Skip to main content

Advances in Modeling of Water in the Unsaturated Zone

  • Chapter
Groundwater Flow and Quality Modelling

Part of the book series: NATO ASI Series ((ASIC,volume 224))

Abstract

This paper reviews recent advances in modeling of water flow in the unsaturated zone. The Richards model remains the most widely accepted and fertile framework for water flow analyses. More general formulations are reserved for the analysis of problems involving macroporosity, thermal effects, and air pressure effects. Many exact and approximate solutions have been derived for particular boundary value problems of homogeneous soils using methods such as quasi-linear analysis, Green-Ampt analysis, perturbation, and the kinematic wave approximation. Numerical simulators have become bigger and more accurate due to improvements in the areas of nonlinear solution procedures, mass conservation, computational efficiency, and computer hardware. Problems of natural heterogeneity have been addressed primarily through application of various stochastic methods to the Richards model. The stochastic formulations generally refute the concept of simple “equivalent” homogeneous properties, but do themselves offer a certain limited potential for a predictive capability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abriola, L. M., ‘Finite element solution of the unsaturated flow equations using hierarchic basis functions’, in Proc. Sixth Intl. onf. Finite Elements in Water Resources, edited by A. sa da Costa et al., Springer-Verlag, New York, 1986.

    Google Scholar 

  • Ahuja, L. R., ‘Modeling infiltration into crusted soils by the Green-Ampt approach’, Soil Sci. Soc. Am. J., 47(3), 412–418, 1983.

    Article  Google Scholar 

  • Allen, M. B. and C. L. Murphy, ‘A finite-element collocation method for variably saturated flow in two space dimensions’, Water Resour. Res., 22(11), 1537–1542, 1986.

    Article  Google Scholar 

  • Andersson, J. and A. M. Shapiro, ‘Stochastic analysis of one-dimensional steady state unsaturated flow: A comparison of Monte Carlo and perturbation methods’, Water Resour. Res., 19(1), 121–133, 1983.

    Article  Google Scholar 

  • Babu, D. K., ‘Steady state moisture flows in unsaturated soil containing a plane, isolated, impermeable barrier’, Adv. Water Resour., 2(1), 35–46, 1979.

    Article  Google Scholar 

  • Batu, V., ‘Time-dependent, linearized two-dimensional infiltration and evaporation from nonuniform and nonperiodic strip sources’, Water Resour. Res., 18(6), 1725–1733, 1982.

    Article  Google Scholar 

  • Batu, V., ‘Time-dependent, linearized two-dimensional infiltration and evaporation from nonuniform and periodic strip sources’, Water Resour. Res., 19(6), 1523–1529, 1983.

    Article  Google Scholar 

  • Baveye, P. and G. Sposito, ‘The operational significance of the continuum hypothesis in the theory of water movement through soils and aquifers’, Water Resour. Res., 20(5), 521–530, 1984.

    Article  Google Scholar 

  • Beese, F. and R. R. van der Ploeg, ‘Influence of hysteresis on moisture flow in an undisturbed soil monolith’, Soil Sci. Soc. Am. J., 40,480–484, 1976.

    Article  Google Scholar 

  • Beven, K. J. and R. T. Clarke, ‘On the variation of infiltration into a homogeneous soil matrix containing a population of macropores’, Water Resour. Res., 22(3), 383–388, 1986.

    Article  Google Scholar 

  • Beven, K. J. and P. Germann, ‘Macropores and water flow in soils’, Water Resour. Res., 18(5), 1311–1325, 1982.

    Article  Google Scholar 

  • Boulier, J. F., J. Tourna, and M. Vauclin, ‘Flux-concentration relation-based solution of constant-flux infiltration equation, 1, Infiltration into nonuniform initial moisture profiles’, Soil Sci. Soc. Am. J., 48(2), 245–251, 1984.

    Article  Google Scholar 

  • Bresler, E. and G. Dagan, ‘Unsaturated flow in spatially variable fields, 2, Application of water flow models to various fields’, Water Resour. Res., 19(2), 421–428, 1983a.

    Article  Google Scholar 

  • Bresler, E. and G. Dagan, ‘Unsaturated flow in spatially variable fields, 3, Solute transport models and their application to two fields’, Water Resour. Res., 19(2), 429–435, 1983b.

    Article  Google Scholar 

  • Broadbridge, P., ‘Integrable flow equations that incorporate spatial heterogeneity’, Transport in Porous Media, 2, 129–144, 1987.

    Article  Google Scholar 

  • Brutsaert, W., ‘Some exact solutions for nonlinear desorptive diffusion’, J. Appl. Math. and Phys., 33, 540–546, 1982.

    Article  Google Scholar 

  • Bybordi, M., ‘Moisture profiles in layered porous materials during steady-state infiltration’, Soil Sci., 105(6), 379–383, 1968.

    Article  Google Scholar 

  • Camillo, P. J., R. J. Gurney, and T. J. Schmugge, ‘A soil and atmospheric boundary layer model for evapotranspiration and soil moisture studies’, Water Resour. Res., 19(2), 371–380, 1983.

    Article  Google Scholar 

  • Celia, M. A. and G. F. Pinder, An alternating-direction collocation solution for the unsaturated flow equation, in Proc. Sixth Intl. onf. Finite Elements in Water Resources, edited by A. sa da Costa et al., Springer-Verlag, New York, 1986.

    Google Scholar 

  • Childs, E. C. and M. Bybordi, ‘The vertical movement of water in stratified porous material, 1, Infiltration’, Water Resour. Res., 5(2), 446–459, 1969.

    Article  Google Scholar 

  • Clapp, R. B., A wetting front model of soil vxiter dynamics, Ph.D. dissertation, Dep. of Environ. Sci., Univ. of Va., Charlottesville, 1982.

    Google Scholar 

  • Clapp, R. B., G. M. Hornberger, and B. J. Cosby, ‘Estimating spatial variability in soil moisture with a simplified dynamic model’, Water Resour. Res., 19(3), 739–745, 1983.

    Article  Google Scholar 

  • Cooley, R. L., ‘Some new procedures for numerical solution of variably saturated flow problems’, Water Resour. Res., 19(5), 1271–1285, 1983.

    Article  Google Scholar 

  • Curtis, A. A. and K. K. Watson, ‘Hysteresis affected water movement in scale heterogeous profiles’, Water Resour. Res., 20(6), 719–726, 1984.

    Article  Google Scholar 

  • Cushman, J. H., ‘On unifying the concepts of scale, instrumentation, and stochastics in the development of multiphase transport theory’, Water Resour. Res., 20(11), 1668–1676, 1984.

    Article  Google Scholar 

  • Cushman, J. H., ‘On measurement, scale, and scaling’, Water Resour. Res., 22(2), 129–134, 1986.

    Article  Google Scholar 

  • Dagan, G. and E. Bresler, ‘Unsaturated flow in spatially variable fields, 1, Derivation of models of infiltration and redistribution’, Water Resour. Res., 19(2), 413–420, 1983.

    Article  Google Scholar 

  • Dane, J. H. and F. H. Mathis, ‘An adaptive finite difference scheme for the one-dimensional water flow equation’, Soil Sci. Soc. Am. J., 45, 1048–1054, 1981.

    Article  Google Scholar 

  • Davidson, M. R., ‘A Green-Ampt model of infiltration in a cracked soil’, Water Resour. Res., 20(11), 1685–1690, 1984.

    Article  Google Scholar 

  • Davidson, M. R., ‘Asymptotoic behavior of infiltration in soils containing cracks or holes’, Water Resour. Res., 21(9), 1345–1353, 1985.

    Article  Google Scholar 

  • de Vries, D. A., ‘Simultaneous transfer of heat and moisture in porous media’, EOS Trans. AGU, 39(5), 909–916, 1958.

    Google Scholar 

  • Diment, G. A. and K. K. Watson, ‘Stability analysis of water movement in unsaturated porous materials, 2, Numerical studies’, Water Resour. Res., 19(4), 1002–1010, 1983.

    Article  Google Scholar 

  • Diment, G. A. and K. K. Watson, ‘Stability analysis of water movement in porous materials, 3, Experimental studies’, Water Resour. Res., 21(7), 979–984, 1985.

    Article  Google Scholar 

  • Diment, G. A., K. K. Watson, and P. J. Blennerhassett, ‘Stability analysis of water movement in unsaturated porous materials, 1, Theoretical considerations’, Water Resour. Res., 18(4), 1248–1254, 1982.

    Article  Google Scholar 

  • Edwards, W. M., R. R. van der Ploeg, and W. Ehlers, ‘A numerical study of the effects of noncapillary-sized pores upon infiltration’, Soil Sci. Soc. Am. J., 43, 851–856, 1979.

    Article  Google Scholar 

  • Freeze, R. A., ‘Three-dimensional transient saturated-unsaturated flow in a groundwater basin’, Water Resour. Res., 7, 347–366, 1971.

    Article  Google Scholar 

  • Freeze, R. A., ‘A stochastic-conceptual analysis of rainfall-runoff processes on a hillslope’, Water Resour. Res., 16(2), 391–408, 1980.

    Article  Google Scholar 

  • Gardner, W. R., ‘Some steady-state solutions of the unsaturated moisture flow equation with application to evaporation from a water table’, Soil Sci., 85(4), 228–232, 1958.

    Article  Google Scholar 

  • Germann, P. F., ‘Kinematic wave approach to infiltration and drainage into and from soil macropores’, Trans. Amer. Soc. Agric. Eng., 28(3), 745–749, 1985.

    Google Scholar 

  • Germann, P. F. and K. Beven, ‘Kinematic wave approximation to infiltration into soils with sorbing macropores’, Water Resour. Res., 21(7), 990–996, 1985.

    Article  Google Scholar 

  • Germann, P. F. and K. Beven, ‘A distribution function approach to water flow in soil macropores based on kinematic wave theory’, J. Hydrol., 83, 173–183, 1986.

    Article  Google Scholar 

  • Green, W. G. and G. Ampt, ‘Studies of soil physics, I, The flow of air and water through soils’, J. Agric. Sci., 4, 1–24, 1911.

    Article  Google Scholar 

  • Hassanizadeh, M. and W. G. Gray, ‘General conservation equations for multiphase systems, 1, Averaging procedure’, Adv. Water Resour., 2, 131–144, 1979a.

    Article  Google Scholar 

  • Hassanizadeh, M. and W. G. Gray, ‘General conservation equations for multiphase systems, 2, Mass, momenta, energy, and entropy equations’, Adv. Water Resour., 2,191–203, 1979b.

    Article  Google Scholar 

  • Hasanizadeh, M. and W. G. Gray, ‘General conservation equations for multiphase systems, 3, Constitutive theory for porous media flow’, Adv. Water Resour., 3, 25–40, 1980.

    Article  Google Scholar 

  • Herkelrath, W. N., ‘Comment on “Analysis of water and heat flow in unsaturated-saturated porous media” by Marios Sophocleous’, Water Resour. Res., 17(1), 255, 1981.

    Article  Google Scholar 

  • Hromadka, T. V., G. L. Guymon, and G. C. Pardoen, ‘Nodal domain integration model of unsaturated two-dimensional soil-water flow: development’, Water Resour. Res., 17(5), 1425–1430, 1981.

    Article  Google Scholar 

  • Hurley, D. G. and G. Pantelis, ‘Unsaturated and saturated flow through a thin porous layer on a hillslope’, Water Resour. Res., 21(6), 821–824, 1985.

    Article  Google Scholar 

  • Huyakorn, P. S., E. P. Springer, V. Guvanasen, and T. D. Wadsworth, ‘A three-dimensional finite-element model for simulating water flow in variably saturated porous media’, Water Resour. Res., 22(13), 1790–1808, 1986.

    Article  Google Scholar 

  • Huyakorn, P. S., S. D. Thomas, and B. M. Thompson, ‘Techniques for making finite elements competitive in modeling flow in variably saturated media’, Water Resour. Res., 20(8), 1099–1115, 1984.

    Article  Google Scholar 

  • Jury, W. A., ‘A tramsfer function model of solute transport through soil, I, fundamental concepts’, Water Resour. Res., 22(2), 243–247, 1986.

    Article  Google Scholar 

  • Lees, S. J. and K. K. Watson, ‘The use of a dependent domain model of hysteresis in numerical soil water studies’, Water Resour. Res., 11, 943–948, 1975.

    Article  Google Scholar 

  • Lighthill, M. J. and G. B. Whitham, ‘On kinematic waves I. Flood movement in long rivers’, Proc. Royal Soc. of London, Ser. A, 229, 281–316, 1955.

    Article  Google Scholar 

  • Lomen, D. O. and A. W. Warrick, ‘Time-dependent linearized infiltration, II, Line sources’, Soil Set. Soc. Am. J., 38, 568–572, 1974.

    Article  Google Scholar 

  • Luxmoore, R. J. and M. L. Sharma, ‘Runoff responses to soil heterogeneity: Experimental and simulation comparisons for two contrasting watersheds’, Water Resour. Res., 16(4), 675–684, 1980.

    Article  Google Scholar 

  • Mahrer, Y., O. Naot, E. Rawitz, and J. Katan, ‘Temperature and moisture regimes in soils mulched with transparent polyethylene’, Soil Sci. Soc. Am. J., 48, 362–367, 1984.

    Article  Google Scholar 

  • Mantoglou, A. and L. W. Gelhar, ‘Stochastic modeling of large-scale transient unsaturated flow systems’, Water Resour. Res., 23(1), 37–46, 1987a.

    Article  Google Scholar 

  • Mantoglou, A. and L. W. Gelhar, ‘Capillary tension head variance, mean soil moisture content, and effective specific soil moisture capacity of transient unsaturated flow in stratified soils’, Water Resour. Res., 23(1), 47–56, 1987b.

    Article  Google Scholar 

  • Mantoglou, A. and L. W. Gelhar, ‘Effective hydraulic conductivities of transient unsaturated flow in stratified soils’, Water Resour. Res., 23(1), 57–67, 1987c.

    Article  Google Scholar 

  • Miller, E. E. and R. D. Miller, ‘Physical theory for capillary flow phenomena’, J. Appl. Phys., 27(4), 324–332, 1956.

    Article  Google Scholar 

  • Milly, P. C. D., ‘Moisture and heat transport in hysteretic, inhomogeneous porous media: A matric head-based formulation and a numerical model’, Water Resour. Res., 18(3), 489–498, 1982.

    Article  Google Scholar 

  • Milly, P. C. D., ‘A linear analysis of thermal effects on evaporation from soil’, Water Resour. Res., 20(8), 1075–1085, 1984a.

    Article  Google Scholar 

  • Milly, P. C. D., ‘A simulation analysis of thermal effects on evaporation from soil’, Water Resour. Res., 20(8), 1087–1098, 1984b.

    Article  Google Scholar 

  • Milly, P. C. D., ‘Stability of the Green-Ampt profile in a delta function soil’, Water Resour. Res., 21(3), 399–402, 1985a.

    Article  Google Scholar 

  • Milly, P. C. D., ‘A mass-conservative procedure for time-stepping in models of unsaturated flow’, Adu. Water Resour., 8(1), 32–36, 1985b.

    Article  Google Scholar 

  • Milly, P. C. D., ‘An event-based simulation model of moisture and energy fluxes at a bare soil surface’, Water Resour. Res., 22(12), 1680–1692, 1986.

    Article  Google Scholar 

  • Milly, P. C. D. and P. S. Eagleson, ‘The coupled transport of water and heat in a vertical soil column under atmospheric excitation’, Tech. Rep. 258, Dep. of Civ. Eng., Mass. Inst, of Technol., Cambridge, 1980.

    Google Scholar 

  • Milly, P. C. D. and P. S. Eagleson, ‘Infiltration and evaporation at inhomogeneous land surfaces’, Tech. Rep. 278, Dep. of Civ. Eng., Mass. Inst, of Technol., Cambridge, 1982.

    Google Scholar 

  • Milly, P. C. D. and P. S. Eagleson, ‘Effects of spatial variability on average water balance’, submitted to Water Resour. Res., 1987.

    Google Scholar 

  • Morel-Seytoux, H. J., ‘Two-phase flows in porous media’, Adv. Hydrosci., 9, 119–202, 1973.

    Google Scholar 

  • Morel-Seytoux, H. J., ‘From excess infiltration to aquifer recharge: A derivation based on the theory of flow of water in unsaturated soils’, Water Resour. Res., 20(9), 1230–1240, 1984.

    Article  Google Scholar 

  • Morel-Seytoux, H. J. and J. A. Bulica, ‘A two-phase numerical model for prediction of infiltration: Applications to a semi-infinite soil column’, Water Resour. Res., 21(4), 607–615, 1985a.

    Article  Google Scholar 

  • Morel-Seytoux, H. J. and J. A. Bulica, ‘A two-phase numerical model for prediction of infiltration: Case of an impervious bottom’, Water Resour. Res., 21(9), 1389–1396, 1985b.

    Article  Google Scholar 

  • Nakano, Y., ‘Particular solutions to the problem of horizontal flow of water and air through porous media near a water table’, Adv. Water Resour., 3(1), 19–24, 1980a.

    Article  Google Scholar 

  • Nakano, Y., ‘Particular solutions to the problem of horizontal flow of water and air through porous media near a wetting front’, Adu. Water Resour., 3(2), 81–85, 1980b.

    Article  Google Scholar 

  • Nakano, Y., ‘Particular solutions to the problem of vertical flow of water and air through porous media near a water table’, Adu. Water Resour., 3(3), 125–133, 1980c.

    Article  Google Scholar 

  • Narasimhan, T. N., P. A. Witherspoon, and A. L. Edwards, ‘Numerical model for saturated-unsaturated flow in deformable porous media, 2, The algorithm’, Water Resour. Res., 14(2), 255–261, 1978.

    Article  Google Scholar 

  • Neuman, S. P., ‘Saturated-unsaturated seepage by finite elements’, Proc. AS E, J. Hydraul. Div., 99(HY12), 2233–2250, 1973.

    Google Scholar 

  • Nielsen, D. R., R. D. Jackson, J. W. Cary, and D. D. Evans, editors, Soil Water, Amer. Soc. Agron., Madison, Wisconsin, 1972.

    Google Scholar 

  • Nielsen, D. R., M. Th. van Genuchten, and J. W. Biggar, ‘Water flow and solute transport processes in the unsaturated zone’, Water Resour. Res., 22(9), 89S-108S, 1986.

    Article  Google Scholar 

  • Parlange, J.-Y., I. G. Lisle, R. D. Braddock, and R. E. Smith, ‘The three-parameter infiltration equation’, Soil Sci., 133(6), 337–341, 1982.

    Article  Google Scholar 

  • Parlange, J.-Y., I. G. Lisle, S. N. Prasad, and M. J. M. Romkens, ‘Wetting front analysis of the nonlinear diffusion equation’, Water Resour. Res., 20(5), 636–638, 1984.

    Article  Google Scholar 

  • Peck, A. J., R. J. Luxmoore, and J. L. Stolzy, ‘Effects of spatial variability of soil hydraulic properties in water budget modeling’, Water Resour. Res., 13(2), 348–354, 1977.

    Article  Google Scholar 

  • Perroux, K. M., D. E. Smiles, and I. White, ‘Water movement in uniform soils during constant-flux infiltration’, Soil Sci. Soc. Am. J., 45, 237–240, 1981.

    Article  Google Scholar 

  • Philip, J. R., ‘The theory of infiltration: 1. The infiltration equation and its solution’, Soil Sci., 83(5), 345–357, 1957a.

    Article  Google Scholar 

  • Philip, J. R., ‘The theory of infiltration, 4, Sorptivity and algebraic infiltration equations’, Soil Sci., 84(3), 257–264, 1957b.

    Article  Google Scholar 

  • Philip, J. R., ‘Evaporation, and moisture and heat fields in the soil’, J. Atmos. Sci., 14(4), 354–366, 1957c.

    Google Scholar 

  • Philip, J. R., ‘Sorption and infiltration in heterogeneous media’, Aust. J. Soil Res., 5, 1–10, 1967.

    Article  Google Scholar 

  • Philip, J. R., ‘Absorption and infiltration in two- and three-dimensional systems’, and Discussion, in Water in the Unsaturated Zone, Vol. I, Proc. Wageningen Sgmp., ed. P. E. Rijtema and H. Wassink, IASH, 1968a.

    Google Scholar 

  • Philip, J. R., ‘Steady infiltration from buried point sources and spherical cavities’, Water Resour. Res., 4(5), 1039–1047, 1968b.

    Article  Google Scholar 

  • Philip, J. R., ‘The theory of absorption in aggregated media’, Aust. J. Soil Res., 6, 1–19, 1968c.

    Article  Google Scholar 

  • Philip, J. R., ‘Steady infiltration from buried, surface, and perched point and line sources in heterogeneous soils, 1, Analysis’, Soil Sci. Soc. Am. Froc, 36(2), 268–273, 1972.

    Article  Google Scholar 

  • Philip, J. R., ‘On solving the unsaturated flow equation, 1, The flux-concentration relation’, Soil Sci., 116(5), 328–335, 1973.

    Article  Google Scholar 

  • Philip, J. R., ‘Field heterogeneity: Some basic issues’, Water Resour. Res., 16(2), 443–448, 1980.

    Article  Google Scholar 

  • Philip, J. R., ‘Steady infiltration from circular cylindrical cavities’, Soil Sci. Soc. Am. J., 48(2), 270–278, 1984a.

    Article  Google Scholar 

  • Philip, J. R., ‘Steady infiltration from spherical cavities’, Soil Sci. Soc. Am. J., 48(4), 724–729, 1984b.

    Article  Google Scholar 

  • Philip, J. R., ‘Scattering functions and infiltration’, Water Resour. Res., 21(12), 1889–1894, 1985a.

    Article  Google Scholar 

  • Philip, J. R., ‘Approximate analysis of the borehole permearneter in unsaturated soil’, Water Resour. Res., 21, 1025–1033, 1985b.

    Article  Google Scholar 

  • Philip, J. R., ‘Steady infiltration from buried discs and other sources’, Water Resour. Res., 22(7), 1058–1066, 1986a.

    Article  Google Scholar 

  • Philip, J. R., ‘Steady infiltration from spheroidal cavities in isotropic and anisotropic soils’, Water Resour. Res., 22(13), 1874–1880, 1986b.

    Article  Google Scholar 

  • Philip, J. R., ‘An analog for infiltration and unsaturated seepage’, EOS Trans. AGU, 68(11), 153–154, 1987.

    Google Scholar 

  • Philip, J. R. and D. A. de Vries, ‘Moisture movement in porous materials under temperature gradients’, EOS Trans. AGU, 38(2), 222–232, 1957.

    Google Scholar 

  • Pollock, D. W., ‘Simulation of fluid flow and energy transport processes associated with high-level radioactive waste disposal in unsaturated alluvium’, Water Resour. Res., 22(5), 765–775, 1986.

    Article  Google Scholar 

  • Prasad, S. N. and M. J. M. Romkens, ‘An approximate integral solution of vertical infiltration under changing boundary conditions’, Water Resour. Res., 18(4), 1022–1028, 1982.

    Article  Google Scholar 

  • Raats, P. A. C., ‘Steady infiltration from line sources and furrows’, Soil Sci. Soc. Am. Froc., 34(5), 709–714, 1970.

    Article  Google Scholar 

  • Raats, P. A. C., ‘Unstable wetting fronts in uniform and nonuniform soils’, Soil Sci. Soc. Am. Froc., 37, 681–685, 1973.

    Article  Google Scholar 

  • Richards, L. A., ‘Capillary conduction of liquids through porous mediums’, Physics, 1, 318–333, 1931.

    Article  Google Scholar 

  • Rubin, J. ‘Numerical method for analyzing hysteresis-affected, post-infiltration redistribution of soil moisture’, Soil Sci. Soc. Am. Froc., 31(1), 13–20, 1967.

    Article  Google Scholar 

  • Russo, D. and E. Bresler, ‘A univariate versus a multivariate parameter distribution in a stochastic-conceptual analysis of unsaturated flow’, Water Resour. Res., 18(3), 483–488, 1982.

    Article  Google Scholar 

  • Schieldge, J. P., A. B. Kahle, and R. E. Alley, ‘A numerical simulation of soil temperature and moisture variations for a bare field’, Soil Sci., 134(4), 197–207, 1982.

    Article  Google Scholar 

  • Schmitz, G., M. Vauclin and G. J. Seus, ‘A time variant computational mesh technique to simulate a large scale ponding test’, in Froc. Fifth Intl. onf. Finite Elements in Water Resources, edited by J. P. Laible et al., Springer-Verlag, New York, 1984.

    Google Scholar 

  • Sharma, M. L. and R. J. Luxmoore, ‘Soil spatial variability and its consequences on simulated water balance’, Water Resour. Res., 15(6), 1567–1573, 1979.

    Article  Google Scholar 

  • Sisson, J. B., A. H. Ferguson, and M. Th. van Genuchten, ‘Simple methods for predicting drainage from field plots’, Soil Sci. Soc. Am. J., 44, 1147–1152, 1980.

    Article  Google Scholar 

  • Smettem, K. R. J., ‘Analysis of water flow from cylindrical macropores’, Soil Sci. Soc. Am. J., 50(5), 1139–1142, 1986.

    Article  Google Scholar 

  • Smith, R. E., ‘Unsaturated soil water flow’, Rev. Geophysics and Space Physics, 21(3), 755–760, 1983a.

    Article  Google Scholar 

  • Smith, R. E., ‘Approximate soil water movement by kinematic characteristics’, Soil Sci. Soc. Am. J., 47(1), 1983b.

    Google Scholar 

  • Smith, R. E. and R. H. B. Hebbert, ‘A Monte Carlo analysis of the hydrologic effects of spatial variability of infiltration’, Water Resour. Res., 15(2), 419–429, 1979.

    Article  Google Scholar 

  • Sophocleous, M., ‘Analysis of water and heat flow in unsaturated-saturated porous media’, Water Resour. Res., 15(5), 1979.

    Google Scholar 

  • Sorek, S. and C. Braester, ‘An adaptive Eulerian-Lagrangian approach for the numerical simulation of unsaturated flow’, in Proc. Sixth Intl. oaf. Finite Elements in Water Resour., edited by A. sa da Costa et al., Springer-Verlag, New York, 1986.

    Google Scholar 

  • Sposito, G., ‘The statistical mechanical theory of water transport through unsaturated soil, 1, The conservation laws’, Water Resour. Res., 13, 474–478, 1978a.

    Article  Google Scholar 

  • Sposito, G., ‘The statistical mechanical theory of water transport through unsaturated soil, 2, Derivation of the Buckingham-Darcy flux law’, Water Resour. Res., 14, 479–484, 1978b.

    Article  Google Scholar 

  • Sposito, G., V. K. Gupta, and R. N. Bhattacharya, ‘Foundational theories of solute transport in porous media: A critical review’, Adv. Water Resour., 2, 59–68, 1979.

    Article  Google Scholar 

  • Sposito, G., W. A. Jury, V. K. Gupta, ‘Fundamental problems in the stochastic convection-dispersion model of solute transport in aquifers and field soils’, Water Resour. Res., 22(1), 77–88, 1986.

    Article  Google Scholar 

  • Stagnitti, F., M. B. Parlange, T. S. Steenhuis, and J.-Y. Parlange, ‘Drainage from a uniform soil layer on a hillslope’, Water Resour. Res., 22(5), 631–634, 1986.

    Article  Google Scholar 

  • Van der Heijde, P., Y. Bachmat, J. Bredehoeft, B. Andrews, D. Holtz, and S. Sebastian, Groundwater Management: The Use of Numerical Models, second edition, Water Resources Monograph 5, American Geophysical Union, Washington, 1985.

    Google Scholar 

  • Van Genuchten, M. Th., ‘An Hermitian finite element solution of the two-dimensional saturated-unsaturated flow equation’, Adv. Water Resour., 6(2), 106–111, 1983.

    Article  Google Scholar 

  • Van Genuchten, M. Th. and W. A. Jury, ‘Progress in unsaturated flow and transport modeling’, Rev. Geophys., in press, 1987.

    Google Scholar 

  • Waechter, R. T. and J. R. Philip, ‘Steady two- and three-dimensional flows in unsaturated soil: The scattering analog’, Water Resour. Res., 21(12), 1875–1887, 1985.

    Article  Google Scholar 

  • Wang, J. S. Y. and T. N. Narasimhan, ‘Hydrologic mechanisms governing fluid flow in a partially saturated, fractured, porous medium’, Water Resour. Res., 21(12), 1861–1874, 1985.

    Article  Google Scholar 

  • Warrick, A. W., ‘Time-dependent linearized infiltration, I, Point sources’, Soil Sci. Soc. Am. J., 38, 383–386, 1974.

    Article  Google Scholar 

  • Warrick, A. W. and D. O. Lomen, ‘Time-dependent linearized infiltration, III, Strip and disc sources’, Soil Sci. Soc. Am. J., 40, 639–643, 1976.

    Article  Google Scholar 

  • Warrick, A. W. and D. O. Lomen, ‘Linearized moisture flow with root extraction over two-dimensional zones’, Soil Sci. Soc. Am. J., 47(5), 869–872, 1983.

    Article  Google Scholar 

  • Weir, G. J., ‘Steady infiltration from small shallow circular ponds’, Water Resour. Res., 23(4), 733–736, 1987.

    Article  Google Scholar 

  • Willis, W. O., ‘Evaporation from layered soils in the presence of a water table’, Soil Sci. Soc. Am. Proc., 24(4), 239–242, 1960.

    Article  Google Scholar 

  • Wooding, R. A., ‘Steady infiltration from a shallow circular pond’, Water Resour. Res., 4(6), 1259–1273, 1968.

    Article  Google Scholar 

  • Yeh, G.-T., ‘On the computation of Darcian velocity and mass balance in the finite element modeling of groundwater flow’, Water Resour. Res., 17(5), 1529–1534, 1981.

    Article  Google Scholar 

  • Yeh, T.-C. J., L. W. Gelhar, and A. L. Gutjahr, ‘Stochastic analysis of unsaturated flow in heterogeneous soils, 1, Statistically isotropic media’, Water Resour. Res., 21(4), 447–456, 1985a.

    Article  Google Scholar 

  • Yeh, T.-C. J., L. W. Gelhar, and A. L. Gutjahr, ‘Stochastic analysis of unsaturated flow in heterogeneous soils, 2, Statistically anisotropic media with variable a’, Water Resour. Res., 21(4), 457–464, 1985b.

    Article  Google Scholar 

  • Yeh, T.-C. J., L. W. Gelhar, and A. L. Gutjahr, ‘Stochastic analysis of unsaturated flow in heterogeneous soils, 3, Observations and applications’, Water Resour. Res., 21(4), 465–471, 1985c.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 D. Reidel Publishing Company

About this chapter

Cite this chapter

Milly, P.C.D. (1988). Advances in Modeling of Water in the Unsaturated Zone. In: Custodio, E., Gurgui, A., Ferreira, J.P.L. (eds) Groundwater Flow and Quality Modelling. NATO ASI Series, vol 224. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-2889-3_28

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-2889-3_28

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7801-6

  • Online ISBN: 978-94-009-2889-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics