Skip to main content

Design Considerations for a 2-D Photonic Band Gap Accelerator Cavity

  • Chapter
Photonic Band Gap Materials

Part of the book series: NATO ASI Series ((NSSE,volume 315))

Abstract

We discuss recent progress in our effort to develop a high gradient accelerator cavity based on Photonic Band Gap (PBG) concepts. Our proposed cavity consists of a two-dimensional (2-D) photonic lattice, composed of either dielectric or metal scatterers, bounded in the third dimension by flat conducting (or superconducting) plates. A defect introduced to the lattice, usually a removed scatterer, produces a defect mode with fields concentrated at the defect site and decaying exponentially in all directions away from the defect site. The defect mode is designed to resonate at frequencies in the 2–20 GHz range, where metals can still be used to confine the energy with minimal loss. We present in this paper some of the technical considerations which have arisen relevent to this application, and to PBG structures in general. In particular, we focus on measurements and calculations carried out for a 2-D metal PBG cavity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. L. McCall, P. M. Platzman, R. Dalichaouch, David Smith, S. Schultz, Phys. Rev. Lett. 67, 2017 (1991).

    Article  ADS  Google Scholar 

  2. M. Plihal, A. Shambrook, A. A. Maradudin, Sheng Ping, Opt. Comm. 80, 199 (1991).

    Article  ADS  Google Scholar 

  3. M. Plihal, A. A. Maradudin, Phys. Rev. B 45, 13962 (1992).

    Article  Google Scholar 

  4. R. D. Meade, K. D. Brommer, A. M. Rappe, J. D. Joannopoulos, App. Phys. Lett. 61, 495 (1992).

    Article  ADS  Google Scholar 

  5. H. S. Sozuer, J. W. Haus, R. Inguva, Phys. Rev. B 45, 13962 (1992).

    Article  ADS  Google Scholar 

  6. S. Schultz, D. R. Smith, N. Kroll, Proc. 1993 Particle Accelerator Conference, Washington D. C., USA 4, 2559 (1994).

    Google Scholar 

  7. J. B. Pendry, A. MacKinnon, Phys. Rev. Lett. 69, 2772 (1992).

    Article  ADS  Google Scholar 

  8. M. Sigalas, C. M. Soukoulis, E. N. Economou, C. T. Chan, K. M. Ho, Phys Rev. B 48, 14121 (1993).

    Article  ADS  Google Scholar 

  9. A. A. Maradudin, A. R. McGurn, J. Opt. Soc. Am B 10, 314 (1993).

    Article  ADS  Google Scholar 

  10. J. B. Pendry, J. Mod. Opt. 41, 209 (1994).

    Article  ADS  Google Scholar 

  11. J. K. Cullum, R. A. Willoughby, Lanczos Algorithms for Large Symmetric Eigenvalue Computations, Vol. II Programs, Birkhauser, Boston (1985).

    Google Scholar 

  12. R. D. Meade, A. M. Rappe, K. D. Brommer, J. D. Joannopoulos, Phys. Rev. B 48, 8434 (1993).

    Article  ADS  Google Scholar 

  13. T. Suzuki, private communication (1994).

    Google Scholar 

  14. D. R. Smith, S. Schultz, N. Kroll, M. Sigalas, K. M. Ho, C. M. Soukoulis, Appl. Phys. Lett. 65, 645 (1994).

    Article  ADS  Google Scholar 

  15. D. R. Smith, S. Schultz, S. L. McCall, P. M. Platzman, J. Mod. Opt. 41, 395 (1994).

    Article  ADS  Google Scholar 

  16. E. D. Reed, “Measurement of Q by reflected power”, Bell Telephone Technical Publication (1953).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Kluwer Academic Publishers

About this chapter

Cite this chapter

Smith, D.R., Kroll, N., Schultz, S. (1996). Design Considerations for a 2-D Photonic Band Gap Accelerator Cavity. In: Soukoulis, C.M. (eds) Photonic Band Gap Materials. NATO ASI Series, vol 315. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-1665-4_21

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-1665-4_21

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7245-8

  • Online ISBN: 978-94-009-1665-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics