Skip to main content

Understanding Jurassic Organic-rich Mudrocks—New Concepts using Gamma-ray Spectrometry and Palaeoecology: Examples from the Kimmeridge Clay of Dorset and the Jet Rock of Yorkshire

  • Chapter
Marine Clastic Sedimentology

Abstract

Palaeoecology and gamma-ray spectrometry have been combined to study the controls on deposition of two well-known Jurassic organic-rich mudrocks. Portable gamma-ray spectrometry allows the rapid measurement of K, U and Th in the field. Th and K are contained mainly in the detrital clay fraction of the mudrocks and the Th/K ratio is found to decrease slightly with increasing water depth and distance from shoreline. Measured values of U have a detrital and an ‘authigenic’ component. Sediments deposited under anoxic conditions are consistently enriched in ‘authigenic’ U. Non-detrital ‘authigenic’ U has been estimated by the relative enrichment of U over Th, which is assumed to be immobile and present entirely in the detrital fraction.

The Kimmeridge Clay represents a several-million-year period of organic-rich mudrock deposition in which climate-induced stratification of the water column was the predominant control on the formation of the different lithologies. Sea level controlled the position of storm wave-base relative to the substrate and thus the frequency of oxygenation events during shale deposition. Coccolith limestones contain up to 10 ppm ‘authigenic’ U and represent the most anoxic sediments.

The lower Toarcian ‘anoxic event’ coincides with a period of rising sea level and transgression. The maximum ‘authigenic’ U value of 8.2 ppm was recorded 4.5 m above the base of the Jet Rock member and represents the most intense period of anoxia.

Organic carbon correlates well with ‘authigenic’ U in the lower Toarcian where the degree of bottom water anoxia appears to be the main control on organic carbon preservation. The organic carbon/‘authigenic’ U correlation is poor in the Kimmeridge Clay, where sedimentation rate and surface productivity are additional influences on organic carbon preservation. U/organic carbon ratios in the Jurassic case-study sediments are much lower than for Palaeozoic black shales.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, J. A. S. and Gasperini, P. (1970). Gamma-ray spectrometry of rocks, In Methods in Geochemistry and Geophysics 10, Elsevier.

    Google Scholar 

  • Adams, J. A. S., Osmond, J. K. and Rogers, J. J. W. (1959). The geochemistry of uranium and thorium, Physical Chemistry of the Earth 3, 299–328.

    Google Scholar 

  • Adams, J. A. S. and Weaver, R. (1958). Thorium-to-uranium ratio as an indicator of sedimentary process: examples of the concept of geochemical facies, American Association of Petroleum Geologists Bulletin 42 (2), 387–430.

    Google Scholar 

  • Aigner, T. (1980). Biofabrics and stratinomy of the Lower Kimmeridge Clay (Upper Jurassic, Dorset, England), Nues Jahrbuch für Geologie und Paläontologie Abhandlungen 159, 324–338.

    Google Scholar 

  • Borovec, Z., Kribek, B. and Tolar, V. (1979). Sorption of uranyl by humic acids, Chemical Geology 27, 39–46.

    Article  Google Scholar 

  • Byers, C. W. (1977). Biofacies patterns in euxinic basins: a general model, In Deep-water Clastic Environments, Cook, H. E. and Enos, P. (Eds), S.E.P.M. Special Publication No. 25, pp. 5–17.

    Google Scholar 

  • Cochraine, J. K., Carey, A. E., Sholkovitz, E. R. and Surprenant, L. D. (1986). The geochemistry of uranium and thorium in coastal marine sediments and pore waters, Geochimica et Cosmochimica Acta 50, 663–680.

    Article  Google Scholar 

  • Cox, B. M. and Gallois, R. W. (1981). The stratigraphy of the Kimmeridge Clay in the Dorset type area and its correlation with some other Kimmeridgian sequences, Inst. Geol. Sci. Report 80 /4.

    Google Scholar 

  • Curtis, C. (1987). Recent data on the variety and consequence of organic-inorganic reactions which influence sedimentary mineral assemblages, this volume.

    Google Scholar 

  • Degens, E. T., Khoo, K. and Michaelis, W. (1977). Uranium, anomaly in Black Sea sediments, Nature 269, 566–569.

    Article  Google Scholar 

  • Demaison, G. J. and Moore, G. T. (1980). Anoxic environments and oil source bed genesis. American Association of Petroleum Geologists Bulletin 64, 1179–1209.

    Google Scholar 

  • Dodd, J. R. and Stanton, R. J. (1981). Palaeoecology, Concepts and Applications, New York, Wiley.

    Google Scholar 

  • Dongarra, G. (1984). Geochemical behaviour of uranium in the supergene environment, In Uranium Geochemistry, Mineralogy, Geology, Exploration and Resources, De Viro et al. ( Eds ), Institute of Mining and Metallurgy, pp. 18–22.

    Google Scholar 

  • Downie, C. (1955). The Kimmeridge oil shale, Unpublished Ph.D. Thesis, University of Sheffield.

    Google Scholar 

  • Dunn, C. E. (1974). Identification of sedimentary cycles through Fourier analysis of geochemical data, Chemical Geology 13, 217–232.

    Article  Google Scholar 

  • Ebukanson, E. J. and Kinghorn, R. R. F. (1985). Kerogen facies in the major Jurassic mudrock formations of Southern England and the implications on the depositional environments of their precursors, Journal of Petroleum Geology 8 (4), 435–462.

    Article  Google Scholar 

  • Farrimond, P. et al. (1984) Organic geochemical study of the Upper Kimmeridge Clay of the Dorset type area, Marine and Petroleum Geology 1 (4), 340–354.

    Article  Google Scholar 

  • Fertl, W. H. (1982). Gamma-ray spectrometry assists in complex formation evaluation, The Log Analyst 20 (5), 23–57.

    Google Scholar 

  • Gad, M. A., Catt, S. A. and Le Riche, H. H. (1969). Geochemistry of the Whitbian (Upper Lias) sediments of the Yorkshire coast, Proceedings Yorkshire Geological Society 37 (1), 105–139.

    Article  Google Scholar 

  • Gallois, R. W. (1976). Coccolith blooms in the Kimmeridge Clay and the origin of North Sea oil, Nature 259, 473–475.

    Article  Google Scholar 

  • Glennie, K. W. (Ed.) (1984). Introduction to the Petroleum Geology of the North Sea, Oxford, Black well Science Publishers.

    Google Scholar 

  • Guthrie, V. A. and Kleeman, J. D. (1986). Changing uranium distributions during weathering of granite. Chemical Geology 54, 113–126.

    Article  Google Scholar 

  • Hallam, A. (1967). An environmental study of the Upper Domerian and Lower Toarcian in Great Britain, Philosophical Transactions Royal Society, London B 252, 393–445.

    Article  Google Scholar 

  • Hallam, A. (1981). A revised sea-level curve for the early Jurassic, Journal of the Geological Society, London 138, 735–743.

    Article  Google Scholar 

  • Hallam, A. (1986). Role of climate in affecting late Jurassic and early Cretaceous sedimentation in the North Atlantic, In North Atlantic Paleao-oceanography, Summerhayes, C. P. (Ed.), Oxford, Blackwell Science Publishers.

    Google Scholar 

  • Heier, K. S. and Billings, G. K. (1972). Potassium, In Handbook of Geochemistry, Wedepohl, (Ed.) Vol. 11–2, part 19-b-n. Berlin, Springer-Verlag.

    Google Scholar 

  • Hemingway, J. E. (1974). Jurassic, In The Geology and Mineral Resources of Yorkshire, Rayner, D. H. and Hemingway, J. E. ( Eds ), Yorkshire Geological Society, pp. 161–223.

    Google Scholar 

  • Holland, H. D. (1984). The chemical evolution of the atmosphere and oceans, Princeton Series in Geochemistry, Princeton University Press, Princeton, N.J.

    Google Scholar 

  • Howarth, M. K. (1962). The Jet Rock Series and the Alum Shale Series of the Yorkshire coast, Proceedings Yorkshire Geological Society 33 (4), 381–422.

    Article  Google Scholar 

  • Irwin, H. (1980). Early diagenetic carbonate precipitation and pore fluid migration in the Kimmeridge Clay of Dorset, Sedimentology 27, 577–591.

    Article  Google Scholar 

  • Jenkyns, H. C. (1985). The Early Toarcian and Cenomanian-Turonian anoxic events in Europe: comparisons and contrasts, Geologische Rundschau 74, 505–518.

    Article  Google Scholar 

  • Kammer, T. W., Brett, C. E., Darwin, R., Boardman, H. and Mapes, R. H. (1986). Ecologic stability of the dysaerobic biofacies during the late Palaeozoic, Lethiaia 19, 109–121.

    Article  Google Scholar 

  • Killeen, P. G. (1979). Gamma-ray spectrometric methods in uranium exploration—applications and interpretation, In Geophysics and Geochemistry in the Search for Metallic Ores, Hood, P. J. (Ed.), Geological Survey of Canada, Economic Geology Report, 31, 163–229.

    Google Scholar 

  • Kochenov, A. V., Korolev, K. G., Dubinchuk, V. T. and Medvedev, Y. L. (1977). Experimental data on the conditions of precipitation of uranium from aqueous solutions, translated from Geokhimiya 11, 1711–1716, Geochemistry International (1977) p. 82–87.

    Google Scholar 

  • Langmuir, D. (1978). Uranium solution-mineral equilibria at low temperatures with applications to sedimentary ore deposits. Geochimica et Cosmochimica Acta 42, 547–569.

    Article  Google Scholar 

  • Langmuir, D. and Herman, J. S. (1980). The mobility of thorium in natural waters at low temperatures, Geochimica et Cosmochimica Acta 44, 1753–1766.

    Article  Google Scholar 

  • Levinson, A. A. and Coetzee, G. L. (1978). Implications of disequilibrium in exploration for uranium ores in the surficial environment using radiometric techniques—a review, Minerals Science Engineering 10 (1), 19–27.

    Google Scholar 

  • Løvborg, L. (1971). Field determination of uranium and thorium by gamma-ray spectrometry, exemplified by measurements on the Ilimausaq alkaline intrusion, South Greenland, Economic Geology 66 (3), 368–384.

    Article  Google Scholar 

  • Løvborg, L. (1984). The calibration of portable and airborne gamma-ray spectrometers—theory, problems and facilities, Report Riso-M-2456, Riso National Laboratory, Denmark.

    Google Scholar 

  • Mangini, A. and Schlosser, P. (1986). The formation of eastern Mediterranean sapropels, Marine Geology 72, 115–124.

    Article  Google Scholar 

  • Mann, H. and Fyfe (1985). Uranium uptake by algae: experimental and natural environments, Canadian Journal Earth Science 22, 1899–1903.

    Article  Google Scholar 

  • Morris, K. A. (1979). A classification of Jurassic marine shale sequences: an example from the Toarcian (Lower Jurassic) of Great Britain, Palaeography, Palaeoclimatology, Palaeoecology 26, 117–126.

    Article  Google Scholar 

  • Potter, P. E., Maynard, J. B. and Pryor, W. A. (1980). The Sedimentology of Shale, Springer-Verlag, New York.

    Google Scholar 

  • Pye, K. (1985). Electron microprobe analysis of zoned dolomite rhombs in the Jet Rock Formation (Lower Toarcian) of the Whitby area, U.K., Geological Magazine 122, 279–286.

    Article  Google Scholar 

  • Pye, K. and Krinsley, D. H. (1986). Microfabric, Mineralogy and early diagenetic history of the Whitby Mudstone Formation (Toarcian), Cleveland Basin, U.K., Geological Magazine 123, 191–203.

    Article  Google Scholar 

  • Raiswell, R. and Berner, R. A. (1985). Pyrite formation in euxinic and semi-euxinic sediments, American Journal Science 285.

    Google Scholar 

  • Rhoads, D. C. and Morse, D. C. (1971). Evolutionary and ecological significance of oxygen-deficient marine basins, Lethaia 4, 413–428.

    Article  Google Scholar 

  • Rhoads, D. C. and Young, D. K. (1970). The influence of deposit-feeding organisms on bottom-sediment stability and trophic structure, Journal of Marine Research 28, 150–178.

    Google Scholar 

  • Rhona, E. and Joensu, U. (1974). Uranium geochemistry in the Black Sea, In The Black Sea—Geology, Chemistry and Biology, D. A. Ross and E. T. Degens, (Eds), AAPG Mem. 20, 570–572.

    Google Scholar 

  • Ross, D. A. and Degens, E. T. (1974). The Black Sea—Geology, Chemistry and Biology, American Association of Petroleum Geologists Memoir 20.

    Google Scholar 

  • Savrada, C. E., Boetier, D. J. and Gorsline, D. S. (1984). Development of an oxygen-deficient marine biofacies model: evidence from Santa Monica, San Pedro and Santa Barbara Basins, California continental borderland. American Association of Petroleum Geologists Bulletin 68 (9), 1179–1192.

    Google Scholar 

  • Schlumberger (1982). Natural gamma-ray spectrometry: essentials of N.G.S. interpretation, Schlumberger.

    Google Scholar 

  • Silver, L. T., Woodhead, J. A. and Williams, I. S. (1982). Primary mineral distribution and secondary mobilisation of uranium and thorium in radioactive granites, In Uranium Exploration Methods, LA.E.A., Paris, pp. 355–383.

    Google Scholar 

  • Simms, M. J. (1986). Contrasting lifestyles in lower Jurassic crinoids: comparison of benthic and pseudopelagic isocrinidia, Palaeontology 29, (3), 475–495.

    Google Scholar 

  • Stackelberg, U. V. (1972). Faziesverteilung in Sedimenten des Indisch-Pakistanischen Kontinentalrandes (Arabisches Meer): ‘Meteor’, Forschungsergebuise, Reihe C, 9, 1–173.

    Google Scholar 

  • Swanson, J. E. (1961). Geology and geochemistry of uranium in marine black shales, a review, US Geological Survey, Prof, paper 356-C.

    Google Scholar 

  • Tieh, T. T., Ledger, E. B. and Rowe, M. W. (1980). Release of uranium from granitic rocks during in-situ weathering and initial erosion (Central Texas), Chemical Geology 29, 227–248.

    Article  Google Scholar 

  • Thompson, J. B., Mulins, T. H., Newton, C. R. and Vercontere, T. L. (1985). Alternative biofacies model for dysaerobic communities, Lethaia 18, 167–179.

    Article  Google Scholar 

  • Tyson, R. V., Wilson, R. C. L. and Downie, C. (1979). A stratified water column environmental model for the type Kimmeridge Clay, Nature 277, 377–380.

    Article  Google Scholar 

  • Vail, P. R. and Todd, R. G. (1981). Northern North Sea Jurassic unconformities, chronostratigraphy and sealevel changes from seismic stratigraphy, In Petroleum Geology of the Continental Shelf of North West Europe, Illing, L. V. and Hobson, G. D. (Eds), Heyden, London, 216–235.

    Google Scholar 

  • Veeh, H. H. (1967). Deposition of uranium from the ocean, Earth and Planetary Science Letters 3, 145–150.

    Article  Google Scholar 

  • Veeh, H. H., Calvert, S. E. and Price, N. B. (1974). Accumulation of uranium in sediments and phosphorites on the South-west African shelf, Marine Chemistry 2, 189–202.

    Article  Google Scholar 

  • Waples, D. W. (1983). Reappraisal of anoxia and organic richness, with emphasis on Cretaceous of North Atlantic, American Association of Petroleum Geologists Bulletin 67, (6), 963–978.

    Google Scholar 

  • Wilson, R. C. L. (1980). Changing Sea Level: a Jurassic Case-study, Open University Press, Milton Keynes.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 J. k. Leggett & G. G. Zuffa (Graham and Trotman)

About this chapter

Cite this chapter

Myers, K.J., Wignall, P.B. (1987). Understanding Jurassic Organic-rich Mudrocks—New Concepts using Gamma-ray Spectrometry and Palaeoecology: Examples from the Kimmeridge Clay of Dorset and the Jet Rock of Yorkshire. In: Leggett, J.K., Zuffa, G.G. (eds) Marine Clastic Sedimentology. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-3241-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-3241-8_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7954-9

  • Online ISBN: 978-94-009-3241-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics