Skip to main content

Processing Defects and the Fracture of Ceramics and Designed Ceramic/Ceramic Composites

  • Chapter
Constitutive Laws of Plastic Deformation and Fracture

Part of the book series: Mechanical Behavior of Materials ((MBOM,volume 2))

  • 223 Accesses

Abstract

4.5 wt% Y203-partially-stabilized ZrO2 (YPSZ) four-point bend bars densified by dry-pressing/isostatic pressing/pressureless sintering were fractured and. several fracture origin types were identified. These defects were then classified via their response to various elimination techniques. An elliptical crack model was used to characterize the correlation between fracture stress and fracture origin size. Consistent results showed that an order-of-defect-severity existed, which enabled definition of a “fracture origin severity parameter” for the different origin types. The existence of a relative fracture-origin severity is related to the residual stress fields at the defect-matrix interfaces. The improved strength obtained by secondary processing to eliminate the fracture origin defects did not extend to high temperatures. Efforts were made to improve the strength and toughness of Y-PSZ by incorporation of Na-β-Al2O3 dispersed phase. The mechanical properties of these composites are reported.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F.F. Lange, B.I. Davis and and E. Wright. Processing-related Fracture Origins: IV. Elimination of Voids produced by Organic Inclusions. J. Am. Ceram. Soc., 69, (1986) 66–69.

    Article  CAS  Google Scholar 

  2. M. Matsui, T. Soma and I. Oda. Effect of Microstructure on the Strength of Y-TZP Components. In N. Claussen (Ed.), Advances in Ceramics, Vol. 12, Science and Technology of Zirconia II. The Am. Ceramic Soc, (1984) pp. 371–381.

    Google Scholar 

  3. T. Masaki, Mechanical Properties of Toughened ZrO2-Y2O3 Ceramics. J. Am. Ceram. Soc., 69, (1986) 638–640.

    Article  CAS  Google Scholar 

  4. K. Tsukuma and M. Shimada. Hot Isostatic Pressing of Y2O3-Partially-Stabilized Zirconia. J. Am. Ceram. Soc., 64. (1985) 310–313.

    CAS  Google Scholar 

  5. K. Tsukuma and K. Ueda. Strength and Fracture Toughness of Isostatically Hot-Pressed Composites of Al2O3 and Y2O3-Partially-Stabilized Zirconia. J. Am. Ceram. Soc., 68, (1985) C-4–C-5.

    Article  CAS  Google Scholar 

  6. K. Tsukuma and K. Ueda. High-Temperature Strength and Fracture Toughness of Y203-Partially-Stabilized Zr02/Al203 composites. J. Am. Ceram. Soc. 68, (1985) C-56–C-58.

    Article  CAS  Google Scholar 

  7. W.H. Rhodes. Agglomerate and Particle size Effect on Sintering Yttria-Stabilized Zirconia. J.Am. Ceram. Soc., 64, (1981) 19–22.

    Article  CAS  Google Scholar 

  8. H. Taguchi, Y. Takahashi and H. Miyamoto. Effect of Milling on Slip Casting of Partially Stabilized Zirconia. J.Am. Ceram. Soc., 68, (1985) C-264–C-265.

    Article  Google Scholar 

  9. J. Sung, and P.S. Nicholson. Strength Improvement of Yttria-Partially-Stabilized Zirconia by Flaw Elimination. J. Am. Ceram. Soc, (71) (1987) 788–95.

    Article  Google Scholar 

  10. A.G. Evans, G.S. Kino, P.T. Khuri-Yakub and B.R. Tittmann Failure Prediction in Structural Ceramics. Material Evaluation, 35. (1977) 85–96.

    Google Scholar 

  11. A.G. Evans, M.E. Meyer, K.W. Fertig, B.I. Davis and H.R. Baumgartner. Probabilistic Models for Direct Initiated Fracture in Ceramics. J. Nond. Eval., 1, (1980) 111–122.

    Article  Google Scholar 

  12. F.F. Lange. Advanced Processing of Ceramics: Controlling Flaw Populations. In P.S. Nicholson (Ed.), Transactions of the Canadian University-Industry Council on Advanced Ceramics, 2nd Workshop, (1986) pp 1–29.

    Google Scholar 

  13. H.P. Kirchner, R.M. Gruver and W.A. Sotter. Characteristics of Flaws at Fracture Origins and Fracture Stress-Flaws Size Relations in Various Ceramics. Mater. Sci. and Eng., 22, (1986) 147–156.

    Google Scholar 

  14. F.I. Barratta. Stress Intensity Factor Estimates for a Peripherally Cracked Spherical Void and a Hemispherical Surface Pit. J.Am. Ceram. Soc., 61, (1978) 490–493.

    Article  Google Scholar 

  15. A.G. Evans, and G. Tappin Effects of Microstructure on the Stress to Propagate Inherent Flaws. Proc. Br. Ceram. Soc., 20, (1972) 275–297.

    Google Scholar 

  16. G.R. Irwin. Crack-Extension Force for a Part-Through Crack in a Plate. J. Appl. Mech., 29, (1962) 651–654.

    Google Scholar 

  17. G.K.Bansal. Effect of Flaw Shape on Strength of Ceramics. J. Am. Ceram. Soc., 59. (1976) 87–88.

    Article  CAS  Google Scholar 

  18. A.G. Evans, D.R. Biswas and R.M. Fulrath Some Effects of Cavities on the Fracture of Ceramics: II. Spherical Cavities. J. Am. Ceram. Soc., 62, (1979) 101–106.

    Article  CAS  Google Scholar 

  19. J.J. Mecholsky, Jr., S.W. Freiman and R.W. Rice. Fracture Surface Analysis of Ceramics. J. Mater. Sci., 11, (1976) 1310–1319.

    Article  CAS  Google Scholar 

  20. S.G. Seshadri and M. Srinivasan. Estimation of Fracture Toughness by Intrinsic Flaw Fractography for Sintered alpha Silicon Carbide. J. Am. Ceram. Soc., 64, (1981) C-69–C-71.

    Article  CAS  Google Scholar 

  21. L.J. Schioler. Workshop Studies Ceramic Engines — Current Status and Future, Bull. Am. Ceram. Soc, 64, (2) (1985) 269–270.

    Google Scholar 

  22. M.V. Swain, R.H. Hannink, and R.C. Garvie. The Influence of Precipitate Size and Temperature on the Fracture Toughness of Calcia-and Magnesia-Partially-Stabilized Zirconia, (1983) pp.339–55 in Fracture Mechanics of Ceramics, Vol. 6. Edited by R.C. Bradt, A.G. Evans, D.P.H. Hasselman, and F.F. Lange. Plenum Press, New York.

    Google Scholar 

  23. L. Li and R.F. Pabst. High Temperature Fracture Toughness Measurements and Aging Processes of PSZ, (1983), pp.371–82 in Fracture Mechanics of Ceramics, Vol. 6. Edited by R.C. Brandt, A.G. Evans, D.P.H. Hasselman and F.F. Lang, Plenum Press, New York.

    Google Scholar 

  24. M.V. Swain. R. Curve Behaviour of Magnesia Partilly Stabilized Zirconia and its Significance to Thermal Shock, (1983), pp. 355–70 in Fracture Mechanics of Ceramics, Vol. 6. Edited by R.C. Brandt, A.G. Evans, D.P.H. Hasselman and F.F. Lang, Plenum Press, New York.

    Google Scholar 

  25. M. Sakai, K. Urashima, and M. Inagaki. Energy Principle of Elastic-Plastic Fracture and its Application to the Fracture Mechanics of a Polycrystalline Graphite, J. Am. Ceram. Soc, 66 (12) (1983), 868–74.

    Article  Google Scholar 

  26. F.F. Lange, and M. Metcalfe. Process-Related Origins: II. Agglomerate Motion and Cracklike Internal Surfaces caused by Differential Sintering. J. Am. Ceram. Soc., 66, (1983) 398–406.

    Article  CAS  Google Scholar 

  27. D.J. Green. Critical Microstructure for Micocracking in Al2O3-ZrO2 Composites. J. Am. Ceram. Soc., 65, (1982) 610–614.

    Article  CAS  Google Scholar 

  28. K. Niihara, R. Morena and D.P.H. Hasselman. Evaluation of KIC of Brittle Solids by the Indentation Method with Low Crack-to-Indent Ratios. J. Mater. Sci. Lett., 1, (1982) 13–16.

    Article  CAS  Google Scholar 

  29. S.J. Glass, P.S. Nicholson and C.B. Clark.Characterization of Interfacial Relations Between β-Al2O3 and Y2O3-Partially-Stabilized ZrO2, J. Am. Ceram. Soc., 68 (7), (1985) C-176.

    Article  Google Scholar 

  30. C.A. Johnson. Fracture Statistics of Multiple Flaw Distributions, (1983), pp. 365–86 in Fracture Mechanics of Ceramics, Vol. 6. Edited by R.C. Brandt, A.G Evans, D.P.H. Hasselman and F.F. Lang, Plenum Press, New York.

    Google Scholar 

  31. T.B. Troczynski and P.S. Nicholson. “The Resistance to Fracture of PSZ and PSZ-Na-β-Al2O3 Composite at 1300°C”, Am. Ceram. Soc Bull. 65 (5) (1986) 772–75.

    CAS  Google Scholar 

  32. ‘W.Q. Gou and P.S. Nicholson (to be published).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Kluwer Academic Publishers

About this chapter

Cite this chapter

Nicholson, P.S. (1990). Processing Defects and the Fracture of Ceramics and Designed Ceramic/Ceramic Composites. In: Krausz, A.S., Dickson, J.I., Immarigeon, JP.A., Wallace, W. (eds) Constitutive Laws of Plastic Deformation and Fracture. Mechanical Behavior of Materials, vol 2. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-1968-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-1968-6_15

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7380-6

  • Online ISBN: 978-94-009-1968-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics