Skip to main content

Observation of Organized Structure in Turbulent Flow within and above a Forest Canopy

  • Chapter
Boundary Layer Studies and Applications

Abstract

Ramp patterns of temperature and humidity occur coherently at several levels within and above a deciduous forest as shown by data gathered with up to seven triaxial sonic anemometer/thermometers and three Lyman-alpha hygrometers at an experimental site in Ontario, Canada. The ramps appear most clearly in the middle and upper portion of the forest. Time/height cross-sections of scalar contours and velocity vectors, developed from both single events and ensemble averages of several events, portray details of the flow structures associated with the scalar ramps. Near the top of the forest they are composed of a weak ejecting motion transporting warm and/or moist air out of the forest followed by strong sweeps of cool and/or dry air penetrating into the canopy. The sweep is separated from the ejecting air by a sharp scalar microfront. At approximately twice the height of the forest, ejections and sweeps are of about equal strength.

In the middle and upper parts of the canopy, sweeps conduct a large proportion of the overall transfer between the forest and the lower atmosphere, with a lesser contribution from ejections. Ejections become equally important aloft. During one 30-min run, identified structures were responsible for more than 75% of the total fluxes of heat and momentum at mid-canopy height. Near the canopy top, the transition from ejection of slow moving fluid to sweep bringing fast moving air from above is very rapid but, at both higher and lower levels, brief periods of upward momentum transfer occur at or immediately before the microfront.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Antonia, R. A., Chambers, A. J., Friehe, C. A., and Van Atta, C. W.: 1979, ‘Temperature Ramps in the Atmospheric Surface Layer’, J. Atmos. Sci. 36, 99–108.

    Article  Google Scholar 

  • Baldocchi, D. D. and Meyers, T. P.: 1988, ‘Turbulence Structure in a Deciduous Forest’, Boundary-Layer Meteorol. 43, 345–364.

    Article  Google Scholar 

  • Bogard, D. G. and Tiederman, W. G.: 1986, ‘Burst Detection with Single-point Velocity Measurements’, J. Fluid Mech. 162, 389–413.

    Article  Google Scholar 

  • Busch, N. E.: 1973, ‘On the Mechanics of Atmospheric Turbulence’, in D. A. Haugen (ed.), Workshop on Micrometeorology, Amer. Meteorol. Soc., Boston, pp. 1–65.

    Google Scholar 

  • Chen, C. P. and Blackwelder, R. F.: 1978, ‘Large-scale Motion in a Turbulent Boundary Layer: a Study Using Temperature Contamination’, J. Fluid Mech. 89, 1–31.

    Article  Google Scholar 

  • Chiba, O.: 1978, ‘Stability Dependence of the Vertical Velocity Skewness in the Atmospheric Surface Layer’, J. Meteorol. Soc. Japan. 56, 140–142.

    Google Scholar 

  • Corino, E. R. and Brodkey, R. S.: 1969, ‘A Visual Investigation of the Wall Region in Turbulent Flow’, J. Fluid Mech. 37, 1–30.

    Article  Google Scholar 

  • Denmead, O. T. and Bradley, E. F.: 1987, ‘On Scalar Transport in Plant Canopies’, Irrigation Sci. 8, 131–149.

    Article  Google Scholar 

  • Finnigan, J. J.: 1979a, ‘Turbulence in Waving Wheat. I Mean Statistics and Honami’, Boundary-Layer Meteorol. 16, 181–211.

    Article  Google Scholar 

  • Finnigan, J. J.: 1979b, ‘Turbulence in Waving Wheat. II Structure of Momentum Transfer’, Boundary-Layer Meteorol. 16, 213–236.

    Article  Google Scholar 

  • Kaimal, J. C.: 1974, ‘Translation Speed of Convective Plumes in the Atmospheric Surface Layer’, Quart. J. Roy. Meteorol. Soc. 100, 46–52.

    Article  Google Scholar 

  • Kaimal, J. C. and Businger, J. A.: 1970, ‘Case Studies of a Convective Plume and a Dust Devil’, J. Appl. Meteorol. 9, 612–620.

    Article  Google Scholar 

  • Kline, S. J., Reynolds, W. C., Schraub, F. A., and Rundstadler, P. W.: 1967, ‘The Structure of Turbulent Boundary Layers’, J. Fluid Mech. 30, 741–773.

    Article  Google Scholar 

  • Legg, B. J. and Monteith, J. L.: 1975, ‘Heat and Mass Transfer in Plant Canopies’, in D. A. De Vries and N. H. Afgan (eds.), Heat and Mass Transfer in the Biosphere, Wiley, New York, pp. 167–186.

    Google Scholar 

  • Meyers, T. P. and Paw U. K. T.: 1986, ‘Testing of a Higher-order Closure Model for Airflow within and above Plant Canopies’, Boundary-Layer Meteorol. 37, 297–311.

    Article  Google Scholar 

  • Meyers, T. P. and Paw U. K. T.: 1987, ‘Modelling the Plant Canopy Micrometeorology with Higher-order Closure Principles’, Agric. Forest. Meteorol. 41, 143–163.

    Article  Google Scholar 

  • Neumann, H. H., den Hartog, G., and Shaw, R. H.: 1988, ‘Leaf Area Measurements During Leaf-fall for a Deciduous Forest Based on Hemispheric Photographs and Leaf-litter Collection’, Agric. Forest Meteorol., in press.

    Google Scholar 

  • Offen, G. R. and Kline, S. J.: 1975, ‘A Proposed Model of the Bursting Process in Turbulent Boundary Layers’, J. Fluid Mech. 70, 209–228.

    Article  Google Scholar 

  • Praturi, A. K. and Brodkey, R. S.: 1978, ‘A Stereoscopic Visual Study of Coherent Structures in Turbulent Shear Flow’, J. Fluid Mech. 89, 251–272.

    Article  Google Scholar 

  • Priestley, C. H. B.: 1959, Turbulent Transfer in the Lower Atmosphere, University of Chicago Press, Chicago, pp. 53–72.

    Google Scholar 

  • Rajagopalan, S. and Antonia, R. A.: 1980, ‘Interaction between Large and Small Scale Motions in a Two-dimensional Turbulent Flow Duct’, Phys. Fluids 23, 1101–1110.

    Article  Google Scholar 

  • Raupach, M. R.: 1981, ‘Conditional Statistics of Reynolds Stress in Rough-wall and Smooth-wall Turbulent Boundary Layers’, J. Fluid Mech. 108, 363–382.

    Article  Google Scholar 

  • Raupach, M. R.: 1987, ‘A Lagrangian Analysis of Scalar Transfer in Vegetation Canopies’, Q. J. Roy. Meteorol. Soc. 113, 107–120.

    Article  Google Scholar 

  • Raupach, M. R. and Thorn, A. S.: 1981, ‘Turbulence in and above Plant Canopies’, Ann. Rev. Fluid Mech. 13, 97–129.

    Article  Google Scholar 

  • Schols, J. L. J.: 1984, ‘The Detection and Measurement of Turbulent Structures in the Atmospheric Surface Layer’, Boundary-Layer Meteorol. 29, 39–58.

    Article  Google Scholar 

  • Shaw, R. H., den Hartog, G., and Neumann, H. H.: 1988, ‘Influence on Foliar Density and Thermal Stability on Profiles of Reynolds Stress and Turbulence Intensity in a Deciduous Forest’, Boundary-Layer Meteorol. 45, 391–409.

    Article  Google Scholar 

  • Shaw, R. H., Tavangar, J., and Ward, D. P.: 1983, ‘Structure of the Reynolds Stress in a Canopy Layer’, J. Clim. Appl. Meteorol. 22, 1922–1931.

    Article  Google Scholar 

  • Shaw, R. H. and Seginer, I.: 1987, ‘Calculation of Velocity Skewness in Real and Artificial Plant Canopies’, Boundary-Layer Meteorol. 39, 315–332.

    Article  Google Scholar 

  • Subramanian, C. S., Rajagopalan, S., Antonia, R. A., and Chambers, A. J.: 1982, ‘Comparison of Conditional Sampling and Averaging Techniques in a Turbulent Boundary Layer’, J. Fluid Mech. 123, 335–362.

    Article  Google Scholar 

  • Talmon, A. M., Kunen, J. M. G., and Ooms, G.: 1986, ‘Simultaneous Flow Visualization and Reynolds-stress Measurement in a Turbulent Boundary Layer’, J. Fluid Mech. 163, 459–478.

    Article  Google Scholar 

  • Taylor, R. J.: 1958, ‘Thermal Structures in the Lowest Layer of the Atmosphere’, Australian J. Phys. 11, 168–176.

    Article  Google Scholar 

  • Thomas, A. S. and Bull, M. K.: 1983, ‘On the Role of the Wall-Pressure Fluctuations in Deterministic Motions in the Turbulent Boundary Layer’, J. Fluid Mech. 128, 283–322.

    Article  Google Scholar 

  • Wallace, J. M., Eckelmann, H., and Brodkey, R. S.: 1972, ‘The Wall Region in Turbulent Shear Flow’, J. Fluid Mech. 54, 39–48.

    Article  Google Scholar 

  • Wilczak, J. M.: 1984, ‘Large-scale Eddies in the Unstably Stratified Atmospheric Surface Layer. Part I: Velocity and Temperature Structure’, J. Atmos. Sci. 41, 3537–3550.

    Article  Google Scholar 

  • Wilczak, J. M. and Businger, J. A.: 1984, ‘Large-scale Eddies in the Unstably Stratified Atmospheric Surface Layer. Part II: Turbulent Pressure Fluctuations and the Budgets of Heat Flux, Stress and Turbulent Kinetic Energy’, J. Atmos. Sci. 41, 3551–3567.

    Article  Google Scholar 

  • Wilczak, J. M. and Tillman, J. E.: 1980, ‘The Three-dimensional Structure of Convection in the Atmospheric Surface Layer’, J. Atmos. Sci. 37, 2424–2443.

    Article  Google Scholar 

  • Wilson, N. R. and Shaw, R. H.: 1977, ‘A Higher Order Closure Model for Canopy Flow’, J. Appl. Meteorol. 16, 1197–1205.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

R. E. Munn

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Kluwer Academic Publishers

About this chapter

Cite this chapter

Gao, W., Shaw, R.H., Paw U, K.T. (1989). Observation of Organized Structure in Turbulent Flow within and above a Forest Canopy. In: Munn, R.E. (eds) Boundary Layer Studies and Applications. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0975-5_22

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0975-5_22

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6928-1

  • Online ISBN: 978-94-009-0975-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics