Skip to main content

Basic theoretical issues of stress analysis. Accepted models

  • Chapter
Isodyne Stress Analysis

Part of the book series: Engineering Application of Fracture Mechanics ((EAFM,volume 8))

  • 77 Accesses

Abstract

Rational optimization of the performance of engineering structures requires that all pertinent physical quantities and parameters be defined unequivocally, and be determinable with satisfactory reliability and accuracy. For a design engineer, the measures of reliability and accuracy are the actual responses of the actual physical bodies, structures, and systems to the actual flow of energy, as discussed in Chapter 1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aleksandrov, A. D., Kolgomorov, A. N., and Lavrent’ev, M. A., Mathematics, Its Content, Methods and Meaning (translated from the Russian edition: “Matematika, ye Soderzhanye, Metody i Znachenye”, Izdatielstvo Akademii Nauk SSSR, Moskva, 1956 ), The MIT Press, Cambridge, MA, 1981.

    Google Scholar 

  2. Borg, S. F., Matrix-Tensor Methods in Continuum Mechanics, D. Van Nostrand Company, Princeton, 1963.

    Google Scholar 

  3. Bui, H. D., “Théorie linéare de la rupture”, Revue Française de Mécanique 3 (1983), pp. 3–7.

    Google Scholar 

  4. Doeblin, Ernest O., Measurement Systems: Application and Design, McGraw-Hill Book Company, New York, 1983.

    Google Scholar 

  5. Ellyin, F., Lind, N. C., and Sherbourne, A. N., “Elastic Stress Field in a Plate with a Skew Hole”, J. of Eng. Mechanics Division, ASCE 92 (EM1), 1966, pp. 1–10.

    Google Scholar 

  6. Ellyin, F. and Sherbourne, A. N., “Effect of Skew Penetration on Stress Concentration”, J. of Eng. Mechanics Division, ASCE 94 (EM6), 1968, pp. 1317–1336.

    Google Scholar 

  7. Kestin, Joseph, A Course in Thermodynamics, Vols. I and II, McGraw-Hill Book Company, New York, 1979.

    Google Scholar 

  8. Khanukayev, A. N., “A Study of the Effect of Interference of Two Waves Successively Reflected from the Free End of a Rod” (in Russian), in: S. P. Shikhobalov (Ed.), Polarization-Optical Method of Stress Analysis, University of Leningrad, Leningrad, 1960, pp. 253–256.

    Google Scholar 

  9. Ladevèze, Pierre (Ed.), Local Effects in the Analysis of Structures, Elsevier, New York, 1985.

    MATH  Google Scholar 

  10. Lakes, Roderick, “Foam Structures with a Negative Poisson’s Ratio”, Science 235, 1987, pp. 1038–1040.

    Article  ADS  Google Scholar 

  11. Lewicki, B. and Pindera, J. T., “Photoelastic Models of Reinforced Structures” (in Polish), Archiwum Inzynierii Ladowej, Vol. II (4), 1956, pp. 381–418.

    Google Scholar 

  12. Mohamed, F. A. and Soliman, M. S., “On the Creep Behaviour of Uranium Dioxide”, Materials Science and Engineering 53, 1982, pp. 184–190.

    Article  Google Scholar 

  13. Müller, R. K., “Der Einfluss der Messlänge auf die Ergebnisse bei Dehnmessungen an Beton”, Beton 14 (5), 1964, pp. 205–208.

    Google Scholar 

  14. Neuber, H., Kerbspannungslehre (Notch Stresses), Verlag von Julius Springer, Berlin, 1937.

    Google Scholar 

  15. Pindera, J. T., On Application of Brittle Coatings for Determination of Regions of Plastic Deformations (in Polish), Engineering Transactions (Rozprawy Inzynierskie), Polish Acad. of Sciences, Vol. V (1), 1957, pp. 33–47.

    Google Scholar 

  16. Pindera, Jerzy T., Rheological Properties of Some Polyester Resins, Part I, II, III (in Polish), Engineering Transactions (Rozprawy Inzynierskie)Polish Acad. Sciences, Vol. VII (3 and 4), 1959, pp. 361–411, 481–520, 521–540.

    Google Scholar 

  17. Pindera, J. T., Straka, P., and Tschinke, M. F., “Actual Thermoelastic Response of Some Engineering Materials and Its Applicability in Investigations of Dynamic Response of Structures”, VDI-Berichte, Nr. 313, 1978, pp. 579–584.

    Google Scholar 

  18. Pindera, J. T., “Contemporary Trends in Experimental Mechanics: Foundations, Methods, Applications”, in: J. T. Pindera et al. (Eds), Experimental Mechanics in Research and Development, Solid Mechanics Division, University of Waterloo, Study No. 9, Waterloo, 1973, pp. 143–168.

    Google Scholar 

  19. Pindera, Jerzy T., “Foundations of Experimental Mechanics: Principles of Modelling, Observation and Experimentation”, in: J. T. Pindera (Ed.), New Physical Trends in Experimental Mechanics, Springer-Verlag, Wien, 1981, pp. 188–236.

    Google Scholar 

  20. Pindera, J. T. and Krasnowski, B. R., “Determination of Stress Intensity Factors in Thin and Thick Plates Using Isodyne Photoelasticity”, in: Simpson, Leonard A. (Ed.), Fracture Problems & Solutions in the Energy Industry, Pergamon Press, 1982, pp. 147–156.

    Google Scholar 

  21. Pindera, J. T. (Ed.), Modelling Problems in Crack Tip Mechanics (Proc. of the Tenth Canadian Fracture Conference, August 24–26, 1983, University of Waterloo), Martinus Nijhoff, The Hague, The Netherlands, 1984.

    Google Scholar 

  22. Pindera, J. T., Krasnowski, B. R., and Pindera, M.-J., “Theory of Elastic and Photoelastic Isodynes. Samples of Applications in Composite Structures”, Experimental Mechanics 25 (3), 1985, pp. 272–281.

    Article  Google Scholar 

  23. Pipes, R. B. and Pagano, N. J., “Interlaminar Stresses in Composite Laminates under Uniform Axial Extension”, J. Composite Materials 4, 1970, pp. 538–548.

    Google Scholar 

  24. Provan, J. W., “The Micromechanics of Fatigue Crack Initiation”, in: Pindera, Jerzy T. (Ed.), Modelling Problems in Crack Tip Mechanics, Martinus Nijhoff Publishers, Dordrecht, 1984, pp. 131–154.

    Google Scholar 

  25. Rohrbach, Ch., “Dehnnungsmesstreifen mit metallischen Träger als schnell messbereites, feuchtigkeitsunempfindliches Messelement für Dehnnungsmessungen auf Beton”, Der Bauingenieur 33, 1958, pp. 265–268.

    Google Scholar 

  26. Sarin, G. N., Kontsentratsya Napriazhenii Okolo Otverstii (Stress Concentration around Holes), Gosnd. Izw. Tehkniko-Teoreticheskoy Literatury, Moskva, 1951.

    Google Scholar 

  27. Siebel, E., Handbuch der Werkstoffpriifung, Vols. 1 and 2, Springer-Verlag, Berlin, 1958 and 1955.

    Google Scholar 

  28. Sih, G. C., Williams, M. L., and Swedlow, J. L., Three-Dimensional Stress Distribution Near a Sharp Crack in a Plate of Finite Thickness, Air Force Materials Laboratory, Wright Patterson Air Force Base, AFML-TR, 1966, pp. 66–242.

    Google Scholar 

  29. Sih, G. C., “A Review of the Three-Dimensional Stress Problem for a Cracked Plate”, International Journal of Fracture Mechanics 7, 1971, pp. 39–61.

    Article  Google Scholar 

  30. Sih, G. C., “The State of Affairs Near the Crack Tip”, in: Pindera, Jerzy T. (Ed.), Modelling Problems in Crack Tip Mechanics, Martinus Nijhoff Publishers, Dordrecht, 1984, pp. 65–90.

    Google Scholar 

  31. Sokolnikoff, I. S., Mathematical Theory of Elasticity, McGraw-Hill, 1956.

    MATH  Google Scholar 

  32. Sternberg, E. and Sadovsky, M. A., “Three-Dimensional Solution for the Stress Concentration around a Circular Hole in a Plate of Arbitrary Thickness”, Journal of Applied Mechanics, ASME 16 (1), 1949, pp. 27–38.

    Google Scholar 

  33. Thum, A. and Svenson, O., “Die Verformungs-und Beanspruchungsverhältnisse von glatten und gekerbten Stäben, Scheiben and Platten in Abhängigkeit von deren Dicke und Belastungsart”, Forschung Ing. Wes. 13, 1942, pp. 1–11.

    Article  Google Scholar 

  34. Thum, A., Petersen, C., and Svenson, O., Verformung, Spannung und Kerbwirkung (Deformation, Stress and Notch Action), VDI-Verlag, Dusseldorf, 1960.

    Google Scholar 

  35. Wang, S. S. and Choi, I., “Boundary-Layer Effects in Composite Laminates: Part II — Free-Edge Stress Solutions and Basic Characteristics”, J. Applied Mechanics 49, 1982, pp. 549–560.

    Article  ADS  MATH  Google Scholar 

  36. Youngdahl, C K and Sternberg, E., “Three-Dimensional Stress Concentration Around a Cylindrical Hole in a Semi-Infinite Elastic Body”, Journal of Applied Mechanics, ASME 33 (4), 1966, pp. 855–865.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1989 J. T. Pindera and Sons Engineering Services, Ontario, Canada

About this chapter

Cite this chapter

Pindera, J.T., Pindera, MJ. (1989). Basic theoretical issues of stress analysis. Accepted models. In: Isodyne Stress Analysis. Engineering Application of Fracture Mechanics, vol 8. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0973-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0973-1_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6927-4

  • Online ISBN: 978-94-009-0973-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics