Skip to main content

Abstract

From information presented in previous chapters it will be clear to readers that plant hormones are, as a rule, present at very low levels in most plant tissues. Whilst relatively high levels of some hormones are found in immature seeds of certain species (e.g., GAs in developing pea seeds (10)) even these levels are low when compared with the levels of most plant secondary metabolites. Thus while many alkaloids, terpenoids and phenolics may be present at levels of mgs. per gm. dry weight of plant material, plant hormones are usually present at several hundred to several thousand fold lower levels. It is not suprising therefore that knowlege of the chemical identity of plant hormones has been limited by the techniques available for their isolation in a pure state and by the sensitivity of the spectroscopic techniques required to elucidate their chemical structure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albone, K.S., Gaskin, P., MacMillan, J., Sponsel, V.M. (1984) Identification and localisation of gibberellins in maturing seeds of the cucurbit Sechium edule, and a comparison between this cucurbit and the legume Phaseolus coccineus. Planta 162, 560–565.

    Article  CAS  Google Scholar 

  2. Badenoch-Jones, J., Summons, R.E., Entsch, B., Rolfe, B.G., Parker, C.W., Letham, D.S. (1982) Mass spectrometric identification of indole compounds produced by Rhizobium strains. Biomed. Mass Spectrometry 9, 430–436.

    Article  Google Scholar 

  3. Biddington, N.L. and Thomas, T.H. (1973) A modified A maranthus betacyanin bioassay for the rapid determination of cytokinins in plant tissues. Planta 111, 183–186.

    Article  CAS  Google Scholar 

  4. Binks, R., MacMillan, J., Pryce, R.J. (1969) Plant hormones VIII. Combined gas chromatography-mass spectrometry of the methyl esters of gibberellins A1 to A24 and their trimethylsilyl ethers. Phytochemistry 8, 271–284.

    Article  CAS  Google Scholar 

  5. Bowman, W.R., Linforth, R.S.T., Rossall, S., Taylor, I.B. (1984) Accumulation of an ABA analogue in the wilty tomato mutant, flacca. Biochemical Genetics 22, 369–378.

    Article  CAS  PubMed  Google Scholar 

  6. Crozier, A., Loferski, J., Zaerr, J., Morris, R.O. (1980) Analysis of picogram quantities of indole-3-acetic acid by high performance liquid chromatography-fluorescence procedures. Planta 150, 366–370.

    Article  CAS  Google Scholar 

  7. Durley, R.C., Kannangara, T., Simpson, G.M. (1982) Leaf analysis for abscisic, phaseic and 3-indolylacetic acids by high performance liquid chromatography. J.Chromatography 236, 181–188.

    Article  CAS  Google Scholar 

  8. Ehmann, A. (1974) Identification of 2-0-(indole-3-acetyl)-D- glucopyranose, 4-0-(indole- 3-acetyl)-D-glucopyranose and 6-0- (indole-3-acetyl)-D-glucopyranose from kernels of Zea mays by gas liquid chromatography-mass spectrometry. Carbohydrate Research 34, 99–114.

    Article  CAS  PubMed  Google Scholar 

  9. Engelhart, H. (1978) High Perfomance Liquid Chromatography. Springer-Verlag, Berlin.

    Google Scholar 

  10. Frydman, V.M., Gaskin, P., MacMillam, J. (1974) Qualitative and quantitative analysis of gibberellins throughout seed maturation in Pisum sativum cv. Progress No.9. Planta 118, 123–132.

    Article  CAS  Google Scholar 

  11. Gray, R.T., Mallaby, R., Ryback, G., Williams, V.P. (1974) Mass spectra of methyl abscisate and isotopically labelled analogues. J. Chem. Soc Perkin Trans. 2, 919–924.

    Google Scholar 

  12. Horgan, R., Kramers, M.R. (1979) High-performance liquid chromatography of cytokinins. J.Chromatography 173, 263–270.

    Article  CAS  Google Scholar 

  13. Ingram, T.J., Reid, J.B., Murfet, I.C., Gaskin, P., Willis, C.L., MacMillan, J. (1984) Internode length in Pisum. The Le gene controls the 3-hydroxylation of gibberellin A20 to gibberellin A1. Planta 160, 455–463.

    Article  CAS  Google Scholar 

  14. Koshioka, M., Harada, J., Takeno, K., Noma, M., Sassa, T., Ogiyama, K., Taylor, J.S., Rood, S.B., Legge, R.L., Pharis, R.P. (1983) Reverse phase C18 high-performance liquid chromatography of acidic and conjugated gibberellins. J. Chromatography 256, 101–115.

    Article  CAS  Google Scholar 

  15. Letham, D.S., Shannon, J.C., MacDonald, I.R.C. (1964) The structure of zeatin, a (kinetin like) factor inducing cell division. Proc. Chem. Soc. London 230–231.

    Google Scholar 

  16. MacLeod, J.K., Summons, R.E., Letham, D.S. (1976) Mass spectrometry of cytokinin metabolites. Per(trimethylsilyl) and permethyl derivatives of glucosides of zeatin and 6- benzylaminopurine. J.Org.Chem. 41, 3959–3967.

    Article  CAS  PubMed  Google Scholar 

  17. MacMillan, J., Pryce, R.J., Eglinton, G., McCormick, A. (1967) Identification of gibberellins in crude plant extracts by combined gas chromatography-mass spectrometry. Tetrahedron Lett. 2241–2243.

    Google Scholar 

  18. Magnus, V., Bandurski, R.S., Schulze, A. (1980) Synthesis of 4,5,6,7 and 2,4,5,6,7 deuterium labelled indole-3-acetic acid for use in mass spectrometric assays. Plant Physiol. 66, 775–781.

    Article  CAS  PubMed  Google Scholar 

  19. Millard, B.J. (1979) Quantitative mass spectrometry. Heyden, London.

    Google Scholar 

  20. Miller, C. O. (1963) Kinetin and kinetin-like compounds. In: Modern methods of plant analysis. Linskins, H.F. and Tracey, M. V. eds. Vol. VI, pp 194–202. Springer: Berlin- Heidelberg- New York.

    Google Scholar 

  21. Morris, R.O. (1977) Mass spectrometric identification of cytokinins. Glucosyl zeatin and glucosyl ribosylzeatin from Vinca rosea crown gall. Plant Pysiol. 59, 1029–1033.

    Article  CAS  Google Scholar 

  22. Murakami, Y. (1968) The microdrop method, a new rice seedling test for gibberellins and its use for testing extracts of rice and morning glory. Bot. Mag. 79, 33–43.

    Google Scholar 

  23. Murashige, T. and Skoog, F. (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15, 473–497.

    Article  CAS  Google Scholar 

  24. Neill, S.J., Horgan, R., Heald, J.K. (1983) Determination of the levels of abscisic acid- glucose ester in plants. Planta 257, 371–375.

    Article  Google Scholar 

  25. Neill, S.J., Horgan, R., Lee, T.S., Walton, D.C. (1981) 3- methyl-5(4 -oxo-2,6,6 - trimethylcyclohex-2 -en-1 -yl)-2,4 pentadienoic acid from Cercospora rosicola. FEBS Letters 128, 30–32.

    Google Scholar 

  26. Phinney, B.O. (1956) Growth response of single-gene mutants of maize to gibberellic acid. Proc. Natl. Acad. Sci. USA. 42, 185–186.

    Article  CAS  PubMed  Google Scholar 

  27. Reeve, D.R., Crozier, A. (1978) The analysis of gibberellins by high performance liquid chromatography, in Isolation of Plant Growth Substances, SEB Seminar Series, Vol. 4 ed. J.R. Hillman, Cambridge University Press, pp. 41–77.

    Google Scholar 

  28. Rose, M.E., Johnson, R.A.W. (1982) Mass spectrometry for chemists and biochemists. Cambridge University Press.

    Google Scholar 

  29. Saunders, P.F. (1978) The identification and quantitative analysis of abscisic acid in plant extracts, in Isolation of Plant Growth Substances, SEB Seminar Series, Vol.4 ed. J.R.Hillman, pp. 115–134.

    Google Scholar 

  30. Scott, I.M., Horgan, R. (1984) Mass spectrometric quantification of cytokinin nucleotides and glycosides in tobacco crown gall tissue. Planta 161, 345–354.

    Article  CAS  Google Scholar 

  31. Scott, I.M., Horgan, R., McGaw, B.A. (1980) Zeatin-9-glucoside a major endogenous cytokinin of Vinca rosea L. crown gall tissue. Planta 149, 472–475.

    Article  CAS  Google Scholar 

  32. Udea, M., Bandurski, R.S. (1974) Structure of indole-3-acetic acid myoinositol esters and pentamethyl-myoinositols. Phytochemistry 13, 243–253.

    Article  Google Scholar 

  33. Van Staden, J., Drewes, S.E. (1974) Identification of cell division inducing compounds from coconut milk. Physiol. Plant. 32, 347–352.

    Article  Google Scholar 

  34. Yokota, T., Murofushi, N., Takahashi, N. (1980) Extraction, purification and identification, in Encyclopedia of Plant Physiology, Vol. 9, Molecular aspects of plant hormones, ed. J.MacMillan, Springer-Verlag, Berlin, pp. 113–201.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Martinus Nijhoff Publishers, Dordrecht

About this chapter

Cite this chapter

Horgan, R. (1987). Instrumental Methods of Plant Hormone Analysis. In: Davies, P.J. (eds) Plant Hormones and their Role in Plant Growth and Development. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-3585-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-3585-3_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-247-3498-6

  • Online ISBN: 978-94-009-3585-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics