Skip to main content

Theoretical Design of Organic Molecules and Polymers for Optoelectronics

  • Chapter
Nonlinear Optical Effects in Organic Polymers

Part of the book series: NATO ASI Series ((NSSE,volume 162))

Abstract

Materials which exhibit high nonlinear responses are currently subject of large research activities. The interest in organics [1–5] not only lies in their enhanced NLO responses over a wide frequency range and ultrafast response times, but also in the inherent adaptability of their molecular structures, the possibility of film forming and processing, and higher laser damage thresholds. In particular, conjugated oligomer and polymer chains are currently considered as very promising for devices based on third-order nonlinear effects. To be useful as materials, these compounds must combine, in addition to high electric susceptibilities, other properties such as proper organisation at the molecular level with possible symmetry constraints, chemical stability, etc. Moreover it is expected that the compounds used to form materials will depend on the particular application and therefore it is likely that there will be a continuous need for designing new molecules for optoelectronics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Williams DJ (ed): Nonlinear Optical Properties of Organic and Polymeric Materials.Washington DC: American Chemical Society, 1983, ACS Symposium Series 233.

    Google Scholar 

  2. Williams DJ, Angew. Chem. Int. Ed. Engl., 690 (1984).

    Google Scholar 

  3. Zyss J, J.Mol. Electronics, 1, 25 (1985).

    ADS  Google Scholar 

  4. Singer KD, Lalama SJ, Sohn JE, SPIE, Integrated Optical Circuit Engineering II, 578 130 (1985).

    Google Scholar 

  5. Chemla DS, Zyss J (eds): Nonlinear Optical Properties of Organic Molecules and Crystals. New York: Academic Press, 1987. vols. 1 and 2.

    Google Scholar 

  6. Bloembergen N: Nonlinear Optics. New York: Benjamin, 1965.

    Google Scholar 

  7. Shen YR: The principles of Nonlinear Optics. New York: Wiley, 1984.

    Google Scholar 

  8. Bogaard MP, Orr BJ, International Review of Science, Physical Chemistry Series 2, vol. 2, Buckingham AD (ed). London: Butterworths, 1975.

    Google Scholar 

  9. Elliott DS, Ward JF, Mol. Phys. 51, 45 (1984).

    Article  ADS  Google Scholar 

  10. Bishop DM, Pipin J, Phys. Rev. A36 2171 (1987).

    ADS  Google Scholar 

  11. Bishop DM, Lam B, Phys. Rev. A37 464 (1988).

    Google Scholar 

  12. Cohen HD, Roothaan CJ, J. Chem. Phys. 43., S34 (1965).

    Article  ADS  Google Scholar 

  13. Zyss J, Berthier G, J. Chem. Phys. 21, 3635 (1982).

    Article  ADS  Google Scholar 

  14. André JM, Barbier C, Bodart V, Delhalle J, in Nonlinear Optical Properties of Organic Molecules and Crystals. Chemla DS, Zyss J (eds). New York: Academic Press, 1987. vol. 2, pp. 137–158.

    Google Scholar 

  15. Hurst GJB, Dupuis M, Clementi E: Ab initio analytic polarizability, first and second hyperpolarizabilities of large conjugated organic molecules: Applications to polyenes C4H6 toH4. J. Chem. Phys., in press.

    Google Scholar 

  16. Binidey JS, Frisch MJ, Defrees DJ, Raghavachari K, Whiteside RA, Schlegel HB,Fluder EM, Pople JA: Gaussian 82 Program (Carnegie Mellon University,Pittsburgh,1981).

    Google Scholar 

  17. Schlegel B, J. Comput. Chem. 3., 214 (1982).

    Article  Google Scholar 

  18. Hehre WJ, Stewart RF, Pople JA, J. Chem. Phys. 51, 2657 (1969).

    Article  ADS  Google Scholar 

  19. Hehre WJ, Radom L, v.R. Schleyer P, Pople JA: Ab initio Molecular Orbital Theory. New York: Wiley, 1986.

    Google Scholar 

  20. Chablo A, Hinchliffe A. Chem. Phys. Lett. 72, 149 (1980).

    Google Scholar 

  21. Bodart VP, Delhalle J, André JM, Zyss J, Can. J. Chem. 63, 1631 (1985).

    Google Scholar 

  22. Younang E, Delhalle J, André JM, New J. Chem. 11,404 (1987).

    Google Scholar 

  23. Bodart VP, Delhalle J, Dory M, Fripiat JG, André JM, J. Opt. Soc. Am. B4, 1047 (1987).

    Google Scholar 

  24. Delhalle J, Bodart VP, Dory M, André JM, Zyss J, Int. J. Quantum Chem. Symp.19, 313 (1986).

    Google Scholar 

  25. Sauteret C, Hermann JP, Frey R, Pradere F, Ducuing J, Baughman RH, Chance RR, Phys. Rev. Lett. 39, 956 (1976).

    Article  ADS  Google Scholar 

  26. Rustagi KC, Ducuing J, Opt. Commun.10, 258 (1974).

    Article  ADS  Google Scholar 

  27. Davies PL, Trans. Faraday Soc. 47 789 (1952).

    Article  Google Scholar 

  28. Bodart VP, Delhalle J, André JM, Zyss J, in Polydiacetylenes: Synthesis, Structure and Electronic Properties. Bloor D, Chance RR (eds), Dordrecht: Martinus Nijhoff, 1985. pp. 125–133.

    Google Scholar 

  29. André JM, in Large Finite Systems, Jortner J, Pullman A, Pullman B (eds), The Jerusalem Symposia on Quantum Chemistry and Biochemistry, voL 20. Dordrecht: Reidel, 1987. pp. 277–288.

    Google Scholar 

  30. Dory M, Bodart VP, Delhalle J, André JM, Brédas JL, in Nonlinear Optical Properties of Polymers. Heeger AJ, Orenstein J, Ulrich DR (eds). Pittsburgh: Materials Research Society, 1988. vol. 109. pp. 239–250.

    Google Scholar 

  31. Roberts GG, Adv. Phys. 34 475 (1985).

    Article  ADS  Google Scholar 

  32. Paranjpe AS, Kelkar VK, Mol. Cryst. Liq. Cryst. 102, 289 (1984).

    Article  Google Scholar 

  33. Pei Y, Verdaguer M, Kahn O, Sletten J, Renard JP, J. Am. Chem. Soc. 108, 7428 (1986).

    Article  Google Scholar 

  34. Parker JP, Lindenmeyer PH, J. Appl. Polym. Sc. 21 821 (1977).

    Google Scholar 

  35. Bernstein J, Leiserowitz L, Isr. J. Chem. 10, 601 (1972).

    Google Scholar 

  36. Filippakis SE, Leiserowitz L, J. Chem. Soc. B, 290 (1967).

    Google Scholar 

  37. Leiserowitz L, Acta Cryst. B32 775 (1976).

    Google Scholar 

  38. Leiserowitz L, Nader F, Acta Cryst B33 2719 (1977).

    Google Scholar 

  39. Dory M, Delhalle J, Fripiat JG, André JM, Int. J. Quantum Chem. Quantum Biology Symp. 14 85 (1987).

    Google Scholar 

  40. Hennico G, Delhalle J, André JM, to be published.

    Google Scholar 

  41. C. Barbier, Chem. Phys. Lett. 142, 53 (1987).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Kluwer Academic Publishers

About this chapter

Cite this chapter

Delhalle, J., Dory, M., Fripiat, J.G., Andre, J.M. (1989). Theoretical Design of Organic Molecules and Polymers for Optoelectronics. In: Messier, J., Kajzar, F., Prasad, P., Ulrich, D. (eds) Nonlinear Optical Effects in Organic Polymers. NATO ASI Series, vol 162. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-2295-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-2295-2_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7530-5

  • Online ISBN: 978-94-009-2295-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics