426.

    PubMed  CAS  Google Scholar 

  • Fu Ch and Knowles R 1986 Oxygen tolerance of uptake hydrogenase in Azospirillum spp. Can. J. Microbiol. 32, 897–900.

    Article  CAS  Google Scholar 

  • Gallori E and Bazzicalupo M 1985 Effect of nitrogen compounds on nitrogenase activity in Azospirillum brasilense. FEMS Microbiol. Lett. 28, 35–38.

    Article  CAS  Google Scholar 

  • Gauthier D and Elmerich C 1977 Relationship between glutamine synthetase and nitrogenase in Spirillum lipoferum. FEMS Microbiol. Lett. 2, 101–104.

    Article  CAS  Google Scholar 

  • Goldberg I, Nadler V and Hochman A 1987 Mechanism of nitrogenase switch-off by oxygen. J. Bacteriol. 169, 874–879.

    PubMed  CAS  Google Scholar 

  • Gordon J K and Jacobson M R 1983 Isolation and characterization of Azotobacter vinelandii mutant strains with potential as bacterial fertilizer. Can. J. Microbiol. 29, 973–978.

    Article  Google Scholar 

  • Gotto J W and Yoch D C 1985 Regulation of nitrogenase activity by covalent modification in Chromatium vinosum. Arch. Microbiol. 141, 40–43.

    Article  PubMed  CAS  Google Scholar 

  • Hallborn L 1984 Sarcosine: A possible regulatory compound in the Peltigera praetextata-Nostoc symbiosis. FEMS Microbiol. Lett. 22, 119–121.

    Article  Google Scholar 

  • Halsall D M and Gibson A H 1985 Cellulose decomposition and associated nitrogen fixation by mixed cultures of Cellulomonas gelida and Azospirillum species or Bacillus macerans. Appl. Environ. Microbiol. 50, 1021–1026.

    PubMed  CAS  Google Scholar 

  • Halsall D M, Turner G L and Gibson A H 1985 Straw and xylan utilization by pure cultures of nitrogen-fixing Azospirillum spp. Appl. Environ. Microbiol. 49, 423–428.

    PubMed  CAS  Google Scholar 

  • Hartmann A 1982 Antimetabolite effects on nitrogen metabolism of Azospirillum and properties of resistant mutants. In Azospirillum, Genetics, Physiology, Ecology. Ed. W Klingmüller. pp 59–68. Experientia Suppl. 42, Birkhäuser, Basel.

    Google Scholar 

  • Hartmann A 1987 Osmoregulatory properties of Azospirillum spp. In Azospirillum IV, Genetics, Physiology, Ecology. Ed. W Klingmüller. pp 122–130. Springer-Verlag, Berlin.

    Google Scholar 

  • Hartmann A and Burris R H 1987 Regulation of nitrogenase activity by oxygen in Azospirillum brasilense and Azospirillum lipoferum. J. Bacteriol. 169, 944–948.

    PubMed  CAS  Google Scholar 

  • Hartmann A, Fu H and Burris R H 1986 Regulation of nitrogenase activity by ammonium chloride in Azospirillum spp. J. Bacteriol. 165, 864–870.

    PubMed  CAS  Google Scholar 

  • Hartmann A, Fu H and Burris R H 1988 Influence of amino acids on nitrogen fixation ability and growth of Azospirillum spp. Appl. Environ. Microbiol. 54, 87–93.

    PubMed  CAS  Google Scholar 

  • Hartmann A, Fu H, Song S-D and Burris R H 1985 Comparison of nitrogenase regulation in A. brasilense, A. lipoferum and A. amazonense. In Azospirillum III, Genetics, Physiology, Ecology. Ed. W Klingmüller. pp. 116–126. Springer-Verlag, Berlin.

    Google Scholar 

  • Hartmann A, Fußteder A and Klingmüller W 1983 Mutants of Azospirillum affected in nitrogen fixation and auxin production. In Azospirillum II, Genetics, Physiology, Ecology. Ed. W Klingmüller. pp 78–88. Experientia Suppl. 48, Birkhäuser-Verlag, Basel.

    Google Scholar 

  • Hartmann A and Kleiner D 1982 Ammonium (methylammonium) transport by Azospirillum spp. FEMS Microbiol. Lett. 15, 65–67.

    Article  CAS  Google Scholar 

  • Hartmann A, Kleiner D and Klingmüller W 1984 Ammonium uptake and release by Azospirillum. In Advances in Nitrogen Fixation Research. Eds. C Veeger and W E Newton, p. 227. Nijhoff/Junk/Pudoc Publishers, The Hague, Wageningen, The Netherlands.

    Google Scholar 

  • Heda G D and Madigan MT 1986 Aspects of nitrogen fixation in Chlorobium. Arch. Microbiol. 143, 330–336.

    Article  CAS  Google Scholar 

  • Heinrich D and Hess D 1985 Chemotactic attraction of Azospirillum lipoferum by wheat roots and characterization of some attractants. Can. J. Microbiol. 31, 26–31.

    Article  CAS  Google Scholar 

  • Hider R C 1984 Siderophore mediated absorption of iron. Structure Bonding 58, 26–87.

    Google Scholar 

  • Hochman A and Burris R H 1981 Effect of oxygen on acetylene reduction by photosynthetic bacteria. J. Bacteriol. 147, 492–499.

    PubMed  CAS  Google Scholar 

  • Hochman A, Goldberg I, Nadler V and Hartmann A 1987 Reversible inhibition of nitrogen fixation by oxygen. In Aspects of Nitrogen Metabolism. Eds. W R Ullrich, P J Aparicio, P J Syrett and F Castillo, pp 173–174. Springer-Verlag, Berlin.

    Google Scholar 

  • Hurek T, Reinhold B, Fendrik I and Niemann E-G 1987a Root-zone-specific oxygen tolerance of Azospirillum spp. and diazotrophic rods closely associated with Kallar grass. Appl. Environ. Microbiol. 53, 163–169.

    CAS  Google Scholar 

  • Hurek T, Reinhold B, Niemann E-G and Fendrik I 1987b N2-dependent growth of Azospirillum spp. in batch cultures at low concentrations of oxygen. In Azospirillum IV, Genetics, Physiology, Ecology. Ed. W Klingmüller. pp 115–121. Springer-Verlag, Berlin.

    Google Scholar 

  • Imhoff J F 1986 Osmoregulation and compatible solutes in eubacteria. FEMS Microbiol. Rev. 39, 57–66.

    CAS  Google Scholar 

  • Jouanneau Y, Meyer C M and Vignais P M 1983 Regulation of nitrogenase activity through iron protein interconversion into an active and an inactive form in Rhodospeudomonas capsulata. Biochim. Biophys. Acta 749, 318–328.

    Article  CAS  Google Scholar 

  • Kanemoto R H and Ludden P W 1984 Effect of ammonia darkness and phenazine methosulfate on whole-cell nitrogenase activity and Fe protein modification in Rhodospirillum rubrum. J. Bacterid. 158, 713–720.

    CAS  Google Scholar 

  • Ken Dror S, Preger R and Avi-Dor Y 1986 Role of betaine in the control of respiration and osmoregulation of a halotolerant bacterium. FEMS Microbiol. Rev. 39, 115–120.

    Article  CAS  Google Scholar 

  • Kleiner D and Castorph H 1982 Inhibition of ammonium (methylammonium) transport in Klebsiella pneumoniae by glutamine and glutamine analogues. FEBS Lett. 146, 201–203.

    Article  PubMed  CAS  Google Scholar 

  • Kloepper J W, Leong J, Teintze M and Schroth MN 1980 Enhanced plant growth by siderophores produced by plant growth-promoting rhizobacteria. Nature 286, 885–886.

    Article  CAS  Google Scholar 

  • Krieg N R and Döbereiner J 1984 Genus Azospirillium. In Bergey’s Manual of Systematic Bacteriology, Vol. 1. Eds. NR Krieg and J G Holt. pp. 94–104. Williams & Wilkins, Baltimore, London.

    Google Scholar 

  • Krieg N R and Hoffman P S 1986 Microaerophily and oxygen toxicity. Annu. Rev. Microbiol. 40, 107–130.

    Article  PubMed  CAS  Google Scholar 

  • Kush A, Elmerich C and Aubert J P 1985 Nitrogenase of Sesbania Rhizobium strain ORS 571: Purification, properties and ‘switch off’ by ammonia. J. Gen. Microbiol. 131, 1765–1777.

    CAS  Google Scholar 

  • Ladha J K, Triol A C, Daroy M L, Nayak D N, Caldo G and Watanabe I 1986 Degrading straw as source of carbon and energy for nitrogen-fixing organisms in wetland rice soil. Proceedings of the Fourth International Symposium on Microbial Ecology 1986, Ljubljana (In press).

    Google Scholar 

  • Leong J 1986 Siderophores: Their biochemistry and possible role in the biocontrol of plant pathogens. Annu. Rev. Phytopathol. 24, 187–209.

    Article  CAS  Google Scholar 

  • Lowery R G, Saari L L and Ludden P W 1986 Reversible regulation of nitrogenase iron protein from Rhodospirillum rubrum by ADP-ribosylation in vitro. J. Bacteriol. 166, 513–518.

    PubMed  CAS  Google Scholar 

  • Ludden P W and Burris R H 1976 Activating factor for the iron protein of nitrogenase from Rhodospirillum rubrum. Science 194, 424–426.

    Article  PubMed  CAS  Google Scholar 

  • Ludden P W, Okon Y and Burris R H 1978 The nitrogenase system of Spirillum lipoferum. Biochem. J. 173, 1001–1003.

    PubMed  CAS  Google Scholar 

  • Magalhaes R M, Baldani J I, Souto SM, Kuykendall J R and Döbereiner J 1983 A new acid-tolerant Azospirillum species. An. Acad. Brasil. Cienc. 55, 417–430.

    Google Scholar 

  • Malik K A and Schlegel H G 1981 Chemolithoautotrophic growth of bacteria able to grow under N2-fixing conditions. FEMS Microbiol. Lett. 11, 63–67.

    Article  CAS  Google Scholar 

  • Mandimba G, Heulin T, Bally R, Guckert A and Balandreau J 1986 Chemotaxis of free-living nitrogen-fixing bacteria towards maize mucilage. Plant and Soil 90, 129–139.

    Article  Google Scholar 

  • Martinez-Drets G, Fabiano E and Cardona A 1985 Carbohydrate catabolism in Azospirillum amazonense. Appl. Environ. Microbiol. 50, 183–185.

    PubMed  CAS  Google Scholar 

  • Martinez-Drets G, del Gallo M, Burpee C L and Burris R H 1984 Catabolism of carbohydrate and organic acids by the azospirilla. J. Bacteriol. 159, 80–85.

    PubMed  CAS  Google Scholar 

  • Maulik P and Ghosh S 1986 NADPH/NADH-dependent cold labile glutamate dehydrogenase of Azospirillum brasilense. Eur. J. Biochem. 155, 595–602.

    Article  PubMed  CAS  Google Scholar 

  • Narula N and Gupta K G 1986 Ammonia excretion by Azotobacter chroococcum in liquid culture and soil in the presence of manganese and clay minerals. Plant and Soil 93, 205–209.

    Article  CAS  Google Scholar 

  • Nelson L M and Knowles R 1978 Effect of oxygen and nitrate on nitrogen fixation and denitrification by Azospirillum brasilense grown in continuous culture. Can. J. Microbiol. 24, 1395–1403.

    Article  PubMed  CAS  Google Scholar 

  • Neilands J B 1984 Methodology of siderophores. Structure Bonding 58, 1–24.

    Article  CAS  Google Scholar 

  • Neilands J B and Leong S A 1986 Siderophores in relation to plant growth and disease. Annu. Rev. Plant Physiol. 37: 187–208.

    Article  CAS  Google Scholar 

  • Nur I, Okon Y and Henis Y 1982 Effect of dissolved oxygen tension on production of carotenoids, poly-β-Miydroxybutyrate, succinate oxidase and superoxide dismutase by Azospirillum brasilense Cd grown in continuous culture. J. Gen. Microbiol. 128, 2937–2943.

    CAS  Google Scholar 

  • Nur I, Steinitz Y L, Okon Y and Henis Y 1981 Carotenoid composition and function in nitrogen-fixing bacteria of the genus Azospirillum. J. Gen. Microbiol. 122, 27–32.

    CAS  Google Scholar 

  • Okon Y 1985a The physiology of Azospirillum in relation to its utilization as inoculum for promoting growth of plants. In Nitrogen Fixation and CO2 Metabolism. Eds. P W Ludden and J E Burris. pp. 165–174.Elsevier, New York.

    Google Scholar 

  • Okon Y 1985b Azospirillum as a potential inoculant for agriculture. Trends Biotechnol. 3, 223–228

    Article  Google Scholar 

  • Okon Y, Houchins J P, Albrecht S L and Burris R H 1977 Growth of Spirillum lipoferum at constant partial pressures of oxygen, and the properties of its nitrogenase in cell-free extracts. J. Gen. Microbiol. 98, 87–93.

    PubMed  CAS  Google Scholar 

  • Okon Y and Kapulnik Y 1986 Development and function of Azospirillum-inoculated roots. Plant and Soil 90, 3–16.

    Article  CAS  Google Scholar 

  • Page W J and Dale P L 1986 Stimulation of Agrobacterium tumefaciens growth by Azotobacter vinelandii ferrisiderophores. Appl. Environ. Microbiol. 51, 451–454.

    PubMed  CAS  Google Scholar 

  • Patriquin D G, Döbereiner J and Jain D K 1983 Sites and process of association between diazotrophs and grasses. Can. J. Microbiol. 29, 900–915.

    Article  Google Scholar 

  • Pedrosa F O and Yates M G 1984 Regulation of nitrogen fixation (nif) genes of Azospirillum brasilense by nifA and ntr (gln) type gene products. FEMS Microbiol. Lett. 23, 95–101.

    Article  CAS  Google Scholar 

  • Pope M R, Murrel S A and Ludden P W 1985 Covalent modification of the iron protein of nitrogenase from Rhodospirillum rubrum by adenosine diphosphoribosylation of a specific arginyl residue. Proc. Natl. Acad. Sci. USA 82, 3173–3177.

    Article  PubMed  CAS  Google Scholar 

  • Postgate J R 1982 The Fundamentals of Nitrogen Fixation, pp 60–102. Cambridge University Press, Cambridge.

    Google Scholar 

  • Postgate J R, Kent H M, Hill S and Blackburn H 1985 Nitrogen fixation by Desulfovibrio gigas and other species of Desulfovibrio. In Nitrogen Fixation and CO2 Metabolism. Eds. P W Ludden and J E Burris. pp 225–234. Elsevier Science Publishers, Amsterdam.

    Google Scholar 

  • Powell P E, Cline G R, Reid C P P and Szaniszlo P J 1980 Occurrence of hydroxamate siderophore iron chelators in soils. Nature 287, 833–834.

    Article  CAS  Google Scholar 

  • Ramos J L and Robson RL 1985 Lesions in citrate synthase that affect aerobic nitrogen fixation by Azotobacter chroococcum. J. Bacteriol. 162, 746–751.

    PubMed  CAS  Google Scholar 

  • Rao A V and Venkateswarlu B 1985 Salt tolerance of Azospirillum brasilense. Acta Microbiol. Hung. 32, 221–224.

    PubMed  CAS  Google Scholar 

  • Ratti S, Curti B, Zanetti G and Galli E 1985 Purification and characterization of glutamate synthase from Azospirillum brasilense. J. Bacteriol. 163, 724–729.

    PubMed  CAS  Google Scholar 

  • Reich S, Almon H and Böger P 1986 Short-term effect of ammonia on nitrogenase activity of Anabaena variabilis (ATCC 29413). FEMS Microbiol. Lett. 34, 53–56.

    Article  CAS  Google Scholar 

  • Reinhold B, Hurek T and Fendrik I 1985 Strain-specific chemotaxis of Azospirillum spp. J. Bacteriol. 162, 190–195.

    PubMed  CAS  Google Scholar 

  • Reinhold B, Hurek T, Fendrik I, Pot B, Gillis M, Kersters K, Thielemans S and De Ley J 1987 Azospirillum halopraeferens sp. nov., a nitrogen-fixing organism associated with roots of Kallar grass (Leptochloa fusca (Linn.) Kunth). Int. J. Syst. Bacteriol. 37, 43–51.

    Article  Google Scholar 

  • Robson R L and Postgate J R 1980 Oxygen and hydrogen in biological nitrogen fixation. Annu. Rev. Microbiol. 34, 183–207.

    Article  PubMed  CAS  Google Scholar 

  • Romheld V and Marschner H 1986 Evidence for a specific uptake system for iron phytosiderophores in roots of grasses. Plant Physiol. 80, 175–180.

    Article  PubMed  CAS  Google Scholar 

  • Saari L L, Triplett E W and Ludden P W 1984 Purification and properties of the activating enzyme for iron protein of nitrogenase from the photosynthetic bacterium Rhodospirillum rubrum. J. Biol. Chem. 259, 15502–15508.

    PubMed  CAS  Google Scholar 

  • Sampaio M J A M, Pedrosa F O and Döbereiner J 1982 Growth of Derxia gummosa and Azospirillum spp. on C1 -compounds. An. Acad, brasil. Cienc. 54, 457–458.

    Google Scholar 

  • Sandhu G R, Aslam Z, Salim M, Sattar A, Qureshi R H, Ahmad N and Wyn Jones RG 1981 The effect of salinity on the yield and composition of Diplachne fusca (Kallar grass). Plant Cell Environ. 4, 177–181.

    Article  Google Scholar 

  • Saxena B, Modi M and Modi V V 1986 Isolation and characterization of siderophores from Azospirillum lipoferum D-2. J. Gen. Microbiol. 132, 2219–2224.

    CAS  Google Scholar 

  • Singh H N, Singh R K and Sharma R 1983 An L-methionine-D,L-sulfoximine-resistant mutant of the cyanobacterium Nostoc muscorum showing inhibitor-resistant δ-glutamyl-transferase, defective glutamine synthetase and producing extracellular ammonia during N2-fixation. FEBS Lett. 154, 10–14.

    Article  CAS  Google Scholar 

  • Smith M J and Neilands J B 1984 Rhizobactin, a siderophore from Rhizobium meliloti. J. Plant Nutr. 7, 449–458.

    Article  CAS  Google Scholar 

  • Song S D, Hartmann A and Burris R H 1985 Purification and properties of the nitrogenase of Azospirillum amazonense. J. Bacteriol. 164, 1271–1277.

    PubMed  CAS  Google Scholar 

  • Spiller H, Latorre C, Hassan M E and Shanmugam KT 1986 Isolation and characterization of nitrogenase-derepressed mutant strains of Cyanobacterium Anabaena variabilis. J. Bactriol. 165, 412–419.

    CAS  Google Scholar 

  • Stal L J and Krumbein W E 1985 Oxygen protection of nitrogenase in the aerobically nitrogen fixing, nonheterocystous cyanobacterium Oscillatoria sp. Arch. Microbiol. 143, 72–76.

    Article  CAS  Google Scholar 

  • Sugiura Y and Nomoto K 1984 Phytosiderophores, structure and properties of mugineic acids and their metal complexes. Structure Bonding 58, 107–135.

    Article  CAS  Google Scholar 

  • Tarrand J J, Krieg N R and Döbereiner J 1978 A taxonomic study of the Spirillum lipoferum group, with descriptions of a new genus, Azospirillum gen. nov. and two species, Azospirillum lipoferum (Beijerinck) comb. nov. and Azospirillum brasilense sp. nov. Can. J. Microbiol. 24, 967–980.

    Article  PubMed  CAS  Google Scholar 

  • Tien T M, Diem H G, Gaskins M H and Hubbell D H 1981 Polygalacturonic acid transeliminase production by Azospirillum species. Can. J. Microbiol. 27, 426–431.

    Article  PubMed  CAS  Google Scholar 

  • Tilak K V B R, Schneider K and Schlegel H G 1986 Autotrophic growth of nitrogen-fixing Azospirillum species and partial characterization of hydrogenase from strain CC. Current Microbiology 13, 291–297.

    Article  CAS  Google Scholar 

  • Turpin D H, Edie S A and Canvin D T 1984 In vivo nitrogenase regulation by ammonium and methylamine and the effect of MSX on ammonium transport in Anabaena fios-aguae. Plant Physiol. 74, 701–704.

    Article  PubMed  CAS  Google Scholar 

  • Volpon A G T, De-Polli H and Döbereiner J 1981 Physiology of nitrogen fixation in Azospirillum lipoferum Br 17 (ATCC 29709). Arch. Microbiol. 128, 371–375.

    Article  CAS  Google Scholar 

  • Whiting G J, Gandy E L and Yoch D C 1986 Tight coupling of root-associated nitrogen fixation and plant photosynthesis in the salt marsh grass Spartina alterniflora and carbon dioxide enhancement of nitrogenase activity. Appl. Environ. Microbiol. 52, 108–113.

    PubMed  CAS  Google Scholar 

  • Waring W S and Werkman C H 1943 Growth of bacteria in an iron-free medium. Arch. Biochem. 1, 303–310.

    Google Scholar 

  • Whipps J M and Lynch J M 1986 The influence of the rhizosphere on crop productivity. In Advances in Microbial Ecology 9. Ed. KC Marshall, pp 187–244. Plenum Press, New York.

    Google Scholar 

  • Whipps J M and Lynch J M 1983 Substrate flow and utilization in the rhizosphere of cereals. New Phytol. 95, 605–623.

    Article  CAS  Google Scholar 

  • Wyn Jones R G and Storey R 1981 Betaines. In Physiology and Biochemistry of Drought Resistance in Plants. Eds. L G Paleg and D Aspinall. pp 171–204. Sydney, Academic Press Australia.

    Google Scholar 

  • Yancey P H, Clark M E, Hand SC, Bowlus R D and Somero G N 1982 Living with water stress: Evolution of osmolyte systems. Science 217, 1214–1222.

    Article  PubMed  CAS  Google Scholar 

  • Yates M G and Jones C W 1974 Respiration and nitrogen fixation in Azotobacter. In Advances in Microbial Physiology 11. Eds. AH Rose and D W Tempest, pp 97–135. Academic Press, New York.

    Google Scholar 

  • Yoch D C and Whiting G J 1986 Evidence for NH4 + switch-off regulation of nitrogenase activity by bacteria in salt marsh sediments and roots of the grass Spartina alterniflora. Appl. Environ. Microbiol. 51, 143–149.

    PubMed  CAS  Google Scholar 

  • Zuberer D A and Alexander D B 1986 Effects of oxygen partial pressure and combined nitrogen on N2 -fixation (C2H2) associated with Zea mays and other gramineous species. Plant and Soil 90, 47–58.

    Article  CAS  Google Scholar 

  • Zumft W G 1985 Regulation of nitrogenase activity in the anoxygenic phototrophic bacteria. In Nitrogen Fixation Research Progress. Eds. H J Evans, P J Bottomley and W E Newton, pp 551–557. Martinus Nijhoff Publishers, Dordrecht, The Netherlands.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Kluwer Academic Publishers

About this chapter

Cite this chapter

Hartmann, A. (1989). Ecophysiological aspects of growth and nitrogen fixation in Azospirillum spp.. In: Skinner, F.A., Boddey, R.M., Fendrik, I. (eds) Nitrogen Fixation with Non-Legumes. Developments in Plant and Soil Sciences, vol 35. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0889-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0889-5_16

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6888-8

  • Online ISBN: 978-94-009-0889-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics