Skip to main content

Global Biogeochemical Cycles and Climate

  • Chapter
Climate and Geo-Sciences

Part of the book series: NATO ASI Series ((ASIC,volume 285))

Abstract

This paper highlights some important questions and problems involving greenhouse gas global cycles and climate response. Simplified biogeochemical cycles of the greenhouse gases CO2, CH4 and N2O, and of the atmospheric compounds of sulfur are presented with particular emphasis on exchange fluxes involving Earth’s surface and the atmosphere, where possible long-term natural fluxes are compared to gas fluxes resulting from human activities. It is demonstrated that the geological cycling behavior of these gases has been perturbed significantly by anthropogenic fluxes.

The inability of the atmosphere and other sinks to react rapidly enough to cope with increasing fluxes from societal activities has led to continuous change in the greenhouse gas composition of the atmosphere, This change in composition may lead to future climate change, including changes in temperature and precipitation patterns. The coastal and nearshore oceanic realm is particularly sensitive to material fluxes from societal activities, and its role in the exchange of gases between the atmosphere and Earth’s surface is poorly known.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andreae, M.O., 1986, ‘The ocean as a source of atmospheric sulfur com pounds.’ In: The Role of Air-Sea Exchange in Geochemical Cycling, ed. P. Buat-Menard, D. Reidel, Dordrecht, 331–362.

    Google Scholar 

  • Arrhenius, S., 1896, ‘On the influence of carbonic acid in the air upon the temperature of the ground.’ Philos. Mag. 41, 237.

    Google Scholar 

  • Barnola, J.M., Raynaud, D., Korotkevich, Y.S., and Lorius, C., 1987, ‘Vostok ice core provides 160,000 year record of atmospheric CO2.’ Nature, 329, 408–414.

    Article  Google Scholar 

  • Behrendt, H., 1988, ‘Changes in nonpoint nutrient loading into European fresh waters: Trends and consequences since 1950 and not-impossible changes until 2080.’ Working Paper, Internatl. Inst. Applied Systems Analysis, Laxenburg, Austria, 28 pp.

    Google Scholar 

  • Berner, R.A., Lasaga, A.C., and Garreis, R.M., 1983, ‘The carbonate-silicate geochemical cycle and its effect on atmospheric carbon dioxide over the past 100 million years.’ Am. J. Sci., 283, 641–683.

    Article  Google Scholar 

  • Blake, D.R., and Rowland, F.S., 1988, ‘Continuing worldwide increase in tropospheric methane, 1978 to 1987.’ Science, 239, 1129–1131.

    Article  Google Scholar 

  • Bolin, B., and Cook, R.B., 1983, The Major Biogeochemical Cycles and Their Interactions. John Wiley and Sons, New York, 532 pp.

    Google Scholar 

  • Bolle, H.-J., Seiler, W., and Bolin, B., 1986, ‘Other greenhouse gases and aerosol: Assessing their role for atmospheric radiative transfer.’ In: The Greenhouse Effect, Climatic Change and Ecosystems, eds. B. Bolin, R. Doos, J. Jager, and R.A. Warrick, John Wiley and Sons, New York, 157–203.

    Google Scholar 

  • Brasseur, G., this volume.

    Google Scholar 

  • Buat-Menard, P., 1986, ‘Air to sea transfer of anthropogenic trace metals.’ In: The Role of Air-Sea Exchange in Geochemical Cycling, ed. P. Buat-Menard, D. Reidel, Dordrecht, 477–496.

    Google Scholar 

  • Charlson, R.J., Lovelock, J.E., Andreae, M.O., and Warren, S.G., 1987, ‘Oceanic phytoplankton, atmospheric sulfur, cloud albedo, and climate.’ Nature, 326, 655–661.

    Article  Google Scholar 

  • Crutzen, P.J., 1983, ‘Atmospheric interactions — Homogeneous gas reactions of C, N, and S containing compounds’. In: The Major Biogeochemical Cycles and Their Interactions, eds. B. Bolin and R.B. Cook, John Wiley and Sons, New York, 67–114.

    Google Scholar 

  • Deck, B.L., 1981, ‘Nutrient-Element Distributions in the Hudson Estuary.’ Unpubl. Ph. D. Thesis, Columbia Univ., 396 pp.

    Google Scholar 

  • Erlenkeuser, H., Suess E., and Willkomm, H., 1974, ‘Industrialization affects heavy metal and carbon isotope concentrations in recent Baltic Sea sediments’. Geochim. Cosmochim. Acta, 38, 823–842.

    Article  Google Scholar 

  • Erlenkeuser, H., 1978, ‘The use of radiocarbon in estuarine research’. In: Biogeochemistry of Estuarine Sediments, UNESCO, Paris, 140–153.

    Google Scholar 

  • Frankignoulle, M., in press, ‘Field measurements of air-sea CO2 exchange’. Limnol. Oceanogr.

    Google Scholar 

  • Garrels, R.M., and Mackenzie, F.T., 1971, ‘Evolution of Sedimentary Rocks’. W.W. Norton, New York, 397 pp.

    Google Scholar 

  • Garrels, R.M., and Mackenzie, F.T., 1972, ‘A quantitative model of the sedimentary rock cycle’. Mar. Chem., 1, 27–41.

    Article  Google Scholar 

  • Houghton, R.A., Hobbie, J.E., Melillo, J.M., Moore, B., Peterson, B.J., Shaver, G.R., and Woodwell, G.M., 1983, ‘Changes in the carbon content of terrestrial biota and soils between 1860 and 1980: A net release of CO2 to the atmosphere’. Ecolog. Monogr., 53, 235–262.

    Article  Google Scholar 

  • Houghton, R.A., Boone, R.D., Fruci, J.R., Hobbie, J.E., Melillo, J. M., Palm, CA., Peterson, B.J., Shaver, G.R., and Woodwell, G.M., 1987, ‘The flux of carbon from terrestrial ecosystems to the atmosphere in 1980 due to changes in land use: Geographical distribution of the global flux’. Tellus, 39, 122–139.

    Google Scholar 

  • Keeling, CD., Mook, W.G., and Tans, P.P., 1979, ‘13C/12C ratio of atmospheric carbon dioxide’. Nature, 217, 121–123.

    Article  Google Scholar 

  • Keeling, CD., Bacastrow, R.D., and Tans, P.P., 1980, ‘Predicted shift in the 13C/12C ratio of atmospheric carbon dioxide’. Geophys. Res. Lett., 7, 505–508.

    Article  Google Scholar 

  • Kohlmaier, G.H., Bröhl, H., Sire, E.P., Plöchl, M., and Revelle, R., 1987, ‘Modelling stimulation of plants and ecosystem response of present levels of excess atmospheric CO2’. Tellus, 39, 155–170.

    Google Scholar 

  • Likens, G.E., Mackenzie, F.T., Richey, J., Sedwell, J.R., and Turekian, K.K., 1981, ‘Flux of Organic Carbon by Rivers to the Sea’. U.S.D.O.E. Conf. Rept. 8009140, Washington, D.C, 397 pp.

    Google Scholar 

  • Liss, P.S., 1983, ‘Gas transfer: Experiments and geochemical implications’. In: Air-Sea Exchange of Gases and Particles, eds. P.S. Liss and G.N. Slinn, D. Reidel, Dordrecht, 241–298.

    Google Scholar 

  • Mackenzie, F.T., Lantzy, R.J., and Paterson, V., 1979, ‘Global trace metal cycles and predictions’. Mathematical Geology, 2, 99–142.

    Article  Google Scholar 

  • Mackenzie, F.T., ‘Global carbon cycle: Some minor sinks for CO2’. In: Flux of Organic Carbon by Rivers to the Sea, eds. G.E. Likens, F.T. Mackenzie, J.R. Sedwell, and K.K. Turekian, U.S.D.O.E. Conf. Rept. 8009140, Washington, D.C, 360–384.

    Google Scholar 

  • Mackenzie, F.T., 1987, ‘Global mixed-layer natural and anthropogenic fluxes’. In: Dynamics of the Ocean Surface Mixed Layer, ed. P. MĂ¼ller and D. Henderson, Hawaii Inst. Geophys. Spec. Publ., Univ. Hawaii, Honolulu, 291–310.

    Google Scholar 

  • McElroy, M.B., Elkins, J.W., Wofsy, S.C, Kolb, C.E., Duran, A.P., and Kaplan, W.A., 1978, ‘Production and release of N2O from the Potomac Estuary’. Limnol. Oceanogr., 23, 1168–1182.

    Article  Google Scholar 

  • McElroy, M.B., and Wofsy, S.C, 1985, ‘Table 3–9 given in Atmospheric Ozone — 1985’. World Meteorol. Organiz., Rept. No. 16, 93.

    Google Scholar 

  • Meybeck, M., 1982, ‘Carbon, nitrogen, and phosphorus transport by world’s rivers’. Am. J. Sci., 282, 401–450.

    Article  Google Scholar 

  • Olson, J.S., Garrels, R.M., Berner, R.A., Armentano, T.V., Dyer, M.J., and Yaalon, D.H., 1985, ‘The natural carbon cycle’. In: Atmospheric Carbon Dioxide and The Global Carbon Cycle, ed. J.R. Trabalka, U.S.D.O.E./ER000239 Rept., NTIS, Springfield, VA., 175–213.

    Google Scholar 

  • Revelle, R., and Munk, W., 1977, ‘The global carbon dioxide cycle and the biosphere’. In: Energy and Climate, Natl. Acad. Press, Washington, D.C., 243–280.

    Google Scholar 

  • Schlesinger, M. E., this volume.

    Google Scholar 

  • Senum, G.L., and Gaffney, J.S., 1985, ‘A reexamination of the tropospheric methane cycle: Geophysical implications’. In: The Carbon Cycle and Atmospheric CO 2 : Natural Variations Archean to Present, eds. E.T. Sundquist and W.S. Broecker, A.G.U. Geophys. Monograph 32, Washington, D.C., 61–69.

    Chapter  Google Scholar 

  • Siegenthaler, U., and Oeschger, H., 1987, ‘Biospheric CO2 emissions during the past 200 years reconstructed by decon volution of ice core data’. Tellus, 39, 140–154.

    Google Scholar 

  • Sundquist, E.G., and Broecker, W.S., 1985, ‘The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present’. A.G.U. Geophys. Monograph 32, Washington, D.C., 627 pp.

    Google Scholar 

  • Weiss, R.F., 1981, ‘The temporal and spatial distribution of tropospheric nitrous oxide’. J. Geophys. Res., 86, 7185–7195.

    Article  Google Scholar 

  • Wollast, R., 1983, ‘Interactions in estuaries and coastal waters’. In: The Major Biogeochemical Cycles and Their Interactions, eds. B. Bolin and R.B. Cook, J. Wiley & Sons, New York, 385–410.

    Google Scholar 

  • Woodwell, G.M., 1983, ‘Biotic effects on atmospheric carbon dioxide: A review and projection’. In: Changing Climate, Natl. Acad. Press, Washington, D.C., 216–241.

    Google Scholar 

  • Andreae, M.O., and Raemdonck, H., 1983, ‘Dimethyl sulfide in the surface ocean and the marine atmosphere: A global view’. Science, 221, 744–747.

    Article  Google Scholar 

  • Berrensheim, H., and Jaeschke, W., 1983, ‘The contribution of volcanoes to the global atmospheric sulfur budget’. J. Geophy. Res., 88, 3732–3740.

    Article  Google Scholar 

  • Blake, D.R., and Rowland, F.S., 1988, ‘Continuing worldwide increase in tropospheric methane, 1978 to 1987’. Science, 239, 1129–1131.

    Article  Google Scholar 

  • Bolin, B., and Charlson, R., 1976, ‘On the role of the tropospheric sulfur cycle in the shortwave radiation of the Earth’. Ambio, 5, 27.

    Google Scholar 

  • Bolin, B., 1981, ‘Carbon Cycle Modelling’. J. Wiley & Sons, New York. 390 pp.

    Google Scholar 

  • Bolin, B., Degens, E.T., Kempe, S., and Ketner, P., 1979, The Global Carbon Cycle. J. Wiley and Sons, New York, 491 pp.

    Google Scholar 

  • Bolin, B., Doos, B.R., Jager, J., and Warrick, R.A., 1986, The Greenhouse Effect, Climatic Change, and Ecosystems. J. Wiley and Sons, New York, 541 pp.

    Google Scholar 

  • Broecker, W., Takahashi, T., Simpson, H., and Peng, T.-H., 1979, ‘Fate of fossil fuel carbon dioxide and the global carbon budget’. Science, 206, 409–418.

    Article  Google Scholar 

  • Carbon Dioxide and Climate, 1982, National Academy of Sciences Press, Washington, D.C., 72 pp.

    Google Scholar 

  • Carbon Monoxide, 1977, National Academy of Sciences Press, Washington, D.C., 239 pp.

    Google Scholar 

  • Chameides, W., and Davis D., 1982, ‘Chemistry in the troposphere’. Chem. Eng. News, Oct. 4, 38–52.

    Google Scholar 

  • Cohen, Y. and Gordon L., 1979, ‘Nitrous oxide production in the ocean.’ J. Geophy. Res., 84, 347–353.

    Article  Google Scholar 

  • Conrad, R., Seiler, W., and Bunse, G., 1983, ‘Factors influencing the loss of fertilizer nitrogen into the atmosphere as N2O’. J. Geophy. Res., 88, 6709–6718.

    Article  Google Scholar 

  • Crutzen, P., 1974, ‘Estimates of possible variations in total ozone due to natural causes and human activities’. Ambio, 3, 201–210.

    Google Scholar 

  • Crutzen, P., 1976, ‘Upper limits of atmospheric ozone reductions following increased application of fixed nitrogen to the soil’. Geophy. Res. Lett., 3, 169–172.

    Article  Google Scholar 

  • Crutzen, P., and Ehhalt, D., 1977, ‘Effects of nitrogen fertilizers and combustion on the stratospheric ozone layer’. Ambio, 6, 112–117.

    Google Scholar 

  • Garreis, R.M., Mackenzie, F.T., and Hunt, C, 1975, ‘Chemical Cycles and the Global Environment’. W. Kaufmann, Inc., Los Altos, CA, 206 pp.

    Google Scholar 

  • ‘Global 2000 Report to the President’, 1980, The Technical Report, Vol. 2. Government Printing Office, Washington, D.C., 766 pp.

    Google Scholar 

  • Graham, W., and Duce, R., 1979, ‘Atmospheric pathways of the phosphorus cycle’. Geochim. Cosmochim. Acta, 78, 1195–1208.

    Article  Google Scholar 

  • ‘International Symposium on Trace Gases’, 1974. Tellus, 26, 1–297.

    Article  Google Scholar 

  • Ivanov, M.D., and Freney J.R., 1983, ‘The Global Biogeochemical Sulfur Cycle’. John Wiley and Sons, New York, 470 pp.

    Google Scholar 

  • Khalil, M., and Rasmussen R., 1983, ‘Sources, sinks and seasonal cycles of atmospheric methane’. J. Geophy. Res., 88, 5131–5144.

    Article  Google Scholar 

  • Likens, G., 1981, ‘Some Perspectives of the Major Biogeochemical Cycles’. J. Wiley & Sons, New York, 175 pp.

    Google Scholar 

  • Liss, S., and Slinn, W.G.N., 1983, ‘Air-Sea Exchange of Gases and Particles’. D. Reidel, Dordrecht, 510 pp.

    Google Scholar 

  • The Role of Air-Sea Exchange in Geochemical Cycles. 1986, Buat-Menard, P., ed, R. Reidel, Dordrecht, 549 pp.

    Google Scholar 

  • Schlesinger, W., and Melack J., 1981, ‘Transport of organic carbon in the world’s rivers’. Tellus, 33, 172–187.

    Article  Google Scholar 

  • Smil, V., 1985, ‘Carbon, Nitrogen, Sulfur: Human Interference in Grand Biospheric Cycles’. Plenum Press, New York, 459 pp.

    Google Scholar 

  • Stumm, W., 1977, ‘Global Chemical Cycles and their Alterations by Man.’ Dahlem Konferenzen, Berlin, 346 pp.

    Google Scholar 

  • Svensson, B., and Söderlund, R., 1975, ‘Nitrogen, Phosphorus and Sulphur Global Cycles’. Ecol. Bull., Stockholm, 192 pp.

    Google Scholar 

  • Varhelyi, G., and Gravenhorst, G., 1983, ‘Production rate of airborne sea-salt sulfur deduced from chemical analysis of marine aerosols and precipitation’. J. Geophy. Res., 88, 6737–6751.

    Article  Google Scholar 

  • Woodwell, G.M., and Houghton, R.A., 1977, ‘Biotic influences on the world carbon budget’. In: Global Chemical Cycles and Their Alteration by Man, ed., W. Stumm, Dahlem Konferenzen, Berlin, 61–72.

    Google Scholar 

  • Zimmerman, P., Greenberg, J., Wandiga, S., and Crutzen, P., 1982, ‘Termites: A potentially large source of atmospheric methane, carbon dioxide, and molecular hydrogen’. Science, 218, 563–565.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Kluwer Academic Publishers

About this chapter

Cite this chapter

Wollast, R., Mackenzie, F.T. (1989). Global Biogeochemical Cycles and Climate. In: Berger, A., Schneider, S., Duplessy, J.C. (eds) Climate and Geo-Sciences. NATO ASI Series, vol 285. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-2446-8_26

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-2446-8_26

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-0412-8

  • Online ISBN: 978-94-009-2446-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics